JPS60203693A - Disposition of coke dust in dry coke extinguisher - Google Patents

Disposition of coke dust in dry coke extinguisher

Info

Publication number
JPS60203693A
JPS60203693A JP6190484A JP6190484A JPS60203693A JP S60203693 A JPS60203693 A JP S60203693A JP 6190484 A JP6190484 A JP 6190484A JP 6190484 A JP6190484 A JP 6190484A JP S60203693 A JPS60203693 A JP S60203693A
Authority
JP
Japan
Prior art keywords
coke
fluidized bed
combustion
coke powder
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6190484A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Egashira
江頭 達彦
Nobuyoshi Nishihara
信義 西原
Koichi Yuda
油田 耕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6190484A priority Critical patent/JPS60203693A/en
Publication of JPS60203693A publication Critical patent/JPS60203693A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The coke dust which has been collected in the dust collector is combusted in a fluid bed type burner whereby the disposition after coke dust collection is simplified and the recovery of heat in the extinguisher is increased. CONSTITUTION:Coarse coke dust collected in the first dust collector 2 following the cooling oven 1 is fed to the fluid bed type burner 6 where the dust is burned and the circulation gas is utilized on this combustion to control the combustion temperature to the optimum (about 900 deg.C). Then, the coke dust and ash are collected with the sub-collector 12 at the outlet of the burner 6 and fed again to the burner 6 where the coke dust is burned.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発萌はコークスの顕熱を回収するコークス乾式消火設
備におけるコークス粉の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for treating coke powder in a coke dry extinguishing system that recovers the sensible heat of coke.

〔従来技術〕[Prior art]

赤熱コークスの顕熱回収は、特公昭58−’ 2993
号公報に記載されているように、赤熱コークスを竪形炉
の上方から装入し、下方より150℃前後の循環ガス(
N2リッチガス)を吹込みコークスと力スとを対向流さ
せて、コークスを消火、冷却し、コークスの顕熱を90
0℃前後の熱ガスとして回収し、後段に設けたボイラで
蒸気を発生させる熱回収システムとなっている。この過
程で竪形炉力・ら排気された高温の循環ガスは多量のコ
ークス粉を含有しており、後段のボイラ、循環ガスブロ
ワ等の摩耗損傷対策として、竪形炉出口に一次集塵機。
Sensible heat recovery from red-hot coke is described in the Japanese Patent Publication No. 58-'2993.
As described in the publication, red-hot coke is charged from above into a vertical furnace, and circulating gas (at around 150°C) (
The coke is extinguished and cooled by blowing in N2 rich gas) and causing the coke and the gas to flow in opposite directions, and the sensible heat of the coke is reduced to 90%.
The heat recovery system recovers it as hot gas at around 0°C and generates steam in a boiler installed in the latter stage. During this process, the high-temperature circulating gas exhausted from the vertical furnace contains a large amount of coke powder, so a primary dust collector is installed at the outlet of the vertical furnace to prevent wear and tear on the subsequent boiler, circulating gas blower, etc.

循環ガスブロワ前に二次集塵機を設置し、コークス粉を
捕集除去している。また、−次集塵機で捕集された高温
のコークス粉(800℃前後)は集塵機下方に設けられ
た水冷シャケ・ノドタイプの冷却器で冷却され、スクリ
ューコンベヤ、ノλヶノトコンベヤ等で系外のホッパへ
lul!送処理されている。
A secondary dust collector is installed in front of the circulating gas blower to collect and remove coke powder. In addition, the high-temperature coke powder (around 800°C) collected by the secondary dust collector is cooled by a water-cooled shaker/throat type cooler installed below the dust collector, and then sent to a hopper outside the system via a screw conveyor, groove conveyor, etc. lul! has been processed.

さらに細かいコークス粉は二次集塵機で捕集され、これ
も−次集塵機の捕集コークス粉と混ぜてホ・ノバヘ搬送
処理している。
Even finer coke powder is collected by a secondary dust collector, mixed with the coke powder collected by the secondary dust collector, and transported to Honova.

