JPS6020264Y2 - thermal response device - Google Patents

thermal response device

Info

Publication number
JPS6020264Y2
JPS6020264Y2 JP10685180U JP10685180U JPS6020264Y2 JP S6020264 Y2 JPS6020264 Y2 JP S6020264Y2 JP 10685180 U JP10685180 U JP 10685180U JP 10685180 U JP10685180 U JP 10685180U JP S6020264 Y2 JPS6020264 Y2 JP S6020264Y2
Authority
JP
Japan
Prior art keywords
temperature
magnetic body
magnet
sensitive magnetic
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10685180U
Other languages
Japanese (ja)
Other versions
JPS5730942U (en
Inventor
道夫 根本
憲太郎 堀内
好昭 伊藤
寛次 松井
Original Assignee
東北金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東北金属工業株式会社 filed Critical 東北金属工業株式会社
Priority to JP10685180U priority Critical patent/JPS6020264Y2/en
Publication of JPS5730942U publication Critical patent/JPS5730942U/ja
Application granted granted Critical
Publication of JPS6020264Y2 publication Critical patent/JPS6020264Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 本考案は感温磁性体と永久磁石との組合せによる熱応動
装置のうち自動復帰型熱応動装置の改良に関する。
[Detailed Description of the Invention] The present invention relates to an improvement of an automatic return type thermal response device among thermal response devices using a combination of a temperature-sensitive magnetic material and a permanent magnet.

フェライト等の磁性体はそのキュリ一点温度で磁性変化
をきたすことから感温磁性体と称されこの磁性変化に応
じて永久磁石を機械的に変位するように組合せた熱応動
装置は温度検出手段として種々提供されており、その一
例の縦断面構造を第1図に示す。
Magnetic materials such as ferrite are called temperature-sensitive magnetic materials because their magnetic properties change at a single point temperature, and a thermally responsive device that mechanically displaces a permanent magnet in response to this magnetic change is used as a temperature detection means. Various types are available, and the vertical cross-sectional structure of one example is shown in FIG.

図において、この装置は受熱板1に被検出温度に対応し
たキュリ一点を持つ感温磁性体2を固着し、この感温磁
性体2には被検出温度より十分高いキュリ一点を持つ永
久磁石3を、コイルばね4で感温磁性体2から離れる方
向に付勢されている可動板5に固着して対向させて戒る
In the figure, this device has a temperature-sensitive magnetic body 2 fixed to a heat-receiving plate 1 with a single Curie point corresponding to the temperature to be detected, and a permanent magnet 3 having a single Curie point sufficiently higher than the temperature to be detected is attached to the temperature-sensitive magnetic body 2. The movable plate 5, which is biased by a coil spring 4 in a direction away from the temperature-sensitive magnetic body 2, is fixed and opposed to the movable plate 5.

6は磁石3の変位をケース7外に伝達するために可動板
5に連結された作動杆である。
Reference numeral 6 denotes an operating rod connected to the movable plate 5 in order to transmit the displacement of the magnet 3 to the outside of the case 7.

更に、この装置を自動復帰型とするために、コイルばね
4の付勢力及び磁石3の離間距離が次のように設定され
ている。
Furthermore, in order to make this device an automatic return type, the biasing force of the coil spring 4 and the distance between the magnets 3 are set as follows.

すなわち、感温磁性体2がそのキュリ一点温度まで加熱
されて常磁性を呈した時のみ磁石3を感温磁性体2から
引離し、温度が低下して感温磁性体2が元の強磁性を呈
すると磁気的吸引力によって磁石3が感温磁性体2と吸
着し合う位置に自動的に復帰するよう設定されている。
In other words, the magnet 3 is separated from the temperature-sensitive magnetic body 2 only when the temperature-sensitive magnetic body 2 is heated to its single point temperature and becomes paramagnetic, and the temperature decreases and the temperature-sensitive magnetic body 2 returns to its original ferromagnetic state. When this occurs, the magnet 3 is set to automatically return to the position where it attracts the temperature-sensitive magnetic body 2 due to the magnetic attraction force.

