JPS6020459B2 - Sulfide stress corrosion cracking resistant high tensile strength steel - Google Patents

Sulfide stress corrosion cracking resistant high tensile strength steel

Info

Publication number
JPS6020459B2
JPS6020459B2 JP15711281A JP15711281A JPS6020459B2 JP S6020459 B2 JPS6020459 B2 JP S6020459B2 JP 15711281 A JP15711281 A JP 15711281A JP 15711281 A JP15711281 A JP 15711281A JP S6020459 B2 JPS6020459 B2 JP S6020459B2
Authority
JP
Japan
Prior art keywords
stress corrosion
corrosion cracking
less
strength steel
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15711281A
Other languages
Japanese (ja)
Other versions
JPS5858256A (en
Inventor
光男 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP15711281A priority Critical patent/JPS6020459B2/en
Publication of JPS5858256A publication Critical patent/JPS5858256A/en
Publication of JPS6020459B2 publication Critical patent/JPS6020459B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 この出願の発明は硫化物を含む酸性液環境中で応力腐食
割れに対して強い高張力鋼に係る。
DETAILED DESCRIPTION OF THE INVENTION The invention of this application relates to a high tensile strength steel that is resistant to stress corrosion cracking in an acidic liquid environment containing sulfides.

調質型高張力鋼を溶接して作った都市ガス球形ホルダや
LPG貯蔵タンクでは硫化水素(QS)による応力腐食
割れがいまいま問題になって来た。すなわち例えば都市
ガス球形ホルダの開放検査で検出される割れの発生場所
は例えば80k9級高張力鋼(HT80)の場合、多層
盛り溶接継手および仮付け溶接(または治具取付跡)の
止端部の熱影響部である硬化城(ビッカース硬さHv約
40の室度)であると信じられて来た。これはHT60
なし、しHT8政欧の調質型高張力鋼はいずれもオース
テナィト化温度から焼入れ後、溶接予熱温度の100〜
150午0に焼戻した硬化組織の場合、特に硫化物を含
む酸性水溶液中で応力腐食割れに対する強度が著しく低
下することが知られていることに基づくのであろう。し
かしながら本発明者が調査した結果によれば上記の都市
ガス球形ホルダに見られる割れの発生個所はおよそHv
300〜360の軟化城で、組織は主として焼戻しマル
テンサィト組織の個所であることを知った。
Stress corrosion cracking caused by hydrogen sulfide (QS) has become a problem in city gas spherical holders and LPG storage tanks made by welding heat-treated high-strength steel. In other words, for example, in the case of 80K9 class high tensile strength steel (HT80), cracks detected during an open inspection of a city gas spherical holder may occur at the toe of a multi-layer welded joint or tack weld (or jig installation trace). It has been believed that this is a hardened castle (Vickers hardness of about 40 Hv) which is a heat affected zone. This is HT60
None, HT8 Seio's heat-treated high-strength steels are heated from the austenitizing temperature to the welding preheating temperature of 100~
This is probably based on the fact that it is known that in the case of a hardened structure tempered at 150:00, the strength against stress corrosion cracking is significantly reduced, especially in an acidic aqueous solution containing sulfides. However, according to the results of the investigation conducted by the present inventor, the cracks observed in the above-mentioned city gas spherical holder are located at approximately Hv
It was found that at a softening temperature of 300 to 360, the structure was mainly a tempered martensitic structure.

