JPS60203003A - Oval corrugation horn containing dielectric substance - Google Patents

Oval corrugation horn containing dielectric substance

Info

Publication number
JPS60203003A
JPS60203003A JP6018684A JP6018684A JPS60203003A JP S60203003 A JPS60203003 A JP S60203003A JP 6018684 A JP6018684 A JP 6018684A JP 6018684 A JP6018684 A JP 6018684A JP S60203003 A JPS60203003 A JP S60203003A
Authority
JP
Japan
Prior art keywords
corrugation
horn
dielectric
short axis
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6018684A
Other languages
Japanese (ja)
Inventor
Tomoki Kobuchi
知己 小渕
Yoshihide Miyata
宮田 吉秀
Noboru Toyama
昇 外山
Kazuyoshi Shiyougen
和義 正源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Japan Broadcasting Corp
Original Assignee
NEC Corp
Nippon Hoso Kyokai NHK
Nippon Electric Co Ltd
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Hoso Kyokai NHK, Nippon Electric Co Ltd, Japan Broadcasting Corp filed Critical NEC Corp
Priority to JP6018684A priority Critical patent/JPS60203003A/en
Publication of JPS60203003A publication Critical patent/JPS60203003A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns
    • H01Q13/0225Corrugated horns of non-circular cross-section

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To increase the degree of freedom for space of installation between a corrugation horn and another feed horn by burying a dielectric substance having a specific dielectric constant larger than 1 into a corrugation groove at the side of a short axis in order to decrease effectively the depth of said corrugation groove. CONSTITUTION:A dielectric substance 10 having a specific dielectric constant larger than ''1'' is buried into a corrugation groove 9 at the side of a short axis 6. Here the specific dielectric constant is referred to as epsilon and therefore the depth (t) of the groove 9 can be set effectively at t/epsilon<1/2> owing to the presence of the substance 10. In other words, the depth (t) can be reduced effectively. This reduces the minimum space with another feed horn and can increase the degree of freedom for space of installation of a corrugation horn.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、楕円開口放物面反射鏡アンテナの一次放射器
に適する誘電体装荷楕円コルゲートホーンに関する。特
に、他のフィードホーンと共にマルチフィードホーン方
式の衛星搭載用主フイードホーンとして用いられ他のフ
ィードホーンとの配置間隔の自由度を拡大した楕円コル
ゲートホーンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a dielectric-loaded elliptical corrugated horn suitable for the primary radiator of an elliptical aperture parabolic reflector antenna. In particular, the present invention relates to an elliptical corrugated horn that is used together with other feed horns as a main feed horn for a multi-feed horn type satellite, and has increased flexibility in placement spacing with other feed horns.

〔従来技術の説明〕[Description of prior art]

第1図は楕円コルゲートホーンが適用される反射鏡アン
テナの斜視図である。第1図において、■はマルチフィ
ードホーン部、2は反射鏡である。
FIG. 1 is a perspective view of a reflector antenna to which an elliptical corrugated horn is applied. In FIG. 1, ■ is a multi-feed horn section, and 2 is a reflecting mirror.

第2図は第1図に示すマルチフィードホーン部の正面図
である。第2図において、3は楕円コルゲートホーン、
4は他のフィードホーン、lは楕円コルゲートボーン3
と他のフィードホーン4との最小配置間隔である。
FIG. 2 is a front view of the multi-feed horn section shown in FIG. 1. In Fig. 2, 3 is an elliptical corrugated horn;
4 is another feed horn, l is oval corrugated bone 3
and the other feed horns 4.

楕円コルゲートホーン3は従来衛星搭載用の楕円開口放
物面反射鏡アンテナの一次放射器として、他のフィード
ホーン4と共にマルチフィードホーン方式の主フイード
ボーンとして用いられている。
The elliptical corrugated horn 3 is conventionally used as a primary radiator of an elliptical aperture parabolic reflector antenna mounted on a satellite, and as a main feedbone of a multi-feed horn system together with another feed horn 4.

たとえば、日本国内を静止衛星軌道から照射するときに
、楕円コルゲートホーン3を日本本土、沖縄および南西
諸島用として用い、他のフィードホーン4を小笠原諸島
用として用いる場合に、第1図および第2図に示すよう
に、それぞれのフィードホーンを配置する必要がある。
For example, when irradiating Japan from a geostationary satellite orbit, if the elliptical corrugated horn 3 is used for mainland Japan, Okinawa, and the Nansei Islands, and the other feed horn 4 is used for the Ogasawara Islands, the Each feed horn must be placed as shown in the diagram.