ところで、磁石3の離反時可動板5はケース7の底部に
接しており、これによってコイルばね4の付勢力は磁石
3を感温磁性体2から離反させる時最も大きいが、離反
状態にある時も零ではなく、外部からの衝撃等によって
可動板5が振動することを防止できる程度の付勢力が与
えられている。
By the way, when the magnet 3 is separated, the movable plate 5 is in contact with the bottom of the case 7, so that the biasing force of the coil spring 4 is greatest when the magnet 3 is separated from the temperature-sensitive magnetic body 2, but when it is in the separated state The biasing force is not zero, but is applied to an extent that can prevent the movable plate 5 from vibrating due to external shocks or the like.

このため、磁石3の離反後温度低下により感温磁性体2
が強磁性を呈して磁石3の復帰動作が始まる際に作用す
る初期磁気的吸引力は、磁石3と感温磁性体2との離間
距離が最も大きいため最小であるのに対し、前述した残
存付勢力がこの初期磁気的吸引力を減少させるように作
用するので、自動復帰動作の初期駆動力が非常に小さい
For this reason, the temperature-sensitive magnetic body 2 decreases after the magnet 3 is separated.
The initial magnetic attraction force that acts when the magnet 3 exhibits ferromagnetism and the return operation of the magnet 3 begins is the smallest because the distance between the magnet 3 and the temperature-sensitive magnetic material 2 is the largest, whereas Since the biasing force acts to reduce this initial magnetic attraction force, the initial driving force for the automatic return operation is very small.

勿論、磁石3が感温磁性体2に近づき始めれば磁気的吸
引力は急激に増大し、離間距離が短かくなっても単調に
増加するだけのコイルばね4の付勢力に打勝って磁石3
が感温磁性体2と吸着し合う位置まで瞬時に復帰する。
Of course, when the magnet 3 begins to approach the temperature-sensitive magnetic body 2, the magnetic attraction force increases rapidly, overcoming the biasing force of the coil spring 4, which only increases monotonically even when the separation distance becomes short, and the magnet 3
instantly returns to the position where it attracts the temperature-sensitive magnetic body 2.

このことから、自動復帰時の復帰動作速度は初期駆動力
の大小に左右されると言える。
From this, it can be said that the return operation speed during automatic return depends on the magnitude of the initial driving force.

このような点に鑑み、本考案は自動復帰時の初期駆動力
を大きくして復帰動作速度を改善した自動復帰型熱応動
装置を提供しようとするものである。
In view of these points, the present invention aims to provide an automatic return type thermal response device that increases the initial driving force at the time of automatic return and improves the return operation speed.

本考案は、感温磁性体から離反状態にある永久磁石に、
温度が低下した時感温磁性体との離間距離に左右されな
い磁気的吸引力が作用するようにしたものであり、以下
にその実施例を説明する。
This invention is based on a permanent magnet that is separated from a temperature-sensitive magnetic material.
When the temperature drops, a magnetic attraction force is applied that is independent of the separation distance from the temperature-sensitive magnetic material, and an example thereof will be described below.

第2図及び第3図はそれぞれ、本考案の第1の実施例を
、永久磁石が吸着時及び離反時について縦断面で示す。
FIGS. 2 and 3 respectively show a first embodiment of the present invention in longitudinal section when the permanent magnet is attracted and when it is separated.

図において、ケース7の蓋を兼ねている受熱板1に被検
出温度に対応したキュリ一点を有する感温磁性体2が固
着され、この感温磁性体2の下面中央には突片21が一
体成形されている。
In the figure, a temperature-sensitive magnetic body 2 having a single point corresponding to the temperature to be detected is fixed to a heat-receiving plate 1 that also serves as a lid of a case 7, and a protrusion 21 is integrally attached to the center of the lower surface of this temperature-sensitive magnetic body 2. Molded.

また、コイルばね4によって感温磁性体2から離れる方
向に付勢された可動板5には被検出温度より十分高いキ
ュリ一点の永久磁石3が磁極軸を移動方向に合せて固着
され、この磁石3にはその中央に移動方向に貫通孔31
を形成して感温磁性体2との吸着時突片21が貫通孔3
1へ遊嵌するようにしている。
Further, a permanent magnet 3 with a single point sufficiently higher than the temperature to be detected is fixed to the movable plate 5, which is biased away from the temperature-sensitive magnetic body 2 by the coil spring 4, with the magnetic pole axis aligned with the moving direction. 3 has a through hole 31 in the center in the direction of movement.
When the protruding piece 21 is attracted to the temperature-sensitive magnetic body 2 by forming a
It is designed to loosely fit into 1.

