JPS60203854A - Measuring method of crack propagation speed of material - Google Patents

Measuring method of crack propagation speed of material

Info

Publication number
JPS60203854A
JPS60203854A JP59061937A JP6193784A JPS60203854A JP S60203854 A JPS60203854 A JP S60203854A JP 59061937 A JP59061937 A JP 59061937A JP 6193784 A JP6193784 A JP 6193784A JP S60203854 A JPS60203854 A JP S60203854A
Authority
JP
Japan
Prior art keywords
crack
crack propagation
arrival
probes
receivers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59061937A
Other languages
Japanese (ja)
Inventor
Masatoshi Tsukamoto
塚本 雅敏
Yoshiaki Kawaguchi
川口 喜昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59061937A priority Critical patent/JPS60203854A/en
Publication of JPS60203854A publication Critical patent/JPS60203854A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the accuracy of measurement by arranging plural groups of probes consisting of transmitters and receivers so that an ultrasonic beam crosses a crack expected line, detecting the reduction of a receiving level as arrival at the crack and measuring the crack propagation speed on the basis of the interval of the probes and a crack arrival time interval. CONSTITUTION:When it is supposed that a crack line CL exists on a material M such as a steel plate, transmitters 1A-1X and receivers 2A-2X are arranged on one surface US and the other surface BS respectively as groups with intervals in the crack propagation direction. Plural frequency signals are outputted from a signal generator and transmitted/received by respective frequency levels different in respective adjacent groups. In addition, a reception amplifier, a waveform storage device, a synchroscope and an analyzer are arranged to detect the reduction time of the receiving level as the arrival at a crack and detect the crack propagation state.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、鋼板の脆性破壊伝播、停止の動的挙動を把握
する場合などに適用される材料の亀裂進展速度測定方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for measuring the crack growth rate of a material, which is applied to grasping the dynamic behavior of brittle fracture propagation and stoppage of a steel plate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

この種の測定は材料の安全性評価や改良にとってきわめ
て重要でオシ、いくつかの研究報告もなされている。た
とえば、日本造船学会論文集第144号の334〜34
2頁所載の「高速クラックの動的様相に関する研究(第
3報)」がある。
This type of measurement is extremely important for the safety evaluation and improvement of materials, and several research reports have been published. For example, 334-34 of the Transactions of the Japan Society of Naval Architects, No. 144.
There is a ``Study on the dynamic aspects of high-speed cracks (3rd report)'' on page 2.

この雑文も含めて、従来における亀裂進展速度の測定に
当っては、鋼板の亀裂検出ゲージとして歪ゲージを貼着
し、このゲージの破断時間を検出しだシ、あるいは歪変
化を検出し、各ケ°〜ジの破断時間差、あるいは歪変化
の時間差と、ゲージ貼着位置とに基いて測定するもので
あった。
Including this miscellaneous article, when measuring the crack propagation rate in the past, a strain gauge is pasted as a crack detection gauge on the steel plate, and the rupture time of this gauge is detected, or the strain change is detected, and each The measurement was based on the difference in time to failure of the cage or the time difference in strain change, and the position where the gauge was attached.

しかし、この従来法は、鋼板表面に貼着したゲージの切
断を検出するものであるから、鋼板内部のみに亀裂が進
展する場合にはゲージが破断せず、測定そのものができ
ない。歪変化を検出したとしても、鋼板表面で歪変化を
検出するので、間接的な測定となり精度が悪い。さらに
、鋼板が破断する前にゲージのみが切断される場合には
、得られる速度の信頼性に欠ける。
However, since this conventional method detects the breakage of a gauge attached to the surface of a steel plate, if a crack develops only inside the steel plate, the gauge will not break and measurement itself will not be possible. Even if a strain change is detected, since the strain change is detected on the surface of the steel plate, the measurement is indirect and has poor accuracy. Furthermore, if only the gauge is cut before the steel plate breaks, the resulting speed is unreliable.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来法の問題点を解決し、亀裂進
展状況のいかんに関シなく適確にかつ正確に検知できる
材料の亀裂進展速度測定方法に関する。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the conventional method and to relate to a method for measuring the rate of crack growth in a material, which can accurately and accurately detect crack growth regardless of the state of crack growth.

