JPS60202202A - Combustion method with low sulfur oxide - Google Patents

Combustion method with low sulfur oxide

Info

Publication number
JPS60202202A
JPS60202202A JP5925784A JP5925784A JPS60202202A JP S60202202 A JPS60202202 A JP S60202202A JP 5925784 A JP5925784 A JP 5925784A JP 5925784 A JP5925784 A JP 5925784A JP S60202202 A JPS60202202 A JP S60202202A
Authority
JP
Japan
Prior art keywords
combustion
fuel
catalyst
gas
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5925784A
Other languages
Japanese (ja)
Inventor
Noriyuki Oyatsu
紀之 大谷津
Kunio Okiura
沖浦 邦夫
Yukio Takahashi
幸男 高橋
Kijiro Arikawa
有川 喜次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5925784A priority Critical patent/JPS60202202A/en
Publication of JPS60202202A publication Critical patent/JPS60202202A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the formation of sulfur trioxide in combustion gas by adding hydrocarbon group fuel when burning combustion gas containing sulfur component. CONSTITUTION:When burning combustion gas containing sulfur component, hydrocarbon group fuel is added, and the formation of sulfur trioxide in combustion gas is inhibited. That is, when fuel gas rich in carbon and CO is burnt while aiming at a fact that lowering as much as possible of the partial pressure of CO in a combustion zone has an effect on the inhibition of SO3, hydrocarbon fuel is used as a combustion assist. Accordingly, the generation of sulfur trioxide at a time when fuel gas containing S component is burnt is suppressed, and trouble, such as the deterioration of the performance of a catalyst in a denitrifier on the rear flow side and the corrosion, blocking, etc. of an air heater can be prevented.

Description

【発明の詳細な説明】 (発明の利用分野)) 本発明は低硫黄酸化物燃焼法に関し、特に流動接触分解
法における再生塔からの燃料ガスを用いた廃熱回収ボイ
ラの排ガス中の二酸化硫黄< s’ o 3)を低減す
るに好適な燃焼方法に関する。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to a low sulfur oxide combustion method, and in particular to a method for reducing sulfur dioxide in the exhaust gas of a waste heat recovery boiler using fuel gas from a regeneration tower in a fluidized catalytic cracking method. The present invention relates to a combustion method suitable for reducing <s' o 3).

(発明の背景) オイルショック以来、燃料の多様化が推進され、流動接
触分解法(FCC)によるガソリン製造分野においても
、原料油は従来のナフサ及び軽油に変って、硫黄分(8
分)等を多量に含む重質油が利用されるようになった。
(Background of the invention) Since the oil crisis, fuel diversification has been promoted, and even in the field of gasoline production using fluid catalytic cracking (FCC), the feedstock oil has changed to conventional naphtha and diesel oil, and the sulfur content (8
Heavy oil containing a large amount of

接触分解法は、石油の灯油分以上の高沸熱分を触媒の存
在下で高温で分解させ、高オクタン価ガソリンを製造す
る方法である。接触分解の反応は全て解明されたとはい
えないが、おおよそ次のようなものである。すなわち、
原料炭化水素の一次反応と呼ばれる分解、それによって
生成したオレフィンの二次反応が特徴である。一体反応
ハ、ノ々ラフインの分解、ナフテン、アロマチ・ツクの
脱アルキルによるオレフィンの生成であり、このうちパ
ラフィンの分解が最も早い。このようにして生成したオ
レフィンが引き続いて分解、異性化水素転位、重合、環
化、アルキル化等の二次反応を引き起こす。この場合、
流動床式を用いると一元来、触媒と原料油を反応塔へ送
り込む役割をしている反応塔ライザーでの分解反応が、
触媒との接触時間が少ないため、好ましくない二次反応
を起こすまでには至らない。そのため、反応塔内部での
反応に比ベコークス生成量が少なく、ガソリンの生成が
多いことが知られている。
The catalytic cracking method is a method for producing high-octane gasoline by decomposing the high-boiling heat content of petroleum oil, which is higher than that of kerosene, at high temperatures in the presence of a catalyst. Although it cannot be said that all reactions in catalytic cracking have been elucidated, they are roughly as follows. That is,
It is characterized by a first-order decomposition of the raw material hydrocarbons and a second-order reaction of the olefins produced. The integral reaction is the production of olefins through the decomposition of nonorahin and the dealkylation of naphthenes and aromatic compounds, and among these, the decomposition of paraffins is the fastest. The olefin thus produced subsequently undergoes secondary reactions such as decomposition, hydrogen isomerization rearrangement, polymerization, cyclization, and alkylation. in this case,
When a fluidized bed system is used, the decomposition reaction occurs in the reaction tower riser, which originally plays the role of feeding the catalyst and feedstock oil into the reaction tower.
Since the contact time with the catalyst is short, undesirable secondary reactions do not occur. Therefore, it is known that the amount of coke produced is small compared to the reaction inside the reaction tower, and more gasoline is produced.