この硬さは研究室における熱処理再現テストによると約
400qo付近の焼戻しマルテンサィト組織の硬さに相
当している。而もこの組織は硫化物を含む酸性水溶液中
で応力腐食割れに対する強度が著しく低下することを確
認した。本発明は上記の知見に基づき焼戻し応力腐食割
れ感受性の小さな、換言すれば硫化物を含む酸性の環境
においても割れを生じ難い調質型高張力鋼を提供するこ
とを目的とし、CO.16%以下、Mno.60〜1.
20%、Cr o.60〜1.20%、Moo.30〜
0.60%、Cu o.15〜0.50%、V O.1
0%以下、BO.006%以下で、かつSio.05%
以下、希±類元素0.01〜0.1%、残部実質的にF
eの化学組成を有し、硫化物を含む酸性液に対する耐応
力腐食割れ性の大きなCて−Mo−V系調質型高張力鋼
に係る。本発明に係る調質型高張力鋼の成分組成はSi
含有量の相違および希土類元素を含有する点を除けば通
例のいわゆるCr−Mo一V系の80キロ級調質型高張
力鋼と同様である。すなわちCは鱗房マルテンサィトに
おいて基地のFeと微細な炭化物を作り、所要の調質組
織とするのに必要であり、その含有量は0.16%以下
とし、望ましくは0.10〜0.14%とする。
According to a laboratory heat treatment reproduction test, this hardness corresponds to the hardness of a tempered martensitic structure of around 400 qo. However, it was confirmed that the strength of this structure against stress corrosion cracking was significantly reduced in acidic aqueous solutions containing sulfides. Based on the above findings, the present invention aims to provide a tempered high-strength steel that is less susceptible to stress corrosion cracking during tempering, in other words, is less prone to cracking even in acidic environments containing sulfides. 16% or less, Mno. 60-1.
20%, Cro. 60-1.20%, Moo. 30~
0.60%, Cu o. 15-0.50%, VO. 1
0% or less, BO. 006% or less, and Sio. 05%
Below, 0.01 to 0.1% of rare elements, the balance being substantially F
The present invention relates to a C-Mo-V tempered high-strength steel having a chemical composition of e and having high resistance to stress corrosion cracking against acidic liquids containing sulfides. The composition of the heat-treated high-strength steel according to the present invention is Si
Except for the difference in content and the fact that it contains rare earth elements, it is the same as the usual so-called Cr-Mo-V type 80 kg class heat-treated high tensile strength steel. That is, C is necessary to form fine carbides with base Fe in the scale martensite to form the required tempered structure, and its content should be 0.16% or less, preferably 0.10 to 0. It will be 14%.

Cが0.1%以下では他の強度成分の含有量との関係も
あるが強タ度不足となるおそれがあり、また0.16%
以上になると溶接性を害する。Mnは基地に溶解して基
地を強化し、さらに脱駿、脱硫の作用があるが、一般に
は耐硫化物応力腐食割れ性に対しては余り多くない方が
よいことZが知られているが、Mnが0.6%以下では
強度不足となり、また1.20%以上では強度が超過す
るようになると共に溶接性が悪くなるのでその含有量は
0.60〜1.20%とする。
If C is less than 0.1%, there is a risk that the strength will be insufficient, although there is a relationship with the content of other strength components;
If it exceeds this level, weldability will be impaired. Mn dissolves in the base, strengthens the base, and has the effect of removing sulfur and desulfurizing, but it is generally known that it is better not to have too much Mn in terms of resistance to sulfide stress corrosion cracking. If Mn is less than 0.6%, the strength will be insufficient, and if it is more than 1.20%, the strength will be excessive and the weldability will be poor, so the content should be 0.60 to 1.20%.

Crは暁入性の付与および炭化物生成による競Z戻軟化
抵抗を付与するため添加するが、Crが0.6%以下で
は強度が不足し、また1.20%以上になると溶接性を
害するようになるので0.60〜1.20%とする。M
oもCrと同様な目的で添加するが、Moが0.302
%以下では競戻軟化抵抗の付与の効果が少なくて強度が
不足し、また0.6%以上になると溶接性を害するよう
になるので0.30〜0.60%とする。
Cr is added to impart damping properties and competitive Z-back softening resistance through the formation of carbides, but if Cr is less than 0.6%, the strength will be insufficient, and if it is more than 1.20%, it will impair weldability. Therefore, it is set at 0.60 to 1.20%. M
o is also added for the same purpose as Cr, but Mo is 0.302
If it is less than 0.6%, the effect of imparting competitive softening resistance will be small and the strength will be insufficient, and if it is more than 0.6%, weldability will be impaired.

Cu‘ま基地への園溶強化ならびに耐候性の付与の目的
で添加するが、0.15%以下では認める程の2効果が
なく、また0.5%以上になると特に轍性を害すように
なるので0.15〜0.50%とする。Vも炭化物を生
成して齢戻軟化抵抗を示し、強度を維持するのに必要で
あり、またCを少なくして溶接性を良くすることができ
るので添加する3が、これが0.10%以上になると特
に劉性を害すようになるので0.10%以下とする。B
は焼入れ性を付与する目的で添加するが、0.006%
以上になると強度が超過するおそれがあり、同時に溶接
性を著しく害するので0.006%以3下とする。
It is added for the purpose of strengthening the Cu'ma matrix and imparting weather resistance, but if it is less than 0.15%, there is no appreciable effect, and if it is more than 0.5%, it will particularly damage the rut resistance. Therefore, it is set to 0.15 to 0.50%. V is also necessary to produce carbides and show resistance to aging softening, and to maintain strength, and it is possible to improve weldability by reducing C, so 3 is added, and this is 0.10% or more. When the content becomes 0.10% or less, it particularly impairs the lubrication properties. B
is added for the purpose of imparting hardenability, but 0.006%
If it exceeds this, there is a risk that the strength will be exceeded, and at the same time, weldability will be significantly impaired, so the content should be 0.006% or less and 3 or less.