〔発明の概要〕[Summary of the invention]

この目的を達成するための本発明法は、亀裂が予想され
る亀裂予想線を超音波ビームが横切るように、超音波の
送信子と受信子とを組にして探触子を複数組、亀裂進展
方向に間隔を置いてそれぞれ配置し、前記送信子から超
音波の連続波を発信しこれを受信子によシ受信し、受信
信号のレベル低下を亀裂到達として把え、前記探触子間
の間隔と亀裂到達時間間隔とに基いて亀裂進展速度を測
定することを特徴とするものである。
In order to achieve this objective, the method of the present invention uses a plurality of sets of ultrasonic transmitter and receiver probes, so that the ultrasonic beam crosses the predicted crack line where a crack is expected to occur. They are arranged at intervals in the direction of propagation, and the transmitter emits a continuous wave of ultrasonic waves, which is received by the receiver, and a decrease in the level of the received signal is recognized as reaching the crack, and the probe is placed between the probes. This method is characterized in that the crack growth rate is measured based on the interval between cracks and the crack arrival time interval.

本発明の主要点の第1は、基本的に超音波を利用し、亀
裂の到達に伴って受信信号レベルが低下することに利用
し、逆に亀裂の到達時点を知ろうとするものである。第
2に、超音波ビームが亀裂予想線を横切るように探触子
を配置しである点である。その結果、鋼板の亀裂進展状
況を直接検出でき、かつ鋼板内部のみの亀裂であっても
検知できる利点がもたらされる。第3に、超音波として
亀裂の到達時点を知るために、探傷の場合の・ぐルス波
とは異って、連続波を発信するようにしである点。
The first main point of the present invention is to basically utilize ultrasonic waves and utilize the fact that the received signal level decreases as the crack reaches the crack, and conversely to try to know when the crack is reached. Second, the probe is placed so that the ultrasonic beam crosses the expected crack line. As a result, it is possible to directly detect the progress of cracks in the steel plate, and there is an advantage that even cracks only inside the steel plate can be detected. Thirdly, in order to know when the ultrasonic wave has arrived at the crack, it is designed to emit continuous waves, unlike the Glucian waves used in flaw detection.

〔発明の具体例〕[Specific examples of the invention]

以下本発明を図面に示す鋼板を例に採った具体例によっ
て説明する。Mは鋼板等の材料で、これに亀裂半線口亦
に沿って入ると予想される場合において、本発明によれ
ば超音波探触子として透過型のものが用いられ、亀裂予
想線を超音波ビームBが横切るように、材料Mの1表面
USに送信子IA、IB、・・・が、地表面BSに受信
子2A。
The present invention will be explained below using a concrete example using a steel plate shown in the drawings. M is a material such as a steel plate, and when it is expected that the probe will enter the material along the crack half-line, according to the present invention, a transmission type ultrasonic probe is used as the ultrasonic probe, and the Transmitter elements IA, IB, .

2B、・・・が組となり、かつ亀裂進展方向(図示の例
では鋼板の巾方向)に間隔を置いてそれぞれ配置されて
いる。
2B, . . . form a set, and are arranged at intervals in the crack propagation direction (in the illustrated example, the width direction of the steel plate).