第1図は、流動接触分解法(FCC)の概要を禾すもの
であるが、原料油は配管12を通り、配管15からの循
環油とともに反応塔ライザー1に入り、ここで再生塔2
からの高温触媒により、分解反応に必要な熱量が与えら
れる。触媒は蒸発した油気に伴われて上方に運ばれ、一
部分解されて反応塔3に入る。ここで残りの反応が完結
し、油気は反応塔3上部のサイクロン4により、触媒と
分離され、精留塔5に入る。また、反応塔3からは一定
量の触媒が連続的に抜き出され、廃触媒Uベンド6から
廃触媒ライザー7を通って再生塔2に戻る。再生塔2内
では空気により触媒上に沈積した炭素を燃焼し再生が行
なわれる。再生された触媒は再びオーバーフローウェル
8、再生触媒Uベンド9を経て、反応塔3へ循環される
。一方、生成した燃焼ガスは再生塔2上部のサイクロン
10により触媒と分離され、煙道11を通って系外へ排
出される。図中、6は廃触媒Uベンド、7は廃触媒ライ
ザー、13は燃焼用空気配管、14は調節空気配管、1
6は水蒸気配管である。
FIG. 1 shows an overview of the fluid catalytic cracking (FCC) method. Feedstock oil passes through a pipe 12 and enters the reaction tower riser 1 together with circulating oil from a pipe 15, where it is transferred to the regeneration tower 2.
The high-temperature catalyst from provides the necessary amount of heat for the decomposition reaction. The catalyst is carried upward along with the evaporated oil gas, is partially decomposed, and enters the reaction column 3. The remaining reaction is completed here, and the oil gas is separated from the catalyst by the cyclone 4 at the top of the reaction tower 3 and enters the rectification tower 5. Further, a certain amount of catalyst is continuously extracted from the reaction tower 3 and returns to the regeneration tower 2 through the waste catalyst U-bend 6 and the waste catalyst riser 7. In the regeneration tower 2, air burns the carbon deposited on the catalyst to perform regeneration. The regenerated catalyst is again circulated to the reaction column 3 via the overflow well 8 and the regenerated catalyst U bend 9. On the other hand, the generated combustion gas is separated from the catalyst by a cyclone 10 at the top of the regeneration tower 2, and is discharged to the outside of the system through a flue 11. In the figure, 6 is a waste catalyst U-bend, 7 is a waste catalyst riser, 13 is a combustion air pipe, 14 is a regulating air pipe, 1
6 is a steam pipe.

ここで、触媒表面に析出するコークスを燃焼させ反応熱
回収及び触媒再生を行なう工程においては、触媒として
例えばゼオライトが用いられるが、触媒の劣化を防ぐた
め再生塔2内の温度は700℃以下に抑えなければなら
ない。また、前述したように、原料油として重質油を用
いるため、燃焼ガス中には、C01f(2、H2S等が
含まれている。さらに、環境問題から、NOに低減のた
め、燃焼ゾーンを燃料過剰の状態にし、その後流から不
足分の空気を投入する2段燃焼等の対策が実□施する必
要がある。この結果、通常の炭化水素系燃料の燃焼に比
べ、燃焼過程においてSO3が多量に発生することが問
題となる。
Here, in the process of burning the coke deposited on the catalyst surface to recover the reaction heat and regenerate the catalyst, for example, zeolite is used as the catalyst, but the temperature inside the regenerator 2 is kept below 700°C to prevent deterioration of the catalyst. must be suppressed. In addition, as mentioned above, since heavy oil is used as the feedstock, the combustion gas contains CO1f(2, H2S, etc.).Furthermore, due to environmental issues, the combustion zone is It is necessary to implement measures such as two-stage combustion, which creates a state of excess fuel and injects the insufficient amount of air from its wake.As a result, compared to the combustion of normal hydrocarbon fuels, SO3 is produced during the combustion process. The problem is that it occurs in large quantities.