またP.Sは不純物として通例のとおり0.030%以
下含有される。これら元素の含有量の上限および下限は
上記のそれぞれの目的効果を奏する適当な量で限定され
ていることは通例のCr一Mo−V系のHT8悦扱高張
力鋼(商品名WEL一4TEN8に、NK−HITEN
8M等)のそれらと同様である。本発明の高張力鋼にお
いてはSi含有量を0.05%以下と低く押えているこ
とが従釆の調費型高張力鋼と相違する。
Also P. S is contained as an impurity in an amount of 0.030% or less as usual. The upper and lower limits of the content of these elements are limited to appropriate amounts that achieve the above-mentioned respective desired effects. , NK-HITEN
8M etc.). The high tensile strength steel of the present invention differs from conventional high tensile strength steels in that the Si content is kept low at 0.05% or less.

Si含有量を低減することは従来から溶接低温割れ感受
性の改善に有効なことが知られている。
It has been known that reducing the Si content is effective in improving weld cold cracking susceptibility.

よって本発明の鋼においてはSiは目標の徴量添加を行
なうか、または特に添加することなく、付随的に含有さ
れる0.05%以下とする。一方、Siは鋼溶製の際脱
酸剤の役をするので、代りに若干の山ならびに脱酸、脱
硫の作用のある希±額元素を添加することとした。
Therefore, in the steel of the present invention, Si is added in a targeted amount, or is not particularly added, and is incidentally contained at 0.05% or less. On the other hand, since Si acts as a deoxidizing agent during steel production, it was decided to add some rare elements that have deoxidizing and desulfurizing effects instead.

希土類元素(REで示す)はそのほかに基地において微
細な炭化物の析出を助長するため基地中の遊離Cが少な
くなり、その結果オーステナィト粒界に炭化物の析出す
るのを減少させるという効果を有するとも言われている
。硫化物を含む酸性溶液中での応力腐食値割れは主とし
て粒界割れをひきおこす水素脆性割れとされているため
、本発明においてはSi含有量の低減と希±類元素の添
加との二つの手段を組合わせてその相乗効果を狙った。
Rare earth elements (represented by RE) also have the effect of promoting the precipitation of fine carbides in the matrix, thereby reducing the amount of free C in the matrix and, as a result, reducing the precipitation of carbides at austenite grain boundaries. It is said. Since stress corrosion cracking in acidic solutions containing sulfides is mainly considered to be hydrogen embrittlement cracking that causes intergranular cracking, the present invention employs two methods: reducing the Si content and adding rare elements. We aimed for a synergistic effect by combining them.

希士類元素の含有量が0.01%以下ではその添加の効
果は僅かで認めるほどの効果はなく、また0.1%以上
加えてもその効果の著しい増加は認められなくなるので
、その含有量は0.01〜0.1%とした。次に実施例
および試験結果について説明する。
If the rare element content is less than 0.01%, the effect of its addition is too small to be noticeable, and even if it is added more than 0.1%, no significant increase in the effect will be observed. The amount was 0.01-0.1%. Next, examples and test results will be explained.

第1表(wt・略)注。Table 1 (wt omitted) Note.

試料1:本発明K係る試験材しREO.062PO.0
07,SO.004試料2:対比材1、RE添加せず、 PO.007,S O.004 試料3:対比材2、市販品 P O.012,S O.006 第1表には本発明に係る試験材(試料1)の化学成分組
成を対比材のそれと対比して示してある。
Sample 1: Test material according to the present invention REO. 062PO. 0
07, SO. 004 Sample 2: Comparative material 1, no RE added, PO. 007, SO. 004 Sample 3: Comparative material 2, commercial product PO. 012, SO. Table 1 shows the chemical composition of the test material (sample 1) according to the present invention in comparison with that of the control material.

試料2は本発明に係る試験材とほぼ同様な化学組成を有
する対比材1で、ミッシュメタルを添加しなかったもの
であり、試料3は従釆のCr−Mo−V系の調質型高張
力鋼HT8折市販品の対比材2である。試験材および対
比材1(試料2)は対比を容易にするため市販品の対比
材2(試料3)の成分組成を基本組成として、Siを低
減して50k9高周波誘導電気炉で溶製した。
Sample 2 is a comparative material 1 having almost the same chemical composition as the test material according to the present invention, but no misch metal was added, and sample 3 is a Cr-Mo-V-based heat-treated high-temperature material. This is contrast material 2 of a commercially available tensile steel HT 8-fold product. In order to facilitate comparison, the test material and contrast material 1 (sample 2) had the basic composition of the commercially available contrast material 2 (sample 3), reduced Si, and were melted in a 50k9 high-frequency induction electric furnace.

