JPS60203858A - Semiconductor flow rate detector - Google Patents

Semiconductor flow rate detector

Info

Publication number
JPS60203858A
JPS60203858A JP6134584A JP6134584A JPS60203858A JP S60203858 A JPS60203858 A JP S60203858A JP 6134584 A JP6134584 A JP 6134584A JP 6134584 A JP6134584 A JP 6134584A JP S60203858 A JPS60203858 A JP S60203858A
Authority
JP
Japan
Prior art keywords
flow rate
flow velocity
semiconductor
elements
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6134584A
Other languages
Japanese (ja)
Inventor
Shunji Shiromizu
白水 俊次
Masayuki Sekimura
関村 雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6134584A priority Critical patent/JPS60203858A/en
Publication of JPS60203858A publication Critical patent/JPS60203858A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Abstract

PURPOSE:To detect the two-dimensional direction of flow and its flow rate by arranging two semiconductor flow rate detecting elements for detecting the flow rate of fluid in an one-dimentional direction so that respective flow rate detecting directions are intersected at right angles and these elements are thermally insulated each other. CONSTITUTION:The semiconductor flow rate detecting elements 41, 42 are fitted on a thermally insulating carrier plate 7 so that respective flow rate detecting directions are intersected at right angles and these elements are thermally insulated. The outputs of both the elements 41, 42 are led into an arithmetic circuit 10. Since the outputs U1, U2 of respective elements 41, 42 become U1= Uf costheta and U2=Uf sintheta, the Uf and theta are found out from said formulas by the arithmetic circuit 10.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、空気などの流体の流れの二次元的な方向と流
速とを検出することのできる半導体流速検出器に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor flow velocity detector capable of detecting the two-dimensional direction and flow velocity of a fluid such as air.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

流れ計測は日常生活や産業活動に欠かすことができない
。−次元方向の流れ、例えば管の中を流れる流体の計測
には、カルマン渦式や超音波式などがよく知られている
、近年は量産性や小型化などの点から半導体流速検出器
が注目されている。
Flow measurement is essential to daily life and industrial activities. - Karman vortex type and ultrasonic type are well-known methods for measuring dimensional flow, such as fluid flowing inside a pipe.In recent years, semiconductor flow velocity detectors have attracted attention due to their ease of mass production and miniaturization. has been done.

しかしながら、二次元的な流れの方向検出、流速測定に
ついては、従来知られているのは気象観測用に用いられ
ているような機械的なものに限られており、小型で、空
間的に限られた領域で使用できるものは殆んどない。
However, the two-dimensional flow direction detection and flow velocity measurement that are currently known are limited to mechanical methods such as those used for weather observation, which are small and spatially limited. There is very little that can be used in the limited areas.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、半導体を用いて流体の流れの
二次元的方向と流速を検出することを可能とした半導体
流速検出器を提供することを目的とする。
In view of the above points, an object of the present invention is to provide a semiconductor flow rate detector that is capable of detecting the two-dimensional direction and flow velocity of fluid flow using a semiconductor.

〔発明の概要〕[Summary of the invention]

、本発明は、−次元的な流速検出を行う半導体流速検出
素子を2個用い、それぞれの流速検出方向が互いに直交
するように、かつ互いに熱的に絶縁された状態で配置し
て検出器を構成する。
, the present invention uses two semiconductor flow velocity detection elements that perform -dimensional flow velocity detection, and arranges the detectors so that their flow velocity detection directions are perpendicular to each other and are thermally insulated from each other. Configure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2個の検出素子の出力に簡単な演算処
理を施すことにより、流体の二次元的な流れの方向と流
速をめることができる。
According to the present invention, the two-dimensional flow direction and flow velocity of the fluid can be determined by performing simple arithmetic processing on the outputs of the two detection elements.

