JPS60204771A - Production of melamine - Google Patents

Production of melamine

Info

Publication number
JPS60204771A
JPS60204771A JP59059628A JP5962884A JPS60204771A JP S60204771 A JPS60204771 A JP S60204771A JP 59059628 A JP59059628 A JP 59059628A JP 5962884 A JP5962884 A JP 5962884A JP S60204771 A JPS60204771 A JP S60204771A
Authority
JP
Japan
Prior art keywords
reactor
molten urea
supplied
nozzles
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59059628A
Other languages
Japanese (ja)
Other versions
JPH0533223B2 (en
Inventor
Kisuke Sonoda
園田 己甫
Chiyokichi Sumitomo
住友 千代吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59059628A priority Critical patent/JPS60204771A/en
Publication of JPS60204771A publication Critical patent/JPS60204771A/en
Publication of JPH0533223B2 publication Critical patent/JPH0533223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To enable the uniform reaction in a fluidized layer, by supplying molten urea in a manner to equalize the feeding rates of the molten urea to plural feed nozzles placed at the circumference of the reactor of a fluidized bed reaction apparatus. CONSTITUTION:A gaseous mixture of ammonia and carbon dioxide gas is supplied as the fluidizing gas from the bottom of a reactor, to form a fluidized layer of solid acid catalyst (e.g. activated alumina, silica gel, zeolite, etc.) in the reactor, and molten urea is supplied through a plurality of molten urea nozzles 1-8 attached to the circumference of the reactor. The molten urea supplied through the line 10 is divided into the lines (a) and (b) near the reactor, and each stream is further divided twice and is supplied to the feeding nozzles. The length of each line is set to satisfy the formulas: a=b, a1=a2=b1=b2, and a11=a12= a21=a22=b12=b21=b22. The feeding rates of molten urea to the nozzles 1-8 can be made uniform to enable the formation of a uniformly fluidized layer.

Description

【発明の詳細な説明】 本発明はメラミンの製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for producing melamine.

アンモニア雰囲気中で粒状又は粉状の固体酸触媒の存在
下流動層反応により尿素からメラミンを合成する方法は
知られてい゛る。このメラミンの合成の流動層反応装置
では反応器最下部からアンモニアと二酸化炭素の混合ガ
スが流動ガスとして導入され反応器内で固体酸触媒が流
動化される。
A method for synthesizing melamine from urea by a fluidized bed reaction in the presence of a granular or powdered solid acid catalyst in an ammonia atmosphere is known. In this fluidized bed reactor for melamine synthesis, a mixed gas of ammonia and carbon dioxide is introduced as a fluidizing gas from the bottom of the reactor to fluidize the solid acid catalyst within the reactor.

この流動層中に溶融尿素が供給され、反応器上部に設け
られたサイクロン等に代表される固、気分離装置により
触媒と合成されたメラミンが分離され反応器上部からメ
ラミンが取り出される。この際流動層中で均一な反応が
起るように溶融尿素は反応器周囲に複数個所(通常4〜
12個所)設けられた供給ノズルから同時に供給されて
いる。
Molten urea is supplied into this fluidized bed, and the catalyst and synthesized melamine are separated by a solid/gas separation device such as a cyclone provided at the top of the reactor, and the melamine is taken out from the top of the reactor. At this time, the molten urea is poured into multiple locations around the reactor (usually 4 to
12 locations) are supplied simultaneously from the provided supply nozzles.

従来、溶融尿素は別に設けられた尿素タンクで加熱溶融
されて、そこから一本の配管により反応器迄送られ、反
応器の近傍で供給ノズルの数に応じた分岐管に分流され
各供給ノズルの位置迄配管されていた。供給ノズルが8
個の場合の従来例を図1に示す。しかしながら、この方
式では各ノズルへの溶融尿素の分流が不均一となり易く
、このため反応器流動層への溶融尿素の均一な分散送入
が不充分となり、従って均一な流動層が得られにくく、
又甚だしいときは一部の供給ノズルが詰ることすらあっ
た。
Conventionally, molten urea is heated and melted in a separate urea tank, sent from there to a reactor through a single pipe, and then branched into branch pipes according to the number of supply nozzles near the reactor to be distributed to each supply nozzle. Piping was carried out to the location of 8 supply nozzles
FIG. 1 shows a conventional example in the case of . However, in this method, the distribution of molten urea to each nozzle tends to be uneven, which makes it insufficient to uniformly disperse and feed the molten urea into the fluidized bed of the reactor, making it difficult to obtain a uniform fluidized bed.
In extreme cases, some supply nozzles even became clogged.

本発明者らはこの点につき鋭意研究を行った結果、供給
ノズルの全てに対する溶融尿素の供給速度が均しくなる
ように該溶融尿素を供給することにより上記欠点な解決
できることを見出し、本発明を完成した。
As a result of intensive research into this point, the present inventors found that the above-mentioned drawbacks can be solved by supplying molten urea so that the supply rate of molten urea to all supply nozzles is uniform, and the present invention has been developed based on this finding. completed.