これらの各フィードホーンの配置間隔が狭い場合には、
各々の地上での照射ビームは近づくし配置間隔が広い場
合には、各々の地上での照射ビームは広がる。この最小
配置間隔lは楕円コルゲートホーン3の開口部付近の短
軸側のコルゲーション溝の深さおよび各々のホーンの管
壁の厚みで決定される。したがって楕円コルゲートホー
ン3のコルゲーション溝の深さおよび各ホーンの管壁の
厚さが小さければ小さいほど最小配置間隔lは狭いこと
になるが、管壁の厚さは構造上強度を十分持つように決
定されるためにほとんど自由度はない。そのためコルゲ
ーション溝の深さを浅くする方法で最小配置間隔が調整
される。楕円コルゲートボーン3は通常長軸方向に励振
した場合のE面放射電界とH面放射電界とが等しくなる
条件および短軸方向に励振した場合のE面放射電界とH
放射電界とが等しくなる条件、すなわちハランスドハイ
ブリソド条件で用いられるために、その条件が成り立つ
コルゲーション溝の深さで決定される。その深さは最適
条件では長軸側の溝より短軸側の溝が深くなるが、はぼ
使用波長λの1/4から172の範囲である。以上のよ
うに最小配置間隔lは短軸側コルゲーション溝の深さで
決定される。したがって従来例の楕円コルゲートボーン
を用いてマルチフィードボーン方式を構成する場合には
、配置間隔の自由度が小さい欠点があった。
If the spacing between these feed horns is narrow,
The irradiation beams on each ground approach each other, and if the arrangement interval is wide, the irradiation beams on each ground spread. This minimum arrangement interval l is determined by the depth of the corrugation groove on the short axis side near the opening of the elliptical corrugated horn 3 and the thickness of the tube wall of each horn. Therefore, the smaller the depth of the corrugation groove of the elliptical corrugated horn 3 and the thickness of the tube wall of each horn, the narrower the minimum arrangement interval l, but the thickness of the tube wall should be set so that it has sufficient structural strength. There is little freedom to be determined. Therefore, the minimum spacing is adjusted by decreasing the depth of the corrugation grooves. The elliptical corrugated bone 3 normally has the following conditions: the E-plane radiated electric field and the H-plane radiated electric field are equal when excited in the long axis direction, and the E-plane radiated electric field and H when excited in the short-axis direction.
Since it is used under the condition that the radiation electric field is equal, that is, the halide hybrid condition, it is determined by the depth of the corrugation groove that satisfies that condition. Under optimal conditions, the grooves on the short axis side are deeper than the grooves on the long axis side, but the depth is generally in the range of 1/4 to 172 of the wavelength λ used. As described above, the minimum arrangement interval l is determined by the depth of the short axis side corrugation groove. Therefore, when configuring a multi-feed bone system using conventional elliptical corrugated bones, there was a drawback that the degree of freedom in arrangement spacing was small.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の欠点を除去し、マルチフィードホーン
方式の主フイードホーンとして他のフィードホーンと共
に近接して配置する場合に、他のフィードホーンとの配
置間隔の自由度が大きい誘電体装荷楕円コルゲートホー
ンを提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks and provides a dielectric-loaded elliptical corrugate which has a large degree of freedom in arrangement spacing with other feed horns when placed in close proximity with other feed horns as the main feed horn of a multi-feed horn system. The purpose is to provide horns.

〔発明の特徴〕[Features of the invention]

本発明は、楕円錐ホーン内壁に周方向のコルゲーション
溝を設けた楕円コルゲートホーンにおいて、短軸側の上
記コルゲーション溝内に比誘電率が1より大きい誘電体
を埋込んだことを特徴とする。
The present invention is an elliptical corrugated horn in which circumferential corrugation grooves are provided on the inner wall of the elliptical conical horn, characterized in that a dielectric material having a relative dielectric constant of greater than 1 is embedded in the corrugation grooves on the short axis side.

誘電体を埋込む短軸側の上記コルゲーション溝部分は開
口部付近のみまたは開口部から口元部までの総ての部分
でもよい。誘電体の一例はポリテトラフルオルエチレン
(比誘電率約2)であり、別の例はセラミック(比誘電
率7〜9)である。
The corrugation groove portion on the short axis side in which the dielectric is embedded may be only near the opening, or may be the entire portion from the opening to the mouth. One example of a dielectric is polytetrafluoroethylene (dielectric constant about 2), another example is ceramic (dielectric constant 7-9).