しかし、赤熱コークス粉の消火冷却処理は一般に技術的
な問題が多々あり、冷却が不充分だと搬送過程で燃焼1
−ラブルが生じ、また冷却’AJ果を上げるため水冷ジ
ャケット内のコークスわ)厚めを薄くするとジャケット
内で棚吊りが起こり、コークス粉の排出トラブルが生じ
ていた。さらにコークス粉の搬送貯留設備を別途膜けな
ければならないので多大の設備費を要する欠点もある。
However, the extinguishing and cooling treatment of red-hot coke powder generally has many technical problems, and if cooling is insufficient, combustion will occur during the transportation process.
- If the thickness of the coke inside the water-cooled jacket was made thinner to increase cooling efficiency, hanging would occur within the jacket, causing problems in coke powder discharge. Furthermore, since coke powder transportation and storage equipment must be installed separately, there is also the drawback that a large amount of equipment cost is required.

一方、このコークス粉ば主に焼結鉱の原料として用いら
れているが、他のコークス製造過程でも大量のコークス
粉が発生するため、コークス粉そのものが現行の生産体
制では余剰気味である。このため乾式消火設備で捕集さ
れるコークス粉を回収することは前記の設備上の問題も
あって必ずしも有益なものでなく、系外に排出されない
ように処理可能とすることが一つの課題でもあった。
On the other hand, although this coke powder is mainly used as a raw material for sintered ore, large amounts of coke powder are also generated in other coke manufacturing processes, so the coke powder itself is in surplus in the current production system. For this reason, recovering coke powder collected by dry fire extinguishing equipment is not necessarily beneficial due to the equipment problems mentioned above, and one issue is to make it possible to process it so that it is not discharged outside the system. there were.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、コークスの製造過程でコークス炉から
排出された赤熱コークスの顕熱を回収するコークスの乾
式消火設備において、集塵機で捕集したコークス粉を流
動層燃焼設備で燃焼させることによって築塵後のコーク
ス粉の処理工程の簡略化と乾式消火設備の排熱回収量の
向上を図ることである。
The object of the present invention is to provide a coke dry extinguishing system that recovers the sensible heat of red-hot coke discharged from a coke oven during the coke manufacturing process, by burning coke powder collected by a dust collector in a fluidized bed combustion system. The aim is to simplify the processing process for coke powder after dust and improve the amount of waste heat recovered from dry fire extinguishing equipment.

〔発明の構成〕[Structure of the invention]

本発明は、冷却炉下流側の集塵機で捕集された可燃物を
流動層燃焼炉で燃焼し、発生した熱ガスを熱交換器に入
る前の高温循環ガス流路中に混入せしめると共に、熱交
換器より出た後の冷循環ガスの一部を上記流動層燃焼炉
内に吹込み流動層の温度制御を行うようにしたものであ
る。
The present invention burns combustibles collected by a dust collector on the downstream side of a cooling furnace in a fluidized bed combustion furnace, mixes the generated hot gas into a high-temperature circulating gas flow path before entering a heat exchanger, and A part of the cold circulating gas after exiting the exchanger is blown into the fluidized bed combustion furnace to control the temperature of the fluidized bed.

〔発明の作用〕[Action of the invention]

本発明では、冷却炉内における赤熱コークスの顕熱回収
に加え、捕集されるコークス粉を燃焼させてこの燃焼熱
量を熱交換器により回収することができ、回収熱量を向
上させることができ、しかも流動層燃焼が最適に行なわ
れるように同層内の燃焼温度を熱交換器から排出された
冷却循環ガスにより制御することができる。
In the present invention, in addition to recovering the sensible heat of the red-hot coke in the cooling furnace, the collected coke powder can be combusted and the combustion heat can be recovered by the heat exchanger, and the recovered heat can be improved. Furthermore, the combustion temperature within the fluidized bed can be controlled by the cooling circulating gas discharged from the heat exchanger so that the fluidized bed combustion is carried out optimally.