即ち、本発明は反応器の周囲に複数個の溶融尿素の供給
ノズルを設けてなる流動層反応装置を用いて固体酸触媒
の存在下メラミンを製造する方法において、全ての該供
給ノズルに対する溶融尿素の供給速度が等しくなるよう
に該溶融尿素を供給することを特徴とするものである。
That is, the present invention provides a method for producing melamine in the presence of a solid acid catalyst using a fluidized bed reactor in which a plurality of molten urea supply nozzles are provided around a reactor. The molten urea is supplied at equal supply rates.

本発明で用いる流動層反応装置は通常円筒状をしており
、その大きさは反応条件下で固体触媒が流動層を形成さ
れるように設計されればよい。
The fluidized bed reactor used in the present invention usually has a cylindrical shape, and its size may be designed so that the solid catalyst forms a fluidized bed under the reaction conditions.

本発明で用いる固体触媒としては、活性アルミナ、シリ
カゲル、シリカアルミナ、シリカマグネシア、マグネシ
アクロミア、クロミアアルミナ、シリカジルコニア、ア
ルミナボリア、チタニアボリア、ゼオライト、酸性白土
、モンモリナイト、カオリナイト、ベントナイト、珪藻
土リン酸、シリカリン酸等が用いられる。触媒の形状は
粒状又は粉状であればよい。
The solid catalysts used in the present invention include activated alumina, silica gel, silica alumina, silica magnesia, magnesia chromia, chromia alumina, silica zirconia, alumina boria, titania boria, zeolite, acid clay, montmorinite, kaolinite, bentonite, diatomaceous earth phosphate, Silica phosphoric acid and the like are used. The shape of the catalyst may be granular or powder.

溶融尿素の供給ノズルは形成される流動層の下部付近に
位置する様に同一平面上にほぼ等間隔に設けられる。供
給ノズルの数は通常4−5−1.2個であり、好ましく
は8〜12個である。本発明に於ては全ての供給ノズル
に対する溶融尿素の供給速度が等し、くなる様に該溶融
尿素を供給オるのであるが、その具体的手段としては溶
融尿素の配管の反応器近傍における反応器の各供給ノズ
ルへの分岐点から該供給ノズルまでの距離を等しくする
ことにより達成することが出来る。こうすることにより
溶融尿素の配管の反応器近傍における反応器の各供給7
ノズルへの分岐点から該供給ノズルまでの圧損が等しく
なり、全ての供給ノズルにおける溶融尿素圧がほぼ等し
くなり、従って全ての供給ノズルから反応器に送入され
る溶融尿素の供給速度が等しくなる。
The molten urea supply nozzles are provided on the same plane at approximately equal intervals so as to be located near the bottom of the fluidized bed to be formed. The number of supply nozzles is usually 4-5-1.2, preferably 8-12. In the present invention, the molten urea is supplied so that the molten urea is supplied to all the supply nozzles at the same rate. This can be achieved by equalizing the distance from the branch point to each feed nozzle of the reactor to the feed nozzle. By doing this, each supply 7 of the reactor in the vicinity of the reactor of the molten urea piping
The pressure drop from the branch point to the nozzle to the feed nozzle is equal, the molten urea pressure in all feed nozzles is approximately equal, and therefore the feed rate of molten urea from all feed nozzles to the reactor is equal. .

本発明の実施の態様を図2により更に詳しく説明する。An embodiment of the present invention will be explained in more detail with reference to FIG.

図2は反応器及びその近傍の断面図である。FIG. 2 is a sectional view of the reactor and its vicinity.

円筒形の反応器9の周囲に等間隔に溶融尿素供給ノズル
が8個設けられている。溶融尿素はライン10により反
応器近傍逸流れてくる。反応器近傍11でラインは2つ
に分流される(ラインaとラインb)。ラインaについ
てみれば、更にa、と32に分流し、alとa2は更に
それぞれall a、□とa21a22の2つの流れに
分流し、反応器の供給ノズルに結合している。同様にラ
インbはblとb2 に、bl、b2はそれぞれbll
、bl□とb21、b2□に分流して反応器の供給ノズ
ルに結合している。ここで各ラインの長さは次のように
なっている。
Eight molten urea supply nozzles are provided at equal intervals around the cylindrical reactor 9. Molten urea escapes from the vicinity of the reactor via line 10. The line is split into two in the vicinity of the reactor 11 (line a and line b). Regarding line a, the flow is further divided into a, and 32, and al and a2 are further divided into two streams, all a, □ and a21a22, respectively, which are connected to the feed nozzle of the reactor. Similarly, line b is connected to bl and b2, and bl and b2 are connected to bll, respectively.
, bl□ and b21, b2□, which are connected to the supply nozzle of the reactor. Here, the length of each line is as follows.