コイルばね4の付勢力及び感温磁性体2から離反した時
の磁石3の位置は、前述同様、感温磁性体2がそのキュ
リ一点温度以上に加熱された時のみ磁石3を引離し、以
後キュリ一点温度よりも低下すれば磁石3が感温磁性体
2と吸着し合う位置に自動的に復帰できるように設定さ
れている。
The biasing force of the coil spring 4 and the position of the magnet 3 when separated from the temperature-sensitive magnetic body 2 are similar to those described above. The setting is such that the magnet 3 can automatically return to the position where it attracts the temperature-sensitive magnetic body 2 when the temperature drops below the Curie point.

また、磁石3の移動方向の厚みはその移動距離より大き
く、突片21の長さは磁石3の厚みとほぼ等しくなるよ
うにされ、これによって磁石3の離反時も貫通孔31に
突片21の下部が嵌入するようにしている。
Further, the thickness of the magnet 3 in the moving direction is larger than the moving distance thereof, and the length of the protruding piece 21 is made almost equal to the thickness of the magnet 3, so that even when the magnet 3 is separated, the protruding piece 21 remains in the through hole 31. The lower part of the frame is inserted into the frame.

以上のような構成により、感温磁性体2の温度がそのキ
ュリ一点より低い低温域では、第2図に示すように、磁
石3と感温磁性体2とが吸着し合い突片21の下端と磁
石3の下端とがほぼ同一平面内にある。
With the above configuration, in a low temperature range where the temperature of the temperature-sensitive magnetic body 2 is lower than one point, as shown in FIG. and the lower end of the magnet 3 are substantially in the same plane.

一方、感温磁性体2及び突片21は温度がそのキュリ一
点を越えるといずれも常磁性を呈して磁気的吸引力が消
滅し、コイルばね4によって、第3図に示すように、磁
石3は下方に変位し、突片21の一部が貫通孔31に嵌
入した状態となる。
On the other hand, when the temperature of the temperature-sensitive magnetic body 2 and the protruding piece 21 exceeds that point, both exhibit paramagnetism and their magnetic attraction disappears, and the coil spring 4 causes the magnet 3 to is displaced downward, and a portion of the protruding piece 21 is fitted into the through hole 31.

感温磁性体2及び突片21の温度が低下して元の強磁性
を呈すると、磁石3の磁極面と感温磁性体2の主面間に
磁気的吸引力が作用する他、磁石3と突片21間にも突
片21を貫通孔31に引込むような磁気的吸引力が作用
する。
When the temperature of the temperature-sensitive magnetic body 2 and the protruding piece 21 decreases and exhibits the original ferromagnetism, a magnetic attraction force acts between the magnetic pole surface of the magnet 3 and the main surface of the temperature-sensitive magnetic body 2, and the magnet 3 A magnetic attraction force that pulls the protruding piece 21 into the through hole 31 also acts between the protruding piece 21 and the protruding piece 21 .

前者の吸引力は復帰開始時は小さく磁石3が感温磁性体
2に近づくにしたがって急増する。
The former attractive force is small at the start of return and rapidly increases as the magnet 3 approaches the temperature-sensitive magnetic body 2.

後者の吸引力はそれほど大きくないが、磁石3の位置関
係にかかわらずほぼ一定であり、復帰開始時の初期駆動
力を大きくすることができるので、自動復帰動作は従来
に比して高速で行なわれる。
Although the latter attractive force is not so large, it is almost constant regardless of the positional relationship of the magnet 3, and the initial driving force at the start of return can be increased, so the automatic return operation is performed at a higher speed than before. It will be done.

なお、感温磁性体2と突片21の温度変化は実質上同時
と考えて良いので、磁石3が離反状態にある時の安定性
が損われることは無い。
In addition, since the temperature changes of the temperature-sensitive magnetic body 2 and the protruding piece 21 can be considered to be substantially simultaneous, the stability when the magnet 3 is in the separated state is not impaired.