しかも半導体検出素子を用いるから、検出器を小型かつ
安価なものとすることができる。
Moreover, since a semiconductor detection element is used, the detector can be made small and inexpensive.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に用いる半導体流速検出素子4
を示す。この検出素子4は、半導体基板1の中央部に発
熱用トランジスタ2が形成され、これを挾んで対称位置
に温度測定用トランジスタJa 、3bが形成されたも
のである。
FIG. 1 shows a semiconductor flow velocity detection element 4 used in an embodiment of the present invention.
shows. The detection element 4 has a heat generating transistor 2 formed in the center of a semiconductor substrate 1, and temperature measuring transistors Ja and 3b formed at symmetrical positions sandwiching the heat generating transistor 2.

このような流速検出素子4を用いた一次元の流速測定回
路は第2図のように構成される。温度測定用トランジス
タ3m 、3bにより差動回路が構成される。5は流体
温度測定用トランジスタであり、差動増幅器6は流体温
度測定用トランジスタ5の出力に応じて発熱用トランジ
スタ2を制御するために設けられている。例えば、流体
温度に対して発熱用トランジスタ2の部分の温度が常に
30度高い状態に保たれるようにする。
A one-dimensional flow velocity measuring circuit using such a flow velocity detection element 4 is constructed as shown in FIG. A differential circuit is constituted by the temperature measuring transistors 3m and 3b. Reference numeral 5 denotes a fluid temperature measuring transistor, and a differential amplifier 6 is provided to control the heat generating transistor 2 according to the output of the fluid temperature measuring transistor 5. For example, the temperature of the heat generating transistor 2 is always kept 30 degrees higher than the fluid temperature.

このような構成により、第1図の実線で示す矢印方向に
ついての流体の流速を検出することができる。即ち流体
の速度に応じて、発熱用トランジスタ2からの熱の温度
測定用トランジスタ3m 、3bに対する影響が異なり
、流速が大になる程、第2図の温度測定用トランジスタ
Ja 、Jbのコレクタ間の差出力電圧v0 が大にな
るからである。第3図はこの流速特性の一例を示してい
る。
With such a configuration, the flow velocity of the fluid in the direction of the arrow shown by the solid line in FIG. 1 can be detected. That is, depending on the velocity of the fluid, the influence of the heat from the heat generating transistor 2 on the temperature measuring transistors 3m and 3b differs, and as the flow velocity increases, the effect between the collectors of the temperature measuring transistors Ja and Jb in FIG. This is because the differential output voltage v0 becomes large. FIG. 3 shows an example of this flow velocity characteristic.

ところで第1図の実線矢印方向に流速vf で流体が流
れたときの出力をIJf とすると、破線矢印方向に角
度θだけ傾いて流体が流れたときに得られる出力Uは、 U = U f °ma+θ なる角度依存性を示す。この様子を第4図に示した。こ
れは、第1図の破線矢印方向の流体の流れのうち、実線
矢印方向の成分のみが、温度測定用トランジスタJa 
、3bの温度差に影響を与えるからである。
By the way, if the output when the fluid flows at a velocity vf in the direction of the solid arrow in Fig. 1 is IJf, then the output U obtained when the fluid flows at an angle θ in the direction of the dashed arrow is U = U f °. It shows an angular dependence of ma+θ. This situation is shown in Figure 4. This means that of the fluid flow in the direction of the dashed arrow in FIG. 1, only the component in the direction of the solid arrow flows through the temperature measuring transistor Ja.
, 3b.

本発明では、このような−次元流速検出素子の角度依存
性を利用し、第5図に示すように2個の半導体流速検出
素子41t’!を、それぞれの流速検出方向が実線矢印
で示すように互いに直交するように配置することを基本
とする。
In the present invention, by utilizing such angular dependence of the -dimensional flow velocity detection element, two semiconductor flow velocity detection elements 41t'!, as shown in FIG. 5, are used. Basically, they are arranged so that their respective flow velocity detection directions are orthogonal to each other as shown by the solid arrows.

本発明の具体的な実施例の検出器構成を第6図に示す。FIG. 6 shows a detector configuration according to a specific embodiment of the present invention.

2個の半導体流速検出素子41 。Two semiconductor flow velocity detection elements 41.