燃焼排ガスに対する環境対策として、煙道に脱硝装置や
脱硫装置を設けても、SO3含有量の多いガスでは、そ
れぞれ次のような問題を起こす。
Even if a denitrification device or a desulfurization device is installed in the flue as an environmental measure against combustion exhaust gas, the following problems will occur if the gas contains a large amount of SO3.

まず、脱硝装置においては、N H3選択還元法を用い
ると、約350℃で系内にアンモニウムを注入するため
、NH4H3O4の生成による触媒性能の劣化、後流側
におけるエアヒータ(A/H)の閉塞や腐食によるトラ
ブル等を生じる。また、脱硫装置においては、303を
多量に含むガスを処理する場合、アルカリ液洗浄のよう
な湿式法を用いるとSO3は急冷されてFog (霧)
を形成し、十分な性能がでない。そこで、仮に、乾式の
活性炭吸着法を用いると、その空間速度(SV)を小さ
くする必要があるとともに、H2SO4の露点との関係
で腐食を防止するために、排ガス温度高く保つ必要があ
るため、エネルギー損失が大きくなるといった課題が残
る。
First, in denitrification equipment, when using the NH3 selective reduction method, ammonium is injected into the system at approximately 350°C, resulting in deterioration of catalyst performance due to the formation of NH4H3O4 and blockage of the air heater (A/H) on the downstream side. This may cause problems such as corrosion and corrosion. In addition, in desulfurization equipment, when processing gas containing a large amount of 303, if a wet method such as alkaline cleaning is used, the SO3 is rapidly cooled and becomes fog.
, and the performance is not sufficient. Therefore, if a dry activated carbon adsorption method were to be used, it would be necessary to reduce the space velocity (SV), and in order to prevent corrosion in relation to the dew point of H2SO4, it would be necessary to maintain a high exhaust gas temperature. Issues such as increased energy loss remain.

以上のようなことから、硫黄(S)分を多く含むガスを
廃熱回収ボイラにおいて処理する場合には、燃焼の段階
でSO3の発生量を極力抑制することが望まれる。
For the reasons described above, when processing gas containing a large amount of sulfur (S) in a waste heat recovery boiler, it is desirable to suppress the amount of SO3 generated at the combustion stage as much as possible.

(発明の目的) 本発明の目的は、上記した従来技術の欠点をなくし、硫
黄分を含む燃料ガス、特にFCCにおけ−る再生塔から
の燃料ガス中に含まれる硫黄分からの三酸化硫黄の発生
量を低減できる低硫黄酸化物燃焼法を提供することにあ
る。
(Objective of the Invention) The object of the present invention is to eliminate the drawbacks of the prior art described above, and to reduce sulfur trioxide from the sulfur contained in the fuel gas containing sulfur, especially the fuel gas from the regeneration tower in the FCC. The object of the present invention is to provide a low sulfur oxide combustion method that can reduce the amount of sulfur oxides generated.

(発明の概要) 要するに本発明は、燃焼ゾーンにおける00分圧を可能
な限り低下させることがSO3の抑制に効果的であるこ
とに着目し、カーボン及びG OIJランチ燃料を燃焼
させる際、助燃剤として炭化水素系燃料を用いるように
したものである。すなわち、本発明は、硫黄分を含む燃
料ガスを燃焼させる際に、炭化水素系燃料を添加し、燃
焼ガス中の三酸化硫黄の生成を抑制することを特徴とす
る。
(Summary of the invention) In short, the present invention focuses on the fact that reducing the 00 partial pressure in the combustion zone as much as possible is effective in suppressing SO3, and when burning carbon and GOIJ lunch fuel, The system uses hydrocarbon fuel as the fuel. That is, the present invention is characterized in that when combusting fuel gas containing sulfur, hydrocarbon fuel is added to suppress the generation of sulfur trioxide in the combustion gas.