第4図は本考案の第2の実施例を示し、前記実施例の構
成に更に、磁石3の下面に貫通孔31を塞ぐように被検
出温度より十分高いキュリ一点を有する磁性材料より威
るヨーク片8を設けたものである。
FIG. 4 shows a second embodiment of the present invention, in which a magnetic material having a single Curie point sufficiently higher than the temperature to be detected is added to the structure of the previous embodiment so as to close the through hole 31 on the lower surface of the magnet 3. A yoke piece 8 is provided.

このようにすると、ヨーク片8と突片21間にも吸引力
が作用するので突片21と磁石3間に作用する磁気的吸
引力、すなわち自動復帰時の初期駆動力を大きくするこ
とができる。
In this way, since an attractive force also acts between the yoke piece 8 and the protruding piece 21, it is possible to increase the magnetic attractive force that acts between the protruding piece 21 and the magnet 3, that is, the initial driving force at the time of automatic return. .

第5図は第4図の変形例で、感温磁性体2をその下方主
面を非磁性薄板9で被って保持することにより、磁石3
と感温磁性体2との衝突による互いの損傷を防止する構
成で、薄板9の厚さ分だけ突片21を長くして突片21
とヨーク片8とが密着するようにされている。
FIG. 5 is a modification of FIG. 4, in which the temperature-sensitive magnetic body 2 is held by covering its lower main surface with a non-magnetic thin plate 9, so that the magnet 3
The structure prevents damage to each other due to collision with the temperature-sensitive magnetic body 2, and the protruding piece 21 is lengthened by the thickness of the thin plate 9.
and the yoke piece 8 are in close contact with each other.

第6図及び第7図はそれぞれ、本考案の第4の実施例を
磁石3の吸着時と離反時について示す。
FIGS. 6 and 7 show a fourth embodiment of the present invention when the magnet 3 is attracted and separated, respectively.

この例では、第5図同様、感温磁性体2の主面を非磁性
薄板9で被って保持する他、磁石3をその厚みよりわず
かに深い凹部を有する皿型ヨーク10の内底面へ固着す
ることにより、自動復帰時に前記実施例より大きな初期
駆動力が得られるようにしたもので、突片21の長さは
ヨーク10の凹部の深さと薄板9の板厚との合計寸法と
される。
In this example, as in FIG. 5, in addition to covering and holding the main surface of the temperature-sensitive magnetic body 2 with a non-magnetic thin plate 9, the magnet 3 is fixed to the inner bottom surface of a dish-shaped yoke 10 having a recess slightly deeper than its thickness. By doing this, a larger initial driving force can be obtained during automatic return than in the previous embodiment, and the length of the protrusion 21 is the total dimension of the depth of the recess of the yoke 10 and the thickness of the thin plate 9. .

第8図及び第9図はそれぞれ、本考案の第5の実施例を
磁石3の吸着時と離反時について示す。
FIGS. 8 and 9 respectively show the fifth embodiment of the present invention when the magnet 3 is attracted and separated.

この例では第5図同様、感温磁性体2の主面を非磁性薄
板9を被って保持するが、ヨーク片は設けずに、突片2
1の寸法を磁石3の磁極方向の厚みtと移動距離dとの
合計長より短かく、しかも厚みt1移動距離dの大きい
方よりは長くしたものである。
In this example, as in FIG. 5, the main surface of the temperature-sensitive magnetic body 2 is held by covering it with a non-magnetic thin plate 9, but the protruding piece 2 is not provided with a yoke piece.
1 is shorter than the total length of the thickness t of the magnet 3 in the magnetic pole direction and the moving distance d, but longer than the larger one of the thickness t1 and the moving distance d.

これによって、感温磁性体2の温度がそのキュリ一点未
満の時磁石3は、第8図に示すように、感温磁性体2と
吸着し合う位置にあるが、突片21の下端が磁石3の貫
通孔31から突出しており、突片21と磁石3間に移動
方向に作用する磁気的吸引力はない。
As a result, when the temperature of the temperature-sensitive magnetic body 2 is less than one point, the magnet 3 is in a position where it attracts the temperature-sensitive magnetic body 2, as shown in FIG. There is no magnetic attraction force acting between the protruding piece 21 and the magnet 3 in the direction of movement.