4、は、互いに熱的に影響を与えないように熱絶縁性の
キャリアグレート7上に近接してマウントされている。
4 are mounted closely on a thermally insulating carrier grate 7 so as not to thermally influence each other.

この流速検出器を含む流速測定回路は第7図に示すよう
に構成される。その基本構成は第2図と同じであるが、
流体温度測定用トランジスタ5は二つの検出回路で共用
している。各検出素子4.,4.からの出力は演算回路
10に導かれ、所定の演算処理により流体の流れの方向
と流速がめられる。
A flow velocity measuring circuit including this flow velocity detector is constructed as shown in FIG. Its basic configuration is the same as in Figure 2, but
The fluid temperature measuring transistor 5 is shared by two detection circuits. Each detection element 4. ,4. The output from the fluid is guided to an arithmetic circuit 10, and the direction and velocity of the fluid flow are determined through predetermined arithmetic processing.

いま第6図に破線矢印で示す各素子4.。Each element 4 shown by a broken line arrow in FIG. .

4、の検出方向に対して、実線矢印で示す方向に流体が
流れているとする。このとき、各検出素子41y4!の
出力U8.U、はそれぞれUx=Ufoosθ U*=Ufgmθ である。これらの式からUf 、θをめると、Uf=〆
■y「璽1 となる。演算回路10により以上の演算を行うことによ
り、流速Uf と流体の方向θをめることができる。
Assume that the fluid is flowing in the direction shown by the solid arrow with respect to the detection direction of 4. At this time, each detection element 41y4! Output U8. U, are respectively Ux=Ufoosθ U*=Ufgmθ. Subtracting Uf and θ from these equations, we get Uf=〆■y 1.By performing the above calculations using the arithmetic circuit 10, the flow velocity Uf and the direction θ of the fluid can be determined.

なお、2個の半導体流速検出素子の固定方法は、互いに
熱的に影響を与えなければ任意である。例えば第8図に
示すように、キャリアプレート8に熱絶縁性材料9で2
個の検出素子41゜4、を埋込み固定することもできる
Note that the method of fixing the two semiconductor flow velocity detection elements is arbitrary as long as they do not affect each other thermally. For example, as shown in FIG.
It is also possible to embed and fix the detection elements 41.4.

また半導体流速検出素子は、上述したものに限られず、
例えば発熱部に拡散抵抗を用いたもの、温度測定素子部
にサーモカッノルを用いたもの、などでもよい。
Further, the semiconductor flow velocity detection element is not limited to the above-mentioned one,
For example, a diffused resistor may be used in the heat generating part, a thermocunol may be used in the temperature measuring element part, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体流速検出素子の一例を示す図、第2図は
これを用いた流速測定回路を示す図、第3図はその出力
特性を示す図、第4図は同じく出力の角度依存性を示す
図、第5図は本発明の流速検出器の基本構成を示す図、
第6図は一実施例の流速検出器構成を示す図、第7図は
これを用いた流速および流れ方向測定回路を示す図、第
8図は他の実施例の流速検出器構成を示す図である。 1・・・半導体基板、2・・・発熱用トランジスタ、3
a 、3b・・・温度測定用トランジスタ、4゜41y
4!・・・半導体流速検出素子、5・・・流体温度測定
用トランジスタ、6・・・差動増幅器、7゜8・・・キ
ャリアプレート、9・・・熱絶縁性材料、10・・・演
算回路。 出願人代理人 弁理士 鈴 江 武 音節2図 0 N 第31
Fig. 1 shows an example of a semiconductor flow velocity detection element, Fig. 2 shows a flow velocity measurement circuit using this, Fig. 3 shows its output characteristics, and Fig. 4 shows the angular dependence of the output. FIG. 5 is a diagram showing the basic configuration of the flow velocity detector of the present invention,
FIG. 6 is a diagram showing the flow velocity detector configuration of one embodiment, FIG. 7 is a diagram showing a flow velocity and flow direction measurement circuit using this, and FIG. 8 is a diagram showing the flow velocity detector configuration of another embodiment. It is. 1... Semiconductor substrate, 2... Heat generating transistor, 3
a, 3b...Temperature measurement transistor, 4°41y
4! ...Semiconductor flow rate detection element, 5...Transistor for fluid temperature measurement, 6...Differential amplifier, 7゜8...Carrier plate, 9...thermal insulating material, 10...arithmetic circuit . Applicant's agent Patent attorney Takeshi Suzue Syllable 2 Figure 0 N No. 31