以下、本発明を図面によりさらに詳しくは説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第2図は、本発明の詳細な説明するためのもので、各種
燃料ガスの燃焼によって生ずるS O2からSO3への
転換率を示す。ここでは、燃料としてCo、H2及びC
H,を用い、燃焼ガス中に添加するSO□の濃度は0.
1%から3.0%まで変化させた。この結果、全ての火
炎において、SO□からSO+への転換率は、燃焼ガス
中に添加するS02の濃度が高くなるにつれて低下して
いることがわかる。さらに、燃料としてCOガスを用い
た場合、SO3への転換率が最も高く、次いで、H2ガ
ス、CH4ガスと順次低下しており、COを用いた場合
のS03への転換率はCH4火炎に比べ、5倍から7倍
になっていることがわかる。
FIG. 2 is for explaining the present invention in detail, and shows the conversion rate of SO2 to SO3 produced by combustion of various fuel gases. Here, Co, H2 and C are used as fuel.
H, and the concentration of SO□ added to the combustion gas is 0.
It was varied from 1% to 3.0%. The results show that in all flames, the conversion rate from SO□ to SO+ decreases as the concentration of SO2 added to the combustion gas increases. Furthermore, when CO gas is used as a fuel, the conversion rate to SO3 is the highest, followed by H2 gas and CH4 gas, decreasing sequentially. , it can be seen that it has increased from 5 to 7 times.

次に第3図は、同様の実験として、CO3,H2S及び
CH3SHを含むS分含有撚料を用いて燃焼させた場合
の803発生量を検討したものを示す。この結果から、
CO8火炎でのS03の発生量が極端に多くなることが
わかる。このように、燃料ガス中にCOが存在すると、
多量の803が発生することがわかった。従って、CO
を多く含む燃料ガス、典型的には原料油として重質油を
用いた場合の流動接触分解法(FCC)における再生塔
からの燃焼生成ガス(多量のC01H2、H。
Next, FIG. 3 shows a similar experiment in which the amount of 803 generated was investigated when a S-containing twisted material containing CO3, H2S and CH3SH was burned. from this result,
It can be seen that the amount of S03 generated in the CO8 flame is extremely large. In this way, when CO exists in the fuel gas,
It was found that a large amount of 803 was generated. Therefore, CO
A combustion product gas from a regenerator in a fluid catalytic cracking (FCC) process when heavy oil is typically used as a feedstock (a large amount of CO1H2, H).

S等が含まれる)を用いる廃熱回収ボイラでは、多量の
S03が発生してしまう。
In a waste heat recovery boiler that uses S03), a large amount of S03 is generated.

本発明は、炭化水素系燃料(CH4等)を用いたときの
803発生量が少ないことに注目し、燃焼装置、例えば
廃熱回収ボイラ中に炭化水素系燃料を供給し、COの分
圧を低下させ、S03の発生量を減少させようとするも
のである。
The present invention focuses on the fact that the amount of 803 generated is small when using hydrocarbon fuel (CH4, etc.), and supplies the hydrocarbon fuel into a combustion device, such as a waste heat recovery boiler, to reduce the partial pressure of CO. This is intended to reduce the amount of S03 generated.

(発明の実施例) 第4図は、本発明方法の一実施例を示す燃焼試験装置の
説明図である。反応管51は、内径109mmの石英管
で製作されており、下部のバーナ52からは、C01H
2Sを含んだ燃料ガスが空気とともに予混合の状態で供
給され、後流の供給孔53からは炭化水素系燃料(本試
験ではC3H。
(Embodiment of the Invention) FIG. 4 is an explanatory diagram of a combustion test apparatus showing an embodiment of the method of the present invention. The reaction tube 51 is made of quartz tube with an inner diameter of 109 mm, and from the burner 52 at the bottom, C01H
Fuel gas containing 2S is supplied in a premixed state with air, and hydrocarbon fuel (C3H in this test) is supplied from the downstream supply hole 53.

等を用いた)が助燃剤として注入される。反応管出口付
近にはサンプリングプローブ54が設置され、so3濃
度が測定される。図中、55は電気炉、56はコンプレ
ッサー、57は煙道、58は燃料ガス配管、59は燃料
用空気配管、60は助燃剤用空気配管、61は助燃剤用
配管を示す。バーナー62から供給する燃料ガス中のC
O及びH2Sの濃度は、実際のFCC再生塔からの燃焼
ガスを模擬して、C0=9%、H2S=700ppm(
一定)とされた。助燃剤(C3H8等)の注入量はバー
ナ52からのガス量の0〜3Qwt%と変化させた。助
燃剤の供給法としては、供給孔53がら空気とともに既
定量を供給する方法と、バーナ52から燃料ガスととも
に予混合の状態で供給する方法をとった。
etc.) is injected as a combustion improver. A sampling probe 54 is installed near the outlet of the reaction tube to measure the SO3 concentration. In the figure, 55 is an electric furnace, 56 is a compressor, 57 is a flue, 58 is a fuel gas pipe, 59 is a fuel air pipe, 60 is a combustion improver air pipe, and 61 is a combustion improver pipe. C in the fuel gas supplied from the burner 62
The concentrations of O and H2S simulated the combustion gas from an actual FCC regeneration tower, with C0 = 9% and H2S = 700 ppm (
fixed). The amount of combustion improver (C3H8, etc.) injected was varied from 0 to 3 Qwt% of the amount of gas from the burner 52. The combustion improver was supplied in two ways: one was to supply a predetermined amount together with air through the supply hole 53, and the other was to supply it in a premixed state together with the fuel gas from the burner 52.