感温磁性体2と突片21の温度が上昇してそのキュリ一
点に達すると磁石3に作用していた磁気的吸引力が消滅
しコイルばね4の付勢力によって、第9図に示すように
、磁石3は感温磁性体2から離反し突片21の一部が磁
石3の貫通孔31内にある状態となる。
When the temperature of the temperature-sensitive magnetic body 2 and the protruding piece 21 rises and reaches a single point, the magnetic attraction force acting on the magnet 3 disappears, and due to the biasing force of the coil spring 4, as shown in FIG. , the magnet 3 is separated from the temperature-sensitive magnetic body 2 and a portion of the protrusion 21 is in the through hole 31 of the magnet 3.

そして、感温磁性体2及び突片21の温度がそのキュリ
一点を越えている間は、磁石3はコイルばね4の残存付
勢力によって安定している。
Then, while the temperature of the temperature-sensitive magnetic body 2 and the protruding piece 21 exceeds that point, the magnet 3 is stabilized by the remaining biasing force of the coil spring 4.

その後温度が低下してキュリ一点より低くなると、感温
磁性体2、突片21共に強磁性を呈して磁石3との間に
磁気的吸引力が作用する。
After that, when the temperature decreases to below the Curie point, both the temperature-sensitive magnetic body 2 and the protrusion 21 exhibit ferromagnetism, and a magnetic attraction force acts between them and the magnet 3.

このうち、突片21と磁石3間に作用する突片21を貫
通孔31内へ引込もうとする吸引力は、突片21の下端
面が磁石3の下面とほぼそろうまでの間だけ存在し、突
片21の下端が貫通孔31から突出すると吸引力は作用
しない。
Of these, the attractive force that acts between the protrusion 21 and the magnet 3 and tries to pull the protrusion 21 into the through hole 31 exists only until the lower end surface of the protrusion 21 is almost aligned with the lower surface of the magnet 3. When the lower end of the protruding piece 21 protrudes from the through hole 31, no suction force is applied.

このようにして、磁石3の復帰動作時、その初期の磁石
3の離間距離が大きい間だけ離間距離に左右されないほ
ぼ一定の吸引力を作用させ初期駆動力を大きくして復帰
動作を高速にすることができる。
In this way, during the return operation of the magnets 3, a nearly constant attractive force that is not affected by the separation distance is applied only while the initial separation distance between the magnets 3 is large, increasing the initial driving force and speeding up the return operation. be able to.

勿論、突片21と磁石3間に作用する吸引力の大きさは
突片21の断面積の大きさを変えて任意に設定すること
ができ、動作及び復帰動作時の駆動力の均衡を容易にと
ることができる。
Of course, the magnitude of the attractive force acting between the protruding piece 21 and the magnet 3 can be arbitrarily set by changing the size of the cross-sectional area of the protruding piece 21, making it easy to balance the driving force during operation and return operation. can be taken.

第10図及び第11図はそれぞれ、本考案の第6の実施
例を磁石3の吸着時と離反時について示す。
FIGS. 10 and 11 show a sixth embodiment of the present invention when the magnet 3 is attracted and separated, respectively.

前記した第5の実施例と異なる点は、感温磁性体2に磁
石3の吸着時可動片5から突出するような長さの二つの
突片21,21’が一体的に設けられ、磁石3にも二つ
の貫通孔31.31’が設けられている他、可動板5に
も二つの貫通孔51.51’が設けられている。
The difference from the fifth embodiment described above is that the temperature-sensitive magnetic body 2 is integrally provided with two protruding pieces 21 and 21' having a length that protrudes from the movable piece 5 when the magnet 3 is attracted. 3 is also provided with two through holes 31.31', and the movable plate 5 is also provided with two through holes 51.51'.

このような構造によれば、初期駆動力を更に大きくする
ことができるし、二つの突片21,21’は磁石3のガ
イドとしての役目も果たす。
According to such a structure, the initial driving force can be further increased, and the two projecting pieces 21 and 21' also serve as guides for the magnet 3.

第12図は本考案の第7の実施例を磁石3の離反時につ
いて示す。
FIG. 12 shows a seventh embodiment of the present invention when the magnet 3 is separated.