all =a、2=821 =a22 =bll =b
12 =b21 =b22a、 =a2=b、 =t)
2 a二す 各分岐点はこの長さの関係が維持される様に設定される
。従って各供給ノズルを受けもつラインは最初の分流a
とbからのものが交互になっている。
all = a, 2 = 821 = a22 = bll = b
12 =b21 =b22a, =a2=b, =t)
2a2 Each branch point is set so that this length relationship is maintained. Therefore, the line serving each supply nozzle is the first branch a
and those from b are alternated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の反応器の溶融尿素供給ノズルに対する溶
融尿素ライン分岐の1例を水平断面図で示したものであ
る。 第2図は本発明の方法による反応器の溶融尿素供給ノズ
ルに対する溶融尿素ライン分岐の1例を水平断面図で示
したものである。 9 反応器 1o 溶融尿素ライン a ) 第1分流管 ト:;シ:J 第2分流管 七::::j 第3分流管 特許出願人 三井東圧化学株式会社
FIG. 1 is a horizontal cross-sectional view of an example of a molten urea line branching to a molten urea supply nozzle of a conventional reactor. FIG. 2 shows, in horizontal cross-section, one example of a molten urea line branch to a molten urea supply nozzle of a reactor according to the method of the present invention. 9 Reactor 1o Molten urea line a) 1st branch pipe T:;shi:J 2nd branch pipe 7::::j 3rd branch pipe Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)反応器の周囲に複数個の溶融尿素の供給ノズルを設
けてなる流動層反応装置を用いて固体酸触媒の存在下メ
ラミンを製造する方法において、全ての該供給ノズルに
対する溶融尿素の供給速度が等しくなるように該溶融尿
素を供給することな特徴とするメラミンの製造方法。
1) In a method for producing melamine in the presence of a solid acid catalyst using a fluidized bed reactor in which a plurality of molten urea supply nozzles are provided around a reactor, the molten urea supply rate to all the molten urea supply nozzles. A method for producing melamine, characterized in that the molten urea is supplied so that the
JP59059628A 1984-03-29 1984-03-29 Production of melamine Granted JPS60204771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059628A JPS60204771A (en) 1984-03-29 1984-03-29 Production of melamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059628A JPS60204771A (en) 1984-03-29 1984-03-29 Production of melamine

Publications (2)

Publication Number Publication Date
JPS60204771A true JPS60204771A (en) 1985-10-16
JPH0533223B2 JPH0533223B2 (en) 1993-05-19

Family

ID=13118685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059628A Granted JPS60204771A (en) 1984-03-29 1984-03-29 Production of melamine

Country Status (1)

Country Link
JP (1) JPS60204771A (en)

Also Published As

Publication number Publication date
JPH0533223B2 (en) 1993-05-19

Similar Documents

Publication Publication Date Title
US5326550A (en) Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen
TWI437139B (en) Fluidized bed reactor systems and methods for reducing the deposition of silicon on reactor walls
JP5242157B2 (en) Slurry bubble column reactor
US3912460A (en) Method and article for distributing air in a regenerator
US7141231B2 (en) Internally circulating fluidized bed membrane reactor system
RU2477171C2 (en) Trichlorosilane production plant and method of trichlorosilane production
KR20110091639A (en) Silicon production with a fluidized bed reactor utilizing tetrachlorosilane to reduce wall deposition
JPS6261629A (en) Device for manufacturing synthetic gas
KR101818685B1 (en) Fluidized bed reactor and method for producing granular polysilicon
ATE538069T1 (en) METHOD FOR THE CONTINUOUS PRODUCTION OF POLYCRYSTALLINE HIGH-PURITY SILICON GRANULES
JPH01502356A (en) Fluidized bed reactor
JP2006511419A5 (en)
JP2003504180A (en) Sparger for introducing oxygen into a fluidized bed reactor
CN101165032B (en) Oxychlorination device and method
JPS6230129B2 (en)
JPS60204771A (en) Production of melamine
EP4363097A1 (en) Chemical processing vessels having plate grid distributors and methods of operating the same
US2604384A (en) Apparatus for regenerating a fluidized catalyst
US3056655A (en) Process for making hydrogen cyanide
US8043577B2 (en) Method and device for nozzle-jetting oxygen into a synthesis reactor
EP2463271A1 (en) A method for producing toluene diisocyanate (TDI) by means of toluene diamine (TDA) phosgenation reaction in the gaseous phase and a device for obtaining toluene diisocyanate (TDI) by means of toluene diamine (TDA) phosgenation reaction in the gaseous phase
US4809886A (en) Apparatus for controlling a flow of granular material
US6936082B2 (en) Very large autothermal reformer
US4329526A (en) Chlorination method
WO1984004584A1 (en) Heat exchange between solids

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term