第5図に上記試験結果を示すが、助燃剤を添加した場合
B、Cは、添加しない場合Aに比較して大幅にS03の
発生量が減少することがわかる。
The above test results are shown in FIG. 5, and it can be seen that the amount of S03 generated is significantly reduced in cases B and C when a combustion improver is added, compared to case A when it is not added.

また、助燃剤の供給量は、はぼCO等を含んだ燃料ガス
の5〜l Q w t%以上、で十分であることがわj
・った。さらに供給法としては、バーナ52から燃料ガ
スと予混合の状態で供給した場合Bの方が、供給孔53
から助燃剤を添加した場合Cに較べて若干SO3の発生
量を減少できることもわかった。なお、・本試験では助
燃剤として、C3H。
In addition, it has been found that it is sufficient to supply the combustion improver at 5~lQwt% or more of the fuel gas containing CO, etc.
・I did. Furthermore, as for the supply method, B is better when the fuel gas is supplied in a premixed state with the fuel gas from the burner 52.
It was also found that when a combustion improver was added, the amount of SO3 generated could be slightly reduced compared to C. In addition, in this test, C3H was used as a combustion improver.

を用いた。was used.

次に、助燃剤として各種の炭化水素系燃料を用いて前記
と同様の実験を行なったときの結果について述べる。こ
こで、用いた助燃剤は、炭化水素系燃料を代表するCH
4、C3H8、灯油及び軽油である。また、供給量は燃
料ガスのlQwt%一定とし、CO等を含んだ燃料ガス
と予混合の状態で供給した。この結果を第1表に示す。
Next, the results of experiments similar to those described above using various hydrocarbon fuels as combustion improvers will be described. Here, the combustion improver used was CH, which is representative of hydrocarbon fuel.
4, C3H8, kerosene and light oil. Further, the supply amount was kept constant at 1Qwt% of the fuel gas, and the fuel gas was supplied in a premixed state with the fuel gas containing CO and the like. The results are shown in Table 1.

第1表 「 − 以上の結果から、本試験で用いた全ての炭化水素系燃料
がS03低減に大きな効果があることがわかった。
Table 1: From the above results, it was found that all the hydrocarbon fuels used in this test had a large effect on reducing S03.

(発明の実施例) 第6図は、FCCプラントの触媒再生塔からの低カロリ
ー燃焼ガスを廃熱回収ボイラの燃料とする装置系統を示
す図である。FCCプラン)41の再生塔には、本発明
による助燃剤配管43を有する廃熱回収ボイラ42が設
けられている。廃熱回収ボイラ42の排ガスは、その後
流に設けられた脱硝装置44、エアヒーター45、脱硫
装置46、湿式電気集塵器47で処理された後、煙突4
7から排出される。助燃剤の供給源としては、反応塔か
ら生成するガス等の一部を利用することができる。第7
図は、FCCプラントの反応塔)の生成ガスを助燃剤と
してライン71を通して廃熱回収ボイラ42に導入する
実施例を示したものである。
(Embodiment of the Invention) FIG. 6 is a diagram showing an apparatus system that uses low-calorie combustion gas from a catalyst regeneration tower of an FCC plant as fuel for a waste heat recovery boiler. The regeneration tower of the FCC plan 41 is equipped with a waste heat recovery boiler 42 having a combustion improver pipe 43 according to the present invention. The exhaust gas from the waste heat recovery boiler 42 is processed by a denitrification device 44, an air heater 45, a desulfurization device 46, and a wet electrostatic precipitator 47, which are provided downstream, and then sent to the chimney 4.
It is discharged from 7. A part of the gas generated from the reaction tower can be used as a supply source of the combustion improver. 7th
The figure shows an example in which gas generated from a reaction tower of an FCC plant is introduced into a waste heat recovery boiler 42 through a line 71 as a combustion improver.