この例は第6図と第8図の実施例を組合せたものと考え
て良く、磁石3をこれよりやや深めの凹部を持つ皿型ヨ
ーク10に固着して、磁石3と感温磁性体2間の磁気的
吸引力を大きくしたもので、ヨーク10の底部にも貫通
孔101が設けられ、ヨーク10によって突片21と磁
石3間の吸引力も大きくなり自動復帰時の初期駆動力を
大きくできる。
This example can be considered as a combination of the embodiments shown in FIGS. 6 and 8, in which the magnet 3 is fixed to a dish-shaped yoke 10 having a slightly deeper recess, A through hole 101 is also provided at the bottom of the yoke 10, and the yoke 10 also increases the attractive force between the protrusion 21 and the magnet 3, increasing the initial driving force during automatic return. .

なお、実施例ではいずれも突片21が感温磁性体2と同
材料で一体成形されているが、感温磁性体2と実質上同
じキュリ一点を持つ磁性材料を一体的に固着して設けて
も良い。
In each of the embodiments, the projecting piece 21 is integrally molded with the same material as the temperature-sensitive magnetic body 2, but it is also possible to integrally fix a magnetic material with a single Curie point that is substantially the same as the temperature-sensitive magnetic body 2. It's okay.

以上説明してきたように、本考案によれば離反状態にあ
る永久磁石の安定性を損なうことなく自動復帰動作時の
初期における磁気的吸引力、すなわち初期駆動力を大き
くして復帰動作を高速で行なわせることができ、特に磁
石の離間距離が大きい間だけほぼ一定の磁気的吸引力を
プラスできるので熱応動動作と復帰動作時の作動杆の初
期駆動力の均衡をとることも容易であり、スイッチ機構
や運動変換機構を直接且つ確実に駆動できる熱応動装置
が提供できる。
As explained above, according to the present invention, the magnetic attraction force at the initial stage of automatic return operation, that is, the initial driving force, is increased to increase the return operation at high speed without impairing the stability of the permanent magnet in the separated state. In particular, since a nearly constant magnetic attraction force can be added only while the distance between the magnets is large, it is easy to balance the initial driving force of the operating rod during thermal response operation and return operation. A thermally responsive device that can directly and reliably drive a switch mechanism or a motion conversion mechanism can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱応動装置の一例の縦断面構造図、第2
図及び第3図はそれぞれ、本考案の第1の実施例を磁石
の吸着時及び離反時について示した縦断面構造図、以下
、第4図は第2の実施例、第5図は第3の実施例、第6
図及び第7図は第4の実施例、第8図及び第9図は第5
の実施例、第10図及び第11図は第6の実施例、第1
2図は第7の実施例をそれぞれ磁石の吸着、離反時につ
いて示す。 図中1は受熱板、2は感温磁性体、3は永久磁石、4は
コイルばね、5は可動板、6は作動杆、7はケース、8
はヨーク片、9は非磁性薄板、10はヨーク、21,2
1’は突片。
Figure 1 is a vertical cross-sectional structural diagram of an example of a conventional thermally responsive device;
3 and 3 are vertical cross-sectional structural diagrams showing the first embodiment of the present invention when the magnet is attracted and separated, respectively. Hereinafter, FIG. 4 is the second embodiment, and FIG. 5 is the third embodiment. Example 6
7 and 7 are for the fourth embodiment, and FIGS. 8 and 9 are for the fifth embodiment.
10 and 11 are the sixth embodiment and the first embodiment.
FIG. 2 shows the seventh embodiment when the magnet is attracted and separated, respectively. In the figure, 1 is a heat receiving plate, 2 is a temperature-sensitive magnetic material, 3 is a permanent magnet, 4 is a coil spring, 5 is a movable plate, 6 is an operating rod, 7 is a case, 8
is a yoke piece, 9 is a non-magnetic thin plate, 10 is a yoke, 21, 2
1' is a protrusion.