3は信号発生器で、ここから発生された連続波が出力増
巾器4A、4B、・・・において最大40ワツトまで増
巾された後、各送信子IA、IB・・・へ与えられ、そ
こから材料M内にそれぞれ透過され、透過信号を各受信
子2A、2B、・・・によシ受信し、これを受信増巾器
5A、5B、・・・にて増巾し、ツクツクアップとして
データレコーダによる高速の波形記憶装置6a 、6b
・・・に各組独立して入力し、時間軸に対して記憶させ
る。またシンクロスコープ7および解析装置8も付設さ
れる。
3 is a signal generator, and the continuous wave generated from this is amplified to a maximum of 40 watts by output amplifiers 4A, 4B, . . . and then given to each transmitter IA, IB, . From there, the transmitted signals are transmitted into the material M, and the transmitted signals are received by the receivers 2A, 2B, . . . , and amplified by the reception amplifiers 5A, 5B, . High-speed waveform storage devices 6a and 6b using data recorders as
...input each set independently and store them along the time axis. A synchronoscope 7 and an analysis device 8 are also attached.

ここで、第3図のように、信号発生器3から複数種の周
波数、たとえば5MHzと10 MHzの2種の周波数
の連続波を出力し、隣9合う各組ごと異らせて送受信を
行うのが、信号の弁別上望ましい。
Here, as shown in Fig. 3, the signal generator 3 outputs continuous waves of multiple types of frequencies, for example, two types of frequencies, 5 MHz and 10 MHz, and transmits and receives waves with different frequencies for each adjacent pair. is desirable for signal discrimination.

ところで、探触子の間隔は狭いほど、亀裂速度は正確に
測定できるけれども、あまり狭くすると、隣シの信号を
拾う虞れがあり、このために上記例では、隣同士の周波
数を変えて雑音を除去しながら、その位置のみの信号を
拾うようにしである。
Incidentally, the narrower the spacing between the probes, the more accurately the crack velocity can be measured, but if the spacing is too narrow, there is a risk of picking up adjacent signals.For this reason, in the above example, the frequencies of the adjacent probes are changed to reduce noise. This is to pick up the signal only at that position while removing it.

かくして、いま進展した亀裂か送信子と受信子の間に到
達し、超音波ビームを遮ると、受信の信号レベルは第4
図のように低下する。この信号レベルの低下し始めだ時
刻を各測定組ごとめると、その時刻差Δtと測定位置間
隔Δtとから、亀裂速度VをΔt/Δt としてめるこ
とができる。
Thus, if the crack that has just developed reaches between the transmitter and the receiver and blocks the ultrasound beam, the received signal level will drop to the fourth level.
It decreases as shown in the figure. If the time at which the signal level begins to decrease is determined for each measurement set, the crack velocity V can be determined as Δt/Δt from the time difference Δt and the measurement position interval Δt.

なお、受信増巾器は、出力が大きく、あるいは波形記憶
装置の分解能が高い、収録速度が速い場合には必らずし
も必要ではない。
Note that the reception amplifier is not necessarily necessary if the output is large, the resolution of the waveform storage device is high, or the recording speed is fast.

〔発明の効果〕〔Effect of the invention〕

以上の通シ、本発明によれば、亀裂の態様やその進展状
況に左右されることなく亀裂進展速度を測定することが
できる。
In summary, according to the present invention, the crack growth rate can be measured without being influenced by the form of the crack or its progress.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の実施態様例の正面図、第2図はその
平面図、第3図は信号処理系のフロー図、第4図は亀裂
到達による信号レベル低下例を示す相関図である。 IA〜IX・・・送信子、2A〜2X・・・受信子、3
・・・信号発生器、6a〜61・・・波形記憶装置、M
・・・相料。
Fig. 1 is a front view of an embodiment of the method of the present invention, Fig. 2 is a plan view thereof, Fig. 3 is a flow diagram of the signal processing system, and Fig. 4 is a correlation diagram showing an example of signal level reduction due to reaching a crack. be. IA-IX...Sender, 2A-2X...Receiver, 3
...Signal generator, 6a-61...Waveform storage device, M
... Compensation fee.