Claims (2)

【特許請求の範囲】[Claims] (1)流体の一次元方向の流速を検出する2個の半導体
流速検出素子を、それぞれの流速検出方向が互いに直交
するように、かつ互いに熱的に絶縁された状態で配置し
て構成したことを特徴とする半導体流速検出器。
(1) Two semiconductor flow velocity detection elements that detect the flow velocity of a fluid in a one-dimensional direction are arranged so that their respective flow velocity detection directions are perpendicular to each other and are thermally insulated from each other. A semiconductor flow velocity detector featuring:
(2)前記半導体流速検出素子は、半導体基板上に、発
熱部とこれを挾んで対称位置に2個の温度測定素子とを
形成したものである特許請求の範囲第1項記載の半導体
流速検出器。
(2) The semiconductor flow rate detection element according to claim 1, wherein the semiconductor flow rate detection element is formed by forming a heat generating part and two temperature measuring elements at symmetrical positions sandwiching the heat generating part on a semiconductor substrate. vessel.
JP6134584A 1984-03-29 1984-03-29 Semiconductor flow rate detector Pending JPS60203858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6134584A JPS60203858A (en) 1984-03-29 1984-03-29 Semiconductor flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6134584A JPS60203858A (en) 1984-03-29 1984-03-29 Semiconductor flow rate detector

Publications (1)

Publication Number Publication Date
JPS60203858A true JPS60203858A (en) 1985-10-15

Family

ID=13168449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6134584A Pending JPS60203858A (en) 1984-03-29 1984-03-29 Semiconductor flow rate detector

Country Status (1)

Country Link
JP (1) JPS60203858A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113665A (en) * 1973-02-07 1974-10-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113665A (en) * 1973-02-07 1974-10-30

Similar Documents

Publication Publication Date Title
CA1230754A (en) Thermal diffusion fluid flow sensor
Van Oudheusden Silicon thermal flow sensors
Van Oudheusden Silicon flow sensors
EP0313120B1 (en) Direction-sensitive flow-rate indicator
DE69018880T2 (en) Compensated heat transfer mass flow meter.
CN110031650B (en) Thermal temperature difference type wind speed and direction measuring device and method
Sun et al. Flip-chip packaging for a two-dimensional thermal flow sensor using a copper pillar bump technology
JPS60203858A (en) Semiconductor flow rate detector
CN101782410A (en) Thermal flow meter of micro electro mechanical system
JP2000019195A (en) Wind direction and wind speed measuring device
JPS60247171A (en) Semiconductive flow speed detector
US4476728A (en) Vortex flow meter
Lai et al. Monolithic integrated spreading-resistance silicon flow sensor
JPH0612493Y2 (en) Micro bridge flow sensor
JPS60131469A (en) Semiconductor flow rate detecting element
Ligęza et al. Employment of temperature waves superposition in method of absolute measurement of gas flow velocities down to the sub 1 m/s range
JPS6131966A (en) Semiconductor flow velocity detector
SU1377618A1 (en) Device for measuring temperature pulsations
JPH02193019A (en) Flow sensor
Qin et al. Novel micromachined thermal anemometer based on lateral polysilicon diode flow sensor
JPS60131467A (en) Semiconductor flow rate detecting element
Blackwelder et al. A hot-wire probe for velocity measurement in reverse flows
JPS63289459A (en) Two-dimensional flow velocity/direction detector
SU584252A1 (en) Thermoanemometer
SU580508A1 (en) Integral fluid flow rate sensor