〔実施例〕〔Example〕

以下、図面に示す実施例に基いて本発明を説明する。 The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明に係るコークス乾式消火設備を示すシス
テム図で、図中、(11は冷却炉、(2)は−次集塵機
、(3)は同−次集塵In (21からのコークス粉を
貯溜するホッパ、(6)はコークス粉を流動層燃焼させ
る流動層燃焼炉、(12)は補助集塵機、及び(16)
はコークス顕熱を回収する熱交換器をなすホイラである
Fig. 1 is a system diagram showing the coke dry extinguishing equipment according to the present invention. A hopper for storing powder, (6) a fluidized bed combustion furnace for burning coke powder in a fluidized bed, (12) an auxiliary dust collector, and (16)
is a foiler that forms a heat exchanger that recovers sensible heat from coke.

本発明において、コークス粉を燃焼させることにより顕
熱回収量を増大させるとともにコークス粉体を焼却処理
することが最大の特徴であり、これを流動層燃焼炉(6
)により行な・う。
The main feature of the present invention is to increase the amount of sensible heat recovery by burning coke powder and to incinerate the coke powder.
).

以下、コークス粉の流動層燃焼に関する諸点について述
べる。
Below, we will discuss various points regarding fluidized bed combustion of coke powder.

従来例で述べたコークス乾式消火設備のコークス顕熱回
収において、−次および二次集塵機で捕集されたコーク
ス15)は第2図に示すように、0.05mm〜lQm
mの粒径範囲のものが大部分である。
In the coke sensible heat recovery of the coke dry extinguishing equipment described in the conventional example, the coke 15) collected by the secondary and secondary dust collectors is 0.05 mm to lQm as shown in Figure 2.
Most of the particles are in the particle size range of m.

コークス45〕の燃焼方法のうら、ますノ\−す燃焼で
は0.(17mm以下の微粒子でないと燃焼か困難で、
捕集コークス粉の微細化が必要であり、また重油等の助
燃材も必要であることから経済的でなく実用性に欠ける
。一方、火格子法燃焼には粒径が小さ過ぎ、火格子の目
詰り、火格子床の局部的な吹抜は等のトラブルで20k
g/ m2h程度の炉床負荷しかとり得す、通常の石炭
焚に比べ数倍の炉床面積を要し、これも経済的でない。
The other side of the combustion method for Coke 45] is 0. (It is difficult to burn if the particles are not smaller than 17 mm,
Since it is necessary to refine the collected coke powder and also to use a combustion aid such as heavy oil, it is not economical and lacks practicality. On the other hand, the particle size is too small for the grate method combustion, and problems such as clogging of the grate and local vents in the grate floor result in 20k
This method is also not economical, as it requires several times the area of the hearth compared to ordinary coal firing, which can only handle a hearth load of about g/m2h.

上記理由によりコークスの最適燃焼を得るために、コー
クス粉の効果的な燃焼方法として流動層燃焼を研究した
For the above reasons, in order to obtain optimal combustion of coke, fluidized bed combustion was investigated as an effective combustion method for coke powder.

第3図はコークス粉の流動特性の測定結果を空塔速度と
コークス層圧降下との関係で示した線図であり、安定流
動域は空塔速度Vr =0.3 m/s以上で、i、5
m/5fi−越えるとコークス粉の散逸が大きくなる。
FIG. 3 is a diagram showing the measurement results of the flow characteristics of coke powder in terms of the relationship between superficial velocity and coke bed pressure drop, and the stable flow region is at superficial velocity Vr = 0.3 m/s or more, i, 5
If m/5fi- is exceeded, the dissipation of coke powder increases.

第4図は流動層におけるコークス顕熱囲の例を示すもの
で、空気比換算で0.8前後の多量のCOガスを含有す
る燃焼ガスを生成しながら燃焼し、供給空気量に比例し
て燃焼量(炉床負荷)が増加することが確認された。こ
れによりコークス粉の流動層での燃焼性は非常に良好で
あり、流動層燃焼方式は適格な手段であることが見出さ
れた。
Figure 4 shows an example of a sensible heat envelope of coke in a fluidized bed, where combustion occurs while producing combustion gas containing a large amount of CO gas, which is approximately 0.8 in terms of air ratio, and is proportional to the amount of supplied air. It was confirmed that the amount of combustion (hearth load) increased. It was found that the combustibility of coke powder in a fluidized bed is very good, and that the fluidized bed combustion method is an appropriate method.