なお試験材に希±類元素を含有させるのには市販のミッ
シュメタルを使用した。溶鋼は押傷付き50k9インゴ
ツトに鋳造したのち小形圧延機で17雌淳の板に圧延し
た。
Note that commercially available misch metal was used to make the test material contain rare elements. The molten steel was cast into 50k9 ingots with stamping marks, and then rolled into 17mm plates using a small rolling mill.

各試料は1100午0に30分加熱して水冷し、次に各
温度に焼戻しを施した。このように熱処理した各試料板
から切欠付丸榛試験片(応力集中係数Kt=6.0)を
加工し、加速試験液としてNa2S・斑20を希硫酸に
添加した(0.1%日よ○4十IQ地:S)のpH2、
20qoの液を使用し、静的定荷重の応力腐食割れ試験
を行なって、下限界応力(OLcs(k9〆′協を求め
て比較した。
Each sample was heated at 1100 am for 30 minutes, cooled with water, and then tempered to each temperature. A notched round test piece (stress concentration factor Kt = 6.0) was fabricated from each sample plate heat-treated in this way, and Na2S spot 20 was added to dilute sulfuric acid as an accelerated test liquid (0.1% daily). ○40IQ ground: S) pH2,
A static constant load stress corrosion cracking test was conducted using a 20qo liquid, and the lower limit stress (OLcs) was determined and compared.

第2表は試験結果を示しており、第1図は焼戻し温度と
下限界応力との関係をプロットしたものである。
Table 2 shows the test results, and FIG. 1 plots the relationship between tempering temperature and lower limit stress.

第2表 第2表および第1図から判るように本発明に係る試験材
は400oo×lh功ロ熱、空冷の焼戻いこよって35
k9〆′紘の高い。
As can be seen from Table 2 and Figure 1, the test material according to the present invention was tempered at 400mm
K9〆′Hiro's high.

Lcsを示しているのに対し、従来品の対比材2ではO
Lcsは僅かに10kg〆/柵に過ぎなかった。また希
士類元素を添加しなかった対比材1では25【9〆/め
で市販品の約2.5倍の。し。sを示したが、希士類元
素を添加した試験材の35k9〆/嫌には及ばず、希土
類元素添加の有無による効果の差が明らかに認められた
。また本発明に係る試料1の硬度について言えば、40
0℃×lhr、加熱、空冷の燐もどしの場合Hv345
であり、前述したように都市ガス球形ホル0ダの開放検
査の割れ発生個所の硬さHv300〜360にほぼ相当
しているにもかかわらず、上記の如く従来品に比して高
い下限界応力値を示していることが判る。
Lcs, whereas the conventional comparative material 2 shows O.
Lcs was only 10kg/fence. In addition, the comparative material 1, which did not contain rare elements, had a resistance of 25[9〆/m], about 2.5 times that of the commercial product. death. s, but it was not as high as 35k9/n of the test material containing rare earth elements, and a difference in effect depending on whether or not rare earth elements were added was clearly recognized. Regarding the hardness of sample 1 according to the present invention, it is 40
Hv345 for phosphorus regeneration at 0°C x lhr, heating and air cooling
As mentioned above, although the hardness of the crack occurrence point in the open inspection of the city gas spherical holder is approximately equivalent to Hv 300 to 360, as mentioned above, the lower limit stress is higher than that of the conventional product. It can be seen that the value is shown.

以上の結果から本発明の高張力鋼は、調質型高張力鋼の
溶接で熱影響を受け約400℃に加熱されたのち空冷さ
れる個所、すなわち40000に暁戻されたと同様な効
果を受ける個所において応力腐食割れ試験により従釆品
よりも著しく高い下限界応力を示し、硫化物を含む酸性
水溶液による応力腐食割れに強い耐性を有する。
From the above results, the high-strength steel of the present invention has the same effect as when heat-treated high-tensile steel is welded, heated to about 400°C and then air cooled, that is, heated back to 40,000°C. In stress corrosion cracking tests, it shows a significantly higher lower limit stress than its predecessor, and has strong resistance to stress corrosion cracking caused by acidic aqueous solutions containing sulfides.