〔実施例による説明〕[Explanation based on examples]

本発明の実施例について図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第3図は本発明一実施例誘電体装荷楕円コルゲートホー
ンの正面図である。第3図において、3′は誘電体装荷
楕円コルゲートホーン、5は長軸、6は短軸、7は開口
部、8は口元部、9はホーン内壁に連続して階段状に設
けられたコルゲーション溝、10(斜線部分)は短軸6
側のコルゲーションa9内に埋込まれた誘電体である。
FIG. 3 is a front view of a dielectric-loaded elliptical corrugated horn according to an embodiment of the present invention. In Fig. 3, 3' is a dielectric-loaded elliptical corrugated horn, 5 is a long axis, 6 is a short axis, 7 is an opening, 8 is a mouth part, and 9 is a corrugation provided in a continuous step-like manner on the inner wall of the horn. Groove, 10 (shaded part) is short axis 6
This is a dielectric material embedded within the side corrugation a9.

第4図は本発明の誘電体装荷楕円コルゲートホーンの長
軸側断面図であり、誘電体10を短軸6(ijllの開
口部7から口元部8までのコルゲーション溝9内に埋込
んだ図である。
FIG. 4 is a sectional view on the long axis side of the dielectric-loaded elliptical corrugated horn of the present invention, in which the dielectric 10 is embedded in the corrugation groove 9 from the opening 7 to the mouth 8 of the short axis 6 (ijll). It is.

第5図は本発明の誘電体装荷楕円コルゲートホーンの短
軸側部分拡大断面図であり、誘電体10を短軸6側の開
口部7から4段目までのコルゲーション溝内に埋込んだ
図である。
FIG. 5 is a partially enlarged cross-sectional view on the short axis side of the dielectric-loaded elliptical corrugated horn of the present invention, in which the dielectric 10 is embedded in the corrugation grooves from the opening 7 to the fourth stage on the short axis 6 side. It is.

第4図および第5図において、第3図と同一の部分は符
号で示す。第5図において、tはコルゲーション溝の深
さを示す。
In FIGS. 4 and 5, the same parts as in FIG. 3 are indicated by reference numerals. In FIG. 5, t indicates the depth of the corrugation groove.

このような構成の誘電体装荷楕円コルゲートホーンを動
作させる場合は、通常楕円の長1111.5方向に励振
した場合のE面放射電界とH面放射電界とが等しくなる
条件および短軸6側方向に励振した場合のE面放射電界
とH面放射電界とが等しくなる条件で用いられる。この
条件をバランストノ\イブリッド条件と呼び、この条件
が成り立つコルゲ−ジョン溝の深さtは 1/4 λ≦t≦1/2 λ (ここでλは使用波長。) である。このコルゲーション溝の深さtは楕円の長軸5
側と短軸6側とで異なり短軸6側のコルゲーション溝の
深さtの方が長軸5側よりも深い。
When operating a dielectric-loaded elliptical corrugated horn with such a configuration, the conditions under which the E-plane radiated electric field and the H-plane radiated electric field are equal when excited in the 1111.5 direction of the long axis of the ellipse and in the direction of the short axis 6 are usually required. It is used under the condition that the E-plane radiated electric field and the H-plane radiated electric field when excited are equal to each other. This condition is called the balanced tono/hybrid condition, and the depth t of the corrugation groove that satisfies this condition is 1/4 λ≦t≦1/2 λ (where λ is the wavelength used). The depth t of this corrugation groove is the long axis 5 of the ellipse.
The depth t of the corrugation groove on the short axis 6 side is deeper than that on the long axis 5 side.