流動層燃焼方法の場合、コークス粉の流動層燃焼温度は
2000℃程度になるため、流動層温度を低下させるた
めの抜熱が必要となる。
In the case of the fluidized bed combustion method, the fluidized bed combustion temperature of coke powder is about 2000° C., so heat removal is required to lower the fluidized bed temperature.

この流動層内での抜熱方法には一般的に流動層ボイラ方
式が採用されている。しかしコークス乾式消火設備にお
いては主循環系のボイラとこの流動層ボイラとの連係操
作が複雑化するため採用しff1tい。このためコーク
ス乾式消火設備の循環ガスが不活性であることに着目し
、循環ガスの一部を流動層に吹込み、流動層を冷却制御
し“で、流動層温度をコントロールすることが可能であ
るかを検討した。循環ガス成分は表1に示すようにN2
が大部分で残りをCO2,Co、H2ガスで占めている
。このため、この循環ガスでコークス粉を流動させても
当然ながら燃焼はせず、むしろ、C+co2の還元反応
か生じ吸熱反応を呈するため、流動層温度をコントロー
ルする効果的な冷却媒体として作用し、循環ガスによる
冷却が十分可能であることが判った。
A fluidized bed boiler system is generally adopted as a method for removing heat within the fluidized bed. However, in coke dry fire extinguishing equipment, it is difficult to use this method because the linked operation between the main circulation system boiler and this fluidized bed boiler becomes complicated. For this reason, we focused on the fact that the circulating gas in coke dry extinguishing equipment is inert, and by blowing part of the circulating gas into the fluidized bed and controlling the cooling of the fluidized bed, it is possible to control the temperature of the fluidized bed. The circulating gas components are N2 as shown in Table 1.
The majority is occupied by CO2, Co, and H2 gases. Therefore, even if coke powder is fluidized with this circulating gas, it will not burn, but rather a reduction reaction of C + CO2 will occur and an endothermic reaction will occur, so it will act as an effective cooling medium to control the temperature of the fluidized bed. It was found that cooling by circulating gas is sufficiently possible.

表1 コークス乾式消火設備の循環カス成分この流動層
燃焼においてこの循環ガスの一部と燃焼用空気量を混合
させ流動床へ噴出させるか、または別々に噴出させるか
してコークスを流動燃焼させる。流動層の温度が130
0℃以上になるとコークス灰の一部が溶融状態となり、
凝灰現象が生しる。これにより流動状態か悪化してコー
クスの燃焼効率が低下し、極端な場合は流動層の閉塞に
至ることもある。
Table 1 Circulating scum components of coke dry extinguishing equipment In this fluidized bed combustion, a part of this circulating gas and an amount of combustion air are mixed and ejected into the fluidized bed, or they are ejected separately to perform fluidized combustion of coke. The temperature of the fluidized bed is 130
When the temperature rises above 0℃, part of the coke ash becomes molten,
A tuff phenomenon occurs. This deteriorates the fluidization state and reduces coke combustion efficiency, and in extreme cases may lead to blockage of the fluidized bed.

一方コークスaの流動燃焼は試験により、550℃以上
の温度で安定燃焼の継続が可能であった。
On the other hand, tests have shown that fluidized combustion of coke a can continue stable combustion at temperatures of 550°C or higher.

故に循環ガスの一部を流動層に吹込み、流動層温度を5
50℃〜1300℃にコントロールすることにより、安
定した流動層燃焼が得られる。またこの流動層燃焼での
生成ガスは10%前後のCOを含んでいるので、例えば
二次空気を供給させ′ζ二段燃焼を行い回収熱量の増加
を図ることができる。又竪形冷却炉でのコークスソリュ
ーションロスを防ぐため、CO%の高い状態のまま循環
ガスに混入することが可能である。
Therefore, some of the circulating gas is blown into the fluidized bed to raise the fluidized bed temperature to 5.
By controlling the temperature between 50°C and 1300°C, stable fluidized bed combustion can be obtained. Furthermore, since the gas produced by this fluidized bed combustion contains about 10% CO, it is possible to increase the amount of recovered heat by, for example, supplying secondary air to carry out two-stage combustion. In addition, in order to prevent coke solution loss in a vertical cooling furnace, it is possible to mix the coke solution into the circulating gas while maintaining a high CO content.