従って都市ガス球形ホルダとかLPG貯蔵タンクなどの
溶接構造物に使用して耐硫化物応力腐食割れ性において
大きな効果が得られる。なお本発明のSj含有量を0.
05%以下に低減することおよび希士類元素を0.01
〜0.1%添加することはCr−Mo−V系認質型高張
力鋼のみならず、低合金系の調質型高強度鋼に見られる
中温焼戻しによる応力腐食割れ敏感性を改善することも
できることはいずれも調質型であることから容易に理解
されよう。
Therefore, when used in welded structures such as city gas spherical holders and LPG storage tanks, great effects can be obtained in terms of resistance to sulfide stress corrosion cracking. Note that the Sj content of the present invention is 0.
0.05% or less and rare elements to 0.01
Adding ~0.1% improves the stress corrosion cracking sensitivity caused by medium temperature tempering, which is observed not only in Cr-Mo-V certified high-strength steels but also in low-alloy tempered high-strength steels. It is easy to understand that all of the things that can be done are thermal refining types.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は応力腐食割れ試験結果を示すグラフである。 第/図 FIG. 1 is a graph showing the stress corrosion cracking test results. Figure/Figure

Claims (1)

【特許請求の範囲】 1 C0.10〜0.16%、 Mn0.60〜1.20%、 Cr0.60〜1.20%、 Mo0.30〜0.60%、 Cu0.15〜0.50%、 V0.10%以下、B0.006%以下で、かつSi0
.05%以下、希土類元素0.01〜0.1%、 残部実質的にFeの化学組成(重量%)を有し、硫化物
を含む酸性液に対する耐応力腐食割れ性の大きなCr−
Mo−V系調質型高張力鋼。
[Claims] 1 C0.10-0.16%, Mn0.60-1.20%, Cr0.60-1.20%, Mo0.30-0.60%, Cu0.15-0.50 %, V0.10% or less, B0.006% or less, and Si0
.. 05% or less, rare earth elements 0.01 to 0.1%, and the remainder substantially Fe (weight%), Cr-, which has high stress corrosion cracking resistance against acidic liquids containing sulfides.
Mo-V type tempered high tensile strength steel.
JP15711281A 1981-10-02 1981-10-02 Sulfide stress corrosion cracking resistant high tensile strength steel Expired JPS6020459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15711281A JPS6020459B2 (en) 1981-10-02 1981-10-02 Sulfide stress corrosion cracking resistant high tensile strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15711281A JPS6020459B2 (en) 1981-10-02 1981-10-02 Sulfide stress corrosion cracking resistant high tensile strength steel

Publications (2)

Publication Number Publication Date
JPS5858256A JPS5858256A (en) 1983-04-06
JPS6020459B2 true JPS6020459B2 (en) 1985-05-22

Family

ID=15642484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15711281A Expired JPS6020459B2 (en) 1981-10-02 1981-10-02 Sulfide stress corrosion cracking resistant high tensile strength steel

Country Status (1)

Country Link
JP (1) JPS6020459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265588A (en) * 2021-05-17 2021-08-17 无锡市法兰锻造有限公司 Chromium-molybdenum alloy steel forging capable of improving impact performance and manufacturing process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265588A (en) * 2021-05-17 2021-08-17 无锡市法兰锻造有限公司 Chromium-molybdenum alloy steel forging capable of improving impact performance and manufacturing process thereof

Also Published As

Publication number Publication date
JPS5858256A (en) 1983-04-06

Similar Documents

Publication Publication Date Title
EP0021349B1 (en) High tensile steel and process for producing the same
US4814141A (en) High toughness, ultra-high strength steel having an excellent stress corrosion cracking resistance with a yield stress of not less than 110 kgf/mm2
EP1873270B1 (en) Low alloy steel
JP2000054026A (en) Method for producing pressure vessel used in the presence of hydrogen sulfide, and steel therefor
US3859147A (en) Hot hard stainless steel
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS6144934B2 (en)
JPS6020459B2 (en) Sulfide stress corrosion cracking resistant high tensile strength steel
JP2817136B2 (en) High-strength low-alloy heat-resistant steel with excellent weld strength
JPH0218378B2 (en)
JPS60155648A (en) Heat resistant ferritic steel having high toughness
NO300552B1 (en) Process for the manufacture of low alloy steel with high corrosion resistance for pipelines
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPS6286149A (en) Tough and hard bolt steel
JPS6254062A (en) Low c-cr-mo steel used under damp steam
JPS637351A (en) Body material for metal band saw
JP3422880B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness
JPS6393845A (en) High-tensile steel excellent in cod characteristic in weld zone
JPS6293346A (en) High strength steel excellent in cod characteristics in weld zone
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance
JPS60218460A (en) High tension cast steel
JPH0151526B2 (en)
JPS5925022B2 (en) Wear-resistant high-strength steel with excellent weldability
JPH0543765B2 (en)
JPH0941092A (en) High corrosion resistance martensitic stainless steel reduced in hardness in weld zone