上記実施例によれば、8分等を多量に含んだ重質油を原
料油に用いた流動接触分解法(FCC)において、再生
塔から排出される低カロリー燃料ガスを廃熱回収ボイラ
42に利用する際、その後流における脱硝袋w44、エ
アヒーター45等におけるS03による各種の弊害を防
止することができる。またこれによって、FCCに用い
る原料油の範囲が拡がり、安価な重質油も容易に使用で
きるため、FCCの極めて経済的な運用が可能となる。
According to the embodiment described above, in the fluid catalytic cracking (FCC) process using heavy oil containing a large amount of 8 min as feedstock, low-calorie fuel gas discharged from the regeneration tower is sent to the waste heat recovery boiler 42. When used, various adverse effects caused by S03 in the denitrification bag w44, air heater 45, etc. in the downstream can be prevented. Moreover, this expands the range of feedstock oils used in FCC, and inexpensive heavy oil can also be easily used, making extremely economical operation of FCC possible.

本発明は、FCC分解プロセスのみならず、他の同様な
化石燃料の分解または燃焼プロセスから生成する含硫黄
燃料ガスに適用することができる。
The present invention is applicable not only to FCC cracking processes, but also to sulfur-containing fuel gases produced from other similar fossil fuel cracking or combustion processes.

(発明の効果) 以上、本発明によれば、8分を含む燃料ガスを燃焼させ
る際の二酸化硫黄の発生を抑制し、後流側の脱硝装置に
おける触媒性能の低下、エアヒーターの腐食、閉塞等の
トラブルを防止することができる。
(Effects of the Invention) As described above, according to the present invention, the generation of sulfur dioxide when burning fuel gas containing 8 minutes can be suppressed, and the catalyst performance in the downstream denitrification device can be reduced, and the air heater can be corroded and blocked. It is possible to prevent such troubles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流動接触分解法(FCC)の概要を示す図、第
2図は各M燃料ガスの燃焼によって生ずるS02から8
03への転換率を示す図、第3図は8分を含有した燃料
を燃焼させた場合のso3発生量を示す図、第4図は、
本発明の一実施例を示す燃焼試験装置を示す図、第5図
は、第4図に示す試験装置を用いて行なった試験結果を
示す図、第6図は、本発明を適用したFCCプラントの
一実施例を示すフローを示す図、第7図は、本発明によ
る他の実施例を示す部分図である。 1・・・反応塔ライザー、2・・・再生塔、3・・・反
応塔、4・・・反応塔サイクロン、5・・・精留塔、6
・・・廃触媒U ヘア1’、7・・・廃触媒ライザー、
8・・・オーバーフローウェル、9・・・再生触媒Uヘ
ンド、1o・・・再生塔サイクロン、11・・・煙道、
12・・・原料油配管、13・・・燃焼用空気配管、1
4・・・調節空気配管、41・・・FCCプラント、4
2・・・廃熱回収ボイラ、43・・・助燃剤配管、44
・・・脱硝装置、45・・・エアヒーター、46・・・
脱硫装置、47・・・湿式EP、48・・・煙突。 代理人 弁理士 川 北 武 長 第2図 第3図 バーブかうの湧JfL (mm) 盗加身力刃に有り−1(wt’/、)
Figure 1 shows an overview of fluid catalytic cracking (FCC), and Figure 2 shows the S02 to 8 generated by combustion of each M fuel gas.
Figure 3 is a diagram showing the conversion rate to SO3, Figure 3 is a diagram showing the amount of SO3 generated when fuel containing 8% is burned, Figure 4 is
FIG. 5 is a diagram showing the test results conducted using the test device shown in FIG. 4, and FIG. 6 is a diagram showing a combustion test apparatus according to an embodiment of the present invention. FIG. 7 is a partial diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Reaction tower riser, 2... Regeneration tower, 3... Reaction tower, 4... Reaction tower cyclone, 5... Rectification column, 6
... Waste catalyst U Hair 1', 7 ... Waste catalyst riser,
8... Overflow well, 9... Regenerated catalyst U hand, 1o... Regeneration tower cyclone, 11... Flue,
12... Raw oil piping, 13... Combustion air piping, 1
4... Conditioned air piping, 41... FCC plant, 4
2... Waste heat recovery boiler, 43... Combustion aid piping, 44
...Denitration equipment, 45...Air heater, 46...
Desulfurization equipment, 47... Wet EP, 48... Chimney. Agent Patent Attorney Takeshi Kawakita Fig. 2 Fig. 3 Barb Kaunoyu JfL (mm) There is a stealth attack - 1 (wt'/,)