ここで、流動層燃焼過程で微少コークス第5)は飛敗し
やすいが、この飛散を抑制しようとすると、炉床負荷が
小さく炉床面積が大となって設備コストが高くなる。本
発明において、流動層温度を900℃にコントロールし
た時の炉床負荷と流動層の空塔速度の関係を第5図に示
す。炉床負荷が500 Xl03kcal/ m’hイ
」近からコークス粉の飛fitが大となり、コークス粉
の燃焼効率が低下することが分った。この対策として、
流動層出口に集塵機を設&−1、ここで熱ガスに同伴し
て飛散してきたコークス粉を捕集しこのコークス粉を再
度流動層内へ戻すシステムとした。このコークス粉の循
環燃焼方式によりコークス粉の流動層滞留時間かコーク
スの粒径にかかわらず充分に取れることから高効率のコ
ークス粉の燃焼効率が得られるようになった。
Here, in the fluidized bed combustion process, the minute coke No. 5) is likely to fly apart, but if you try to suppress this scattering, the hearth load will be small, the hearth area will be large, and the equipment cost will increase. In the present invention, FIG. 5 shows the relationship between the hearth load and the superficial velocity of the fluidized bed when the fluidized bed temperature is controlled at 900°C. It was found that as the hearth load approached 500 Xl03kcal/m'h, the flying fit of coke powder became large and the combustion efficiency of coke powder decreased. As a countermeasure for this,
A dust collector was installed at the outlet of the fluidized bed to collect the coke powder that had been scattered along with the hot gas, and to return the coke powder to the fluidized bed. This circulating combustion method of coke powder allows sufficient combustion of coke powder regardless of the residence time of the coke powder in the fluidized bed or the particle size of the coke, making it possible to achieve high coke powder combustion efficiency.

以上により、−次集塵後のコークス粉を流動層燃焼炉に
供給して流動層燃焼させ、この燃焼時に循環ガスを利用
して燃焼最適温度にコントロールし、かつ燃焼炉出口に
おいて集塵を行なって再度同燃焼炉内に供給してコーク
スわ〕の焼却を行なうことが本発明の構成であり、前述
の第1図はシステムの一実施例を示したものである。
As described above, the coke powder after the second dust collection is supplied to the fluidized bed combustion furnace for fluidized bed combustion, and during this combustion, the circulating gas is used to control the optimum combustion temperature, and the dust is collected at the exit of the combustion furnace. The structure of the present invention is to incinerate the coke by feeding it again into the same combustion furnace, and FIG. 1 described above shows one embodiment of the system.

以下、第1図によりコークス粉の処理方法について具体
的に述べる。
Hereinafter, the method for treating coke powder will be described in detail with reference to FIG.

まず赤熱コークスを竪形冷却炉(1)の上方から装入し
、下方より150℃前後の循環ガスを吹込み、コークス
と循環ガスとを対向流させて、コークスを消火、冷却し
、循環ガスを900°C前後の熱ガスへ加熱する。この
熱ガスは大量のコークス粉を含有しており、−次集塵機
(2)で粗いコークス粉か捕集される。このコークス粉
を赤熱状態のままホッパー(3)に一時W?め、レベル
計(4)でレベルを測定しながらコークス粉の切出弁(
5)で流動N燃焼炉(6)へ装入する。燃焼用空気は送
風機(7)によって送風されるがその空気量は切出弁(
5)の回転数信号により調整弁(8)でコントロールす
る。流動N燃焼炉(6)内に温度計00)をセントし、
流動層温度を本実施例では900°Cにコントロールす
るため、循環ガスの一部を昇圧機(9ンで昇圧し流動調
整弁(11)で送風量を制御し、流動層内温度を冷却し
ている。
First, red-hot coke is charged from above into the vertical cooling furnace (1), circulating gas at around 150°C is blown from below, coke and circulating gas are made to flow counter-currently, the coke is extinguished and cooled, and the circulating gas is heated to hot gas around 900°C. This hot gas contains a large amount of coke dust, and the coarse coke dust is collected in a secondary dust collector (2). This coke powder is temporarily placed in the hopper (3) while still in a red hot state. Then, while measuring the level with the level meter (4), turn off the coke powder cutoff valve (
In step 5), it is charged into the fluidized N combustion furnace (6). Combustion air is blown by the blower (7), but the amount of air is controlled by the cut-off valve (
It is controlled by the regulating valve (8) according to the rotation speed signal of 5). Place a thermometer (00) in the fluidized N combustion furnace (6),
In order to control the fluidized bed temperature to 900°C in this example, a part of the circulating gas was pressurized by a pressure booster (9N), and the flow rate was controlled by a flow control valve (11) to cool the temperature inside the fluidized bed. ing.