Claims (1)

【実用新案登録請求の範囲】 1 受熱板に固着された所定のキュリ一点を有する感温
磁性体に一方の磁極を対向させて永久磁石をばね部材に
より前記感温磁性体から離れる方向に付勢して設け、し
かも該永久磁石は前記感温磁性体の温度が前記キュリ一
点を越えると前記感温磁性体から離反しキュリ一点より
低下すると吸着し合うように構成した熱応動機構を持つ
自動復帰型熱応動装置において、前記永久磁石へその移
動方向に少なくとも一つ貫通孔を設け、該貫通孔に対応
する前記感温磁性体には該感温磁性体自体あるいは前記
キュリ一点と実質上同じキュリ一点を有する磁性材料に
よる突片を設けて前記磁石の吸着時前記貫通孔に遊嵌す
るようにしたことを特徴とする熱応動装置。 2 前記突片の長さを前記永久磁石の移動距離dより大
きな該永久磁石の磁極方向の厚みtと実質上同じにした
ことを特徴とする実用新案登録請求の範囲第1項記載の
熱応動装置。 3 前記突片の長さを前記永久磁石の磁極方向の厚みt
とその移動距離dとの合計長より短かく、しかも厚みt
1移動距離dのうちの大きい方よりは長くしたことを特
徴とする実用新案登録請求の範囲第1項記載の熱応動装
置。
[Claims for Utility Model Registration] 1. One magnetic pole is opposed to a temperature-sensitive magnetic body having a predetermined single point fixed to a heat-receiving plate, and a permanent magnet is urged in a direction away from the temperature-sensitive magnetic body by a spring member. The permanent magnet is provided with an automatic return mechanism having a thermal response mechanism configured to separate from the temperature-sensitive magnetic body when the temperature of the temperature-sensitive magnetic body exceeds the Curie point, and to attract each other when the temperature of the temperature-sensitive magnetic body falls below the Curie point. In the thermo-responsive device, at least one through hole is provided in the permanent magnet in the direction of movement thereof, and the temperature-sensitive magnetic body corresponding to the through-hole has a curve substantially the same as the temperature-sensitive magnetic body itself or the single point of Curie. 1. A thermally responsive device, characterized in that a protruding piece made of a magnetic material having one point is provided so as to loosely fit into the through hole when the magnet is attracted. 2. The thermal response device according to claim 1, wherein the length of the projection is substantially the same as the thickness t of the permanent magnet in the magnetic pole direction, which is greater than the moving distance d of the permanent magnet. Device. 3 The length of the protruding piece is the thickness t of the permanent magnet in the magnetic pole direction.
and its movement distance d, and the thickness t
The thermal response device according to claim 1, wherein the thermal response device is longer than the larger one of the moving distances d.
JP10685180U 1980-07-30 1980-07-30 thermal response device Expired JPS6020264Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10685180U JPS6020264Y2 (en) 1980-07-30 1980-07-30 thermal response device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10685180U JPS6020264Y2 (en) 1980-07-30 1980-07-30 thermal response device

Publications (2)

Publication Number Publication Date
JPS5730942U JPS5730942U (en) 1982-02-18
JPS6020264Y2 true JPS6020264Y2 (en) 1985-06-18

Family

ID=29468198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10685180U Expired JPS6020264Y2 (en) 1980-07-30 1980-07-30 thermal response device

Country Status (1)

Country Link
JP (1) JPS6020264Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195774U (en) * 1984-06-07 1985-12-27 株式会社 山形グラビヤ rice cooking bag

Also Published As

Publication number Publication date
JPS5730942U (en) 1982-02-18

Similar Documents

Publication Publication Date Title
JPH037834B2 (en)
US3848216A (en) Solid state keyboard switch
JPS6020264Y2 (en) thermal response device
CN108054898B (en) Self-generating switch device
JPS6318431B2 (en)
US5015980A (en) Solenoid switch apparatus
US3348178A (en) Solenoid actuated device
JPS6023882Y2 (en) thermal response device
JPS6137171Y2 (en)
JPS6230764Y2 (en)
JPS6331088B2 (en)
JPH088167B2 (en) electromagnet
JPS6128360Y2 (en)
JPS6023883Y2 (en) thermal response device
JPH0214164Y2 (en)
JPH0322836Y2 (en)
JPS603554Y2 (en) Non-impact electromagnetic solenoid
JPS5824180Y2 (en) temperature detection device
JPH075611Y2 (en) Electromagnetic device
JPS5923370Y2 (en) dc solenoid
JPS6018811Y2 (en) plunger
JPS5820909Y2 (en) Assembly of permanent magnet and yoke in temperature responsive device
JPS6041629Y2 (en) thermal response device
JPH0518005U (en) Plunger type electromagnet
JPS5932086Y2 (en) polarized electromagnetic solenoid