このコルゲーション溝の深さtの差は楕円の偏心率eが
大きくなればなるほど大きくなる。したがって、第1図
に示すように反射鏡アンテナの一次放射器としてマルチ
フィードボーン部1を用いる場合に、第2図に示すよう
に楕円コルゲートホーン3と他のフィードホーン4との
最小配置間隔lが小さければ小さいほど各々のビームの
配置の自由度が増す。この自由度を大きくすることは第
3図および第4図に示すようにコルゲーションの溝9の
中に誘電体10を埋込むことによって実現される。すな
わち、誘電体の比誘電率をεとすると誘電体10を埋込
むことにより、コルゲーション溝の深さtを実効的にt
/1/Tとすることができ、最小配置間隔lが小さくな
る。これば第5図に示すように開口部7付近から4〜5
段目までのコルゲーション溝9部分の短軸6側を誘電体
10で埋めることで、自由度は十分法がりかつバランス
ドハイブリッド条件は成り立つ。第4図に示すように誘
電体lOを埋める範囲を開口部7から[1元部8まで広
げることも可能である。誘電体は、たとえば、ポリテト
ラフルオルエチレン(比誘電率2)が用いられ、セラミ
ック(比誘電率7〜9)ならばさらに効果がある。
The difference in the depth t of the corrugation grooves increases as the eccentricity e of the ellipse increases. Therefore, when using the multi-feed bone section 1 as the primary radiator of the reflector antenna as shown in FIG. The smaller the value, the greater the degree of freedom in arranging each beam. This degree of freedom can be increased by embedding a dielectric material 10 in the corrugation groove 9, as shown in FIGS. 3 and 4. That is, if the dielectric constant of the dielectric is ε, by embedding the dielectric 10, the depth t of the corrugation groove can be effectively reduced to t.
/1/T, and the minimum arrangement interval l becomes small. In this case, as shown in Fig. 5, 4 to 5
By filling the short axis 6 side of the corrugation groove 9 portion up to the step with the dielectric material 10, the degree of freedom is sufficiently increased and the balanced hybrid condition is satisfied. As shown in FIG. 4, it is also possible to expand the range in which the dielectric IO is filled from the opening 7 to the one element 8. As the dielectric material, for example, polytetrafluoroethylene (relative permittivity: 2) is used, and ceramic (relative permittivity: 7 to 9) is more effective.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、楕円コルゲートホーン
の短軸側コルゲーション溝内に誘電体を埋込むことによ
り、実効的にコルゲーション溝の深さを浅くし、他のフ
ィードボーンとの配置間隔の自由度を大きくすることが
できる優れた効果がある。したがって反射鏡アンテナの
一次放射器として他のフィードボーンと共に配UZしマ
ルチフィードホーン部式を構成する場合に、照射ビーム
間隔を他のフィードホーンとの配置間隔で制御できる範
囲が拡大される利点がある。
As explained above, the present invention effectively reduces the depth of the corrugation groove by embedding a dielectric material in the corrugation groove on the short axis side of the elliptical corrugated horn, and reduces the spacing between the corrugation groove and other feed bones. This has the excellent effect of increasing the degree of freedom. Therefore, when UZ is arranged as a primary radiator of a reflector antenna together with other feed bones to form a multi-feed horn system, the advantage is that the range in which the irradiation beam interval can be controlled by the arrangement interval with other feed horns is expanded. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は楕円コルゲートホーンが適用される反射鏡アン
テナの斜視図。 第2図はそのマルチフィードホーン部の正面図。 第3図は本発明−実施例誘電体装荷楕円コルゲートホー
ンの正面図。 第4図はその長軸側断面図。 第5図はその短軸側部分拡大断面図。 l・・・マルチフィードホーン部、2・・・反射鏡、3
・・・楕円コルゲートホーン、3′・・・誘電体装荷楕
円コルゲートホーン、4・・・他のフィードホーン、5
・・・長軸、6・・・短軸、7・・・開口部、8・・・
口元部、9・・・コルゲーション溝、10・・・誘電体
、l・・・最小配置間隔、t・・・コルゲーション溝の
深さ。 特許出願人代理人 弁理士井出直孝 夙2 圓 摺30 熱40 1υ 活5避
FIG. 1 is a perspective view of a reflector antenna to which an elliptical corrugated horn is applied. Figure 2 is a front view of the multi-feed horn section. FIG. 3 is a front view of a dielectric-loaded elliptical corrugated horn according to an embodiment of the present invention. FIG. 4 is a sectional view on the long axis side. FIG. 5 is a partially enlarged sectional view on the short axis side. l...Multi-feed horn section, 2...Reflector, 3
...Oval corrugate horn, 3'...Dielectric loaded oval corrugate horn, 4...Other feed horn, 5
...long axis, 6...short axis, 7...opening, 8...
Mouth part, 9... Corrugation groove, 10... Dielectric material, l... Minimum arrangement interval, t... Depth of corrugation groove. Patent applicant representative patent attorney Naotaka Ide 2 Enzuri 30 fever 40 1υ life 5 escape

Claims (3)