Claims (1)

【特許請求の範囲】[Claims] (1)亀裂が予想される亀裂予想線を超音波ビームが横
切るように、超音波の送信子と受信子とを組にして探触
千金複数組、亀裂進展方向に間隔を置いてそれぞれ配置
し、前記送信子から超音波の連続波を発信しこれを受信
子によシ受信し、受信信号のレベル低下を亀裂到達とし
て把え、前記探触子間の間隔と亀裂到達時間間隔とに基
いて亀裂進展速度を測定することを特徴とする材料の亀
裂進展速度測定方法。
(1) Multiple pairs of ultrasonic transmitters and receivers are arranged at intervals in the direction of crack propagation so that the ultrasonic beam crosses the predicted crack line where cracks are expected to occur. , a continuous wave of ultrasonic waves is transmitted from the transmitter and received by the receiver, and a decrease in the level of the received signal is recognized as reaching the crack, and is based on the interval between the probes and the time interval of reaching the crack. A method for measuring a crack growth rate of a material, the method comprising: measuring the crack growth rate of a material.
JP59061937A 1984-03-28 1984-03-28 Measuring method of crack propagation speed of material Pending JPS60203854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59061937A JPS60203854A (en) 1984-03-28 1984-03-28 Measuring method of crack propagation speed of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59061937A JPS60203854A (en) 1984-03-28 1984-03-28 Measuring method of crack propagation speed of material

Publications (1)

Publication Number Publication Date
JPS60203854A true JPS60203854A (en) 1985-10-15

Family

ID=13185589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59061937A Pending JPS60203854A (en) 1984-03-28 1984-03-28 Measuring method of crack propagation speed of material

Country Status (1)

Country Link
JP (1) JPS60203854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017175692A1 (en) * 2016-04-06 2018-04-12 株式会社Subaru Ultrasonic inspection system, ultrasonic inspection method and aircraft structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017175692A1 (en) * 2016-04-06 2018-04-12 株式会社Subaru Ultrasonic inspection system, ultrasonic inspection method and aircraft structure
CN108885194A (en) * 2016-04-06 2018-11-23 株式会社斯巴鲁 System for ultrasonic inspection, ultrasonic inspection method and airframe body
EP3441755A4 (en) * 2016-04-06 2019-11-06 Subaru Corporation Ultrasonic inspection system, ultrasonic inspection method, and aircraft structure
US11226311B2 (en) 2016-04-06 2022-01-18 Subaru Corporation Ultrasonic inspection system, ultrasonic inspection method and aircraft structural object

Similar Documents

Publication Publication Date Title
US4291577A (en) On line ultrasonic velocity gauge
EP1228364B1 (en) System and method of assessing the structural properties of wooden members using ultrasound
US3664180A (en) Ultrasonic detection of lumber defects
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
US4065960A (en) Method and apparatus for monitoring the operation of ultrasonic testing of tubes and bars
JPH0415415B2 (en)
US5165280A (en) Device for testing of oblong objects by means of ultrasonic waves
US3380293A (en) Ultrasonic inspection apparatus
CN101147058B (en) Determining average mechanical properties of constituent particles of a sample of material using ultrasound
US5606113A (en) Acoustic methods to monitor sliver linear density and yarn strength
JPS60203854A (en) Measuring method of crack propagation speed of material
EP1680667B1 (en) Method and apparatus for ultrasonic testing of an object
CN113311072A (en) Steel rail stress detection method and system
RU2560753C1 (en) Mirror-shadow method for ultrasonic inspection with differential compensation for interfering factors
JP2609647B2 (en) Ultrasonic flaw detector
JP3729686B2 (en) Defect detection method for piping
JPH0328374Y2 (en)
US3610028A (en) Ultrasonic flaw detector
JPH0729447Y2 (en) Ultrasonic measuring device
SU1265594A1 (en) Method for ultrasound inspection of articles
SU1422140A1 (en) Method of ultrasonic shadow check of articles
SU1265596A1 (en) Method for ultrasonic flaw detection of articles
SU1497561A1 (en) Method of mirrow-shadow ultrasonic inspection of articles of continuous section
CN117214292A (en) Double-oblique-cone ultrasonic sensor, steel rail damage positioning device and method
JPS5825225B2 (en) Sound wave propagation time measurement method and position locating method