このように流動層温度を900°Cにコントロールして
コークス粉を流動燃焼させるが、微小粒のコークス粉は
飛散して燃焼ガスとともに流動I′Fli燃焼炉(6)
外へ出る。このコークス粉、灰を禎助築塵機(12)で
捕集し、レベル針(13)でレベルを4(11定しなか
ら切出弁(I4)で流動層fA焼炉(6ンへ循環させ再
び流動燃焼させる。尚、コークス灰は溢出口(15)か
ら溢流排出される。
In this way, the temperature of the fluidized bed is controlled at 900°C to fluidize the coke powder, but the fine coke powder is scattered and mixed with the combustion gas in the fluidized I'Fli combustion furnace (6).
Go outside. This coke powder and ash are collected by the Teisuke dust collector (12), and the level is set to 4 (11) using the level needle (13), and then transferred to the fluidized bed fA furnace (6) using the cutoff valve (I4). The coke ash is circulated and fluidized again for combustion.The coke ash is discharged from the overflow port (15).

ダスト除去後のCOを含んだ熱ガスは二次燃焼室(21
)内で調整弁(22)により流量調整された二次空気に
よってさらに燃焼し主循環ガスと混合してボイラ(16
)で熱回収された後、二次集塵機(17)で細かいダス
トを捕集され、循環送風機(18)で送風される。この
循環ガスはコークス粉燃焼によってガス量が増量するた
め、循環ガス本管(19)の圧力を測定し、この圧力が
一定になるよう圧力調整弁(20)でガスを大気へ放散
してコントロールする。
The hot gas containing CO after dust removal is transferred to the secondary combustion chamber (21
) is further combusted by the secondary air whose flow rate is regulated by the regulating valve (22), mixed with the main circulating gas, and sent to the boiler (16).
), fine dust is collected by a secondary dust collector (17), and air is blown by a circulation blower (18). Since the amount of this circulating gas increases due to the combustion of coke powder, the pressure of the circulating gas main pipe (19) is measured and the pressure is controlled by discharging the gas to the atmosphere using the pressure regulating valve (20) to keep this pressure constant. do.

尚、本方法で二次集塵Ia(17)で捕集したコークス
粉や他で発生したコークス粉を例えばホッパ(3)へ供
給して燃焼させることも当然可能である。
Incidentally, in this method, it is of course possible to supply the coke powder collected by the secondary dust collector Ia (17) or the coke powder generated elsewhere to the hopper (3) and burn it.

また赤熱コークスの装入量の変動が大きくボイラ(16
)の負荷変動が大の場合、コークス粉の燃焼量を加減操
作することにより、ボイラ(16)の負荷変動を抑える
方法も取り得る。
In addition, the amount of red-hot coke charged fluctuates widely in the boiler (16
), a method of suppressing the load fluctuation of the boiler (16) can be taken by controlling the amount of coke powder burned.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係るコークス乾式消火設備は、下
記の効果を奏する。
As described above, the coke dry extinguishing equipment according to the present invention has the following effects.

l)集塵機で捕集したコークス粉を流動層燃焼させるこ
とによって、赤熱コークス粉の消火冷却処理や遠くのホ
ッパへの搬送処理等が不要で、さらにコークス粉燃焼に
よる回収熱量が増加し、設備投資効率が向上する。
l) Fluidized bed combustion of coke powder collected by a dust collector eliminates the need for extinguishing and cooling red-hot coke powder or transporting it to a distant hopper, and the amount of heat recovered from coke powder combustion increases, reducing equipment investment. Increased efficiency.

ii )循環ガスの一部を用いて流動層を冷却制御する
ことにより流動層温度の精度の高いコントロールが可能
であり、この発生ガスをコークスの顕熱を回収した循環
ガスと混合させ一括して同一ボイラで熱回収することに
より流動層ボイラ方式に比べ、制御性も良く、設備費を
低減できる。
ii) The temperature of the fluidized bed can be controlled with high accuracy by cooling the fluidized bed using a part of the circulating gas, and this generated gas is mixed with the circulating gas from which the sensible heat of the coke has been collected and By recovering heat in the same boiler, it has better controllability and lower equipment costs than a fluidized bed boiler system.

iii )コークス粉の処理量を冷却炉の赤熱コ・−ク
ス処理量変動に応じてボイラ負荷を一定にするように加
減操作することによってボイラ効率が向上する。
iii) Boiler efficiency is improved by controlling the amount of coke powder processed so as to keep the boiler load constant in accordance with fluctuations in the amount of red hot coke in the cooling furnace.

iv)循環ガスのCO濃度に応じた燃焼ガスの成分コン
トロールすることによって冷却炉内でのコークス塊のソ
リューションロスを少なくすることが出来る。
iv) By controlling the composition of combustion gas according to the CO concentration of circulating gas, solution loss of coke lumps in the cooling furnace can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るコークス粉処理方法を実行するた
めのシステム図、第2図は従来のコークス粉処理設備に
おける一次及び二次集塵により捕集されるコークス粉の
粒径分布を示すグラフ、第3図はコークス粉の流動特性
を示すグラフ、第4図は流動層におけるコークス15)
の燃焼特性を示すグラフ、第5図は流動層温度が900
 ”Cの時の炉床負荷と流動層の空塔速度の関係を示す
グラフである。 (11冷却炉 (2+ −?′l?、集塵機(3) ホ
ッパ (6)流動層燃焼炉 (7) 送風機 (9)昇圧機 (12)集塵機 (16)ボイラ(熱交換器) (21)二次燃焼室 特許出願人 新日本製鐵株式會社 代理人 手掘 益(ほか1名) 第 l 図 第2図 粒 径 (mm) 第3図 中塔狸度 へ)
Figure 1 is a system diagram for carrying out the coke powder processing method according to the present invention, and Figure 2 shows the particle size distribution of coke powder collected by primary and secondary dust collection in conventional coke powder processing equipment. Graph, Figure 3 is a graph showing the flow characteristics of coke powder, Figure 4 is coke in a fluidized bed 15)
Figure 5 is a graph showing the combustion characteristics of
This is a graph showing the relationship between the hearth load and the superficial velocity of the fluidized bed at the time of "C". Blower (9) Booster (12) Dust collector (16) Boiler (heat exchanger) (21) Secondary combustion chamber Patent applicant Nippon Steel Corporation agent Masu Tegori (and one other person) Part l Figure 2 Figure grain diameter (mm)

Claims (1)

【特許請求の範囲】[Claims] 1、高温コークスを循環ガスで冷却せしめると共に、集
塵機にてコークス冷却後の高温循環ガスより可燃物を除
去し、熱交換器で顕熱を回収する如くなした乾式消火設
備において、上記集塵機で捕集された可燃物を流動層燃
焼炉で燃焼し、発生した熱ガスを熱交換器に入る前の高
温循環ガス流路中に混入せしめると共に、熱交換器より
出た後の冷循環ガスの一部を上記流動層燃焼炉内に吹込
み流動層の温度制御を行うことを特徴とするコークス乾
式消火設備にお番ノるコークス粉の処理方法。
1. In a dry fire extinguishing system in which high-temperature coke is cooled by circulating gas, combustibles are removed from the high-temperature circulating gas after cooling the coke by a dust collector, and sensible heat is recovered by a heat exchanger. The collected combustibles are burned in a fluidized bed combustion furnace, and the generated hot gas is mixed into the high-temperature circulating gas flow path before entering the heat exchanger, and one of the cold circulating gases after exiting the heat exchanger. A method for treating coke powder suitable for coke dry extinguishing equipment, characterized by controlling the temperature of the fluidized bed by blowing a part of the coke powder into the fluidized bed combustion furnace.
JP6190484A 1984-03-28 1984-03-28 Disposition of coke dust in dry coke extinguisher Pending JPS60203693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190484A JPS60203693A (en) 1984-03-28 1984-03-28 Disposition of coke dust in dry coke extinguisher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190484A JPS60203693A (en) 1984-03-28 1984-03-28 Disposition of coke dust in dry coke extinguisher

Publications (1)

Publication Number Publication Date
JPS60203693A true JPS60203693A (en) 1985-10-15

Family

ID=13184601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190484A Pending JPS60203693A (en) 1984-03-28 1984-03-28 Disposition of coke dust in dry coke extinguisher

Country Status (1)

Country Link
JP (1) JPS60203693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240593A (en) * 1988-03-18 1989-09-26 Nippon Steel Corp Dry quenching of coke and device therefor
RU2798319C1 (en) * 2019-11-01 2023-06-21 Эйкр Кокинг & Рефрэктори Инджиниринг Консалтинг Корпорейшн (Далянь), Мкк Dust removal device for dry coke quenching and method for increasing steam output of dry coke quenching boiler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151844A (en) * 1975-06-13 1976-12-27 Waagner Biro Ag Manner and apparatus for cooling high temperature masses
JPS52109501A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Method for controling temperature of equipment for preparing preheated coal
JPS58219291A (en) * 1982-06-15 1983-12-20 Ishikawajima Harima Heavy Ind Co Ltd Dry quenching installation for coke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151844A (en) * 1975-06-13 1976-12-27 Waagner Biro Ag Manner and apparatus for cooling high temperature masses
JPS52109501A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Method for controling temperature of equipment for preparing preheated coal
JPS58219291A (en) * 1982-06-15 1983-12-20 Ishikawajima Harima Heavy Ind Co Ltd Dry quenching installation for coke

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240593A (en) * 1988-03-18 1989-09-26 Nippon Steel Corp Dry quenching of coke and device therefor
RU2798319C1 (en) * 2019-11-01 2023-06-21 Эйкр Кокинг & Рефрэктори Инджиниринг Консалтинг Корпорейшн (Далянь), Мкк Dust removal device for dry coke quenching and method for increasing steam output of dry coke quenching boiler

Similar Documents

Publication Publication Date Title
JPH0697082B2 (en) Equipment for gasification or combustion of solid carbonaceous material in a circulating fluidized bed reactor
JPH0631345B2 (en) Method and apparatus for gasifying or burning solid carbonaceous material
JPS6259162B2 (en)
JPH07228910A (en) Method and equipment for manufacturing iron
JPS60203693A (en) Disposition of coke dust in dry coke extinguisher
EP0019443B1 (en) Method and apparatus for handling and utilizing system off-gas in a pyro-processing system
JPS5858206A (en) Controlling method for temperature of reducing gas in production of pig iron
JPS5915709A (en) Steam generator with fluidized-bed combustion chamber
JP3831152B2 (en) Method for injecting combustible dust into a waste melting furnace
JPS61228088A (en) Coke dry quenching equipment
JPS6232174A (en) Coke dry quenching equipment
JPH0693273A (en) Method and device for gasifying or burning solid carbonaceous material
JPS61145286A (en) Treatment of coke powder in dry coke quenching installation
JPH08152118A (en) Combustion temperature control method in melting furnace of wastes based on shaft furnace system
CA1206751A (en) Process of afterburning combustible constituents of exhaust gases from rotary kilns
US5423676A (en) Waste melting furnace
CN115572819B (en) Soaking, homogenizing, reducing and roasting method
JPH05272736A (en) Exhaust gas combustion furnace and method of controlling combustion in exhaust gas combustion furnace
SU1312075A1 (en) Method for fuel gasification and gas generator for effecting same
JPS61231387A (en) Fluidized bed combustion facility
JPS6370014A (en) Combustion-melting furnace of cyclone type for sewage sludge
JP2554135B2 (en) Method and apparatus for recirculating byproduct gas in coke dry fire extinguishing equipment
JPH09217065A (en) Dry quenching of coke
JPH01245091A (en) Energy recovery apparatus for cdq facility
JP2005213590A (en) Method for blowing solid fuel into blast furnace and blowing lance