Claims (1)

【特許請求の範囲】 (1)硫黄分を含む燃料ガスを燃焼させる際に、炭化水
素系燃料を添加し、燃焼ガス中の二酸化硫黄の生成を抑
制することを特徴とする低硫黄酸化物燃焼法。 (2、特許請求の範囲第1項記載において、炭化水素系
燃料の量を燃料ガス量の5wt%以上にすることを特徴
とする低硫黄酸化物燃焼法。 (3)特許請求の範囲第1項または第2項において、燃
料ガスは流動接触分解法における触媒再生塔から生成し
た燃料ガスであることを特徴とする低硫黄酸化物燃焼法
[Claims] (1) Low sulfur oxide combustion characterized by adding hydrocarbon fuel when burning fuel gas containing sulfur to suppress the generation of sulfur dioxide in the combustion gas. Law. (2. The low sulfur oxide combustion method as set forth in claim 1, characterized in that the amount of hydrocarbon fuel is 5 wt% or more of the amount of fuel gas. (3) Claim 1 The low sulfur oxide combustion method according to item 1 or 2, wherein the fuel gas is a fuel gas generated from a catalyst regeneration tower in a fluidized catalytic cracking method.
JP5925784A 1984-03-27 1984-03-27 Combustion method with low sulfur oxide Pending JPS60202202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5925784A JPS60202202A (en) 1984-03-27 1984-03-27 Combustion method with low sulfur oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5925784A JPS60202202A (en) 1984-03-27 1984-03-27 Combustion method with low sulfur oxide

Publications (1)

Publication Number Publication Date
JPS60202202A true JPS60202202A (en) 1985-10-12

Family

ID=13108139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5925784A Pending JPS60202202A (en) 1984-03-27 1984-03-27 Combustion method with low sulfur oxide

Country Status (1)

Country Link
JP (1) JPS60202202A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380026A (en) * 1976-12-24 1978-07-15 Parsons Co Ralph M Electric power generating plant and improved method of fuel combustion therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380026A (en) * 1976-12-24 1978-07-15 Parsons Co Ralph M Electric power generating plant and improved method of fuel combustion therefor

Similar Documents

Publication Publication Date Title
Gupta et al. Advances in sulfur chemistry for treatment of acid gases
CA1235882A (en) Process for simultaneously removing nitrogen oxide, sulfur oxide, and particulates
Raj et al. Combustion kinetics of H2S and other sulfurous species with relevance to industrial processes
US4622210A (en) Sulfur oxide and particulate removal system
US4488866A (en) Method and apparatus for burning high nitrogen-high sulfur fuels
CA2634254C (en) Reduction of co and nox in regenerator flue gas
US4744962A (en) Process for the reduction of ammonia in regeneration zone off gas by select addition of NOx to the regeneration zone or to the regeneration zone off gas
CA2736788C (en) A method for treating refinery waste streams in a fluid catalytic cracking unit and an improved catalytic cracking unit for processing refinery waste streams
US20180065851A1 (en) Setr- super enhanced tail gas recovery; a tail gas process with adsorbent reactors for zero emissions
US8425870B2 (en) Reduction of CO and NOx in full burn regenerator flue gas
US5120517A (en) Process for the removal of sulfur oxides and nitrogen oxides from flue gas
CN108704474A (en) Coke oven flue gas and Claus tail gases combined treatment process
US6551565B2 (en) Process of removing nitrogen oxides from flue gases from a fluidized catalytic cracking unit
US8449860B2 (en) Method and system for recovering sulfur in the thermal stage of a Claus reactor
US6960548B2 (en) Method for regenerating used absorbents derived from treatment of thermal generator fumes
JPS60202202A (en) Combustion method with low sulfur oxide
Ismagilov et al. Development of Catalytic Technologies for purification of gases from Hydrogen Sulfide based on direct selective Catalytic Oxidation of H2S to elemental Sulfur
GB2443609A (en) Reduction of NOX emissions
Johnsson et al. Sulphur Chemistry in Combustion I: Sulphur in fuels and combustion chemistry
KR20200054245A (en) Method for performing selective catalytic