【特許請求の範囲】[Claims] (1) 楕円錐ホーン内壁に周方向のコルゲーション溝
を設けた楕円コルゲートホーンにおいて、短軸側の上記
コルゲーション溝内に比誘電率が1より大きい誘電体を
埋込んだことを特徴とする誘電体装荷楕円コルゲートホ
ーン。
(1) In an elliptical corrugated horn in which circumferential corrugation grooves are provided on the inner wall of the elliptical conical horn, a dielectric material characterized in that a dielectric material having a relative dielectric constant of greater than 1 is embedded in the corrugation groove on the short axis side. Loaded oval corrugated horn.
(2)短軸側の上記コルゲーション溝内の開口部付近の
みに誘電体を埋込んだ特許請求の範囲第(1)項記載の
電体装荷楕円コルゲートホーン。
(2) The electrically loaded elliptical corrugated horn according to claim (1), wherein a dielectric is embedded only near the opening in the corrugation groove on the short axis side.
(3)短軸側の上記コルゲーション溝内開口部から口元
部までに誘電体を埋込んだ特許請求の範囲第(11項に
記載の誘電体装荷楕円コルゲートホーン。
(3) A dielectric-loaded elliptical corrugated horn according to claim 11, wherein a dielectric is embedded from the opening in the corrugation groove to the mouth on the short axis side.
JP6018684A 1984-03-27 1984-03-27 Oval corrugation horn containing dielectric substance Pending JPS60203003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6018684A JPS60203003A (en) 1984-03-27 1984-03-27 Oval corrugation horn containing dielectric substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6018684A JPS60203003A (en) 1984-03-27 1984-03-27 Oval corrugation horn containing dielectric substance

Publications (1)

Publication Number Publication Date
JPS60203003A true JPS60203003A (en) 1985-10-14

Family

ID=13134877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6018684A Pending JPS60203003A (en) 1984-03-27 1984-03-27 Oval corrugation horn containing dielectric substance

Country Status (1)

Country Link
JP (1) JPS60203003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438340A (en) * 1992-06-12 1995-08-01 Sony Corporation Elliptical feedhorn and parabolic reflector with perpendicular major axes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107304A (en) * 1979-02-08 1980-08-18 Mitsubishi Electric Corp Corrugate cone horn/circular waveguide converter
GB1586585A (en) * 1977-07-07 1981-03-18 Marconi Co Ltd Radio horns
JPS56122507A (en) * 1980-03-03 1981-09-26 Nec Corp Antenna having rotary asymmetrical radial beam
JPS5994902A (en) * 1982-11-22 1984-05-31 Nec Corp Reflection mirror type antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1586585A (en) * 1977-07-07 1981-03-18 Marconi Co Ltd Radio horns
JPS55107304A (en) * 1979-02-08 1980-08-18 Mitsubishi Electric Corp Corrugate cone horn/circular waveguide converter
JPS56122507A (en) * 1980-03-03 1981-09-26 Nec Corp Antenna having rotary asymmetrical radial beam
JPS5994902A (en) * 1982-11-22 1984-05-31 Nec Corp Reflection mirror type antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438340A (en) * 1992-06-12 1995-08-01 Sony Corporation Elliptical feedhorn and parabolic reflector with perpendicular major axes

Similar Documents

Publication Publication Date Title
EP1152484B1 (en) High performance multimode horn
EP0859427B1 (en) Dual-reflector microwave antenna
US7242904B2 (en) Dual-band multiple beam antenna system for communication satellites
EP1004151A2 (en) Improved reflector antenna with a self-supported feed
US6049312A (en) Antenna system with plural reflectors
US6759994B2 (en) Multiple beam antenna using reflective and partially reflective surfaces
JPS60203003A (en) Oval corrugation horn containing dielectric substance
JPH06196926A (en) Equalized offset feeder molding reflector antenna system andequalizing method
EP0168904A1 (en) Offset-fed dual reflector antenna
US20020126063A1 (en) Rectangular paraboloid truncation wall
US20020190911A1 (en) Multimode horn antenna
JPS6134282B2 (en)
KR20050054856A (en) Radiating aperture waveguide feed antenna
EP0140598B1 (en) Horn-reflector microwave antennas with absorber lined conical feed
US7528787B2 (en) Source antennas with radiating aperture
JPS59185409A (en) Corrugate horn of opening surface antenna
JP2687413B2 (en) Reflector antenna
GB2071423A (en) Dual refelctor antenna
JP2687415B2 (en) Reflector antenna
JPH0630408B2 (en) Reflector antenna
TOYAMA et al. Circularly polarized shaped-beam antenna for broadcasting satellites
JPH0119452Y2 (en)
JP2687412B2 (en) Reflector antenna
JPS5994902A (en) Reflection mirror type antenna
JP2002368510A (en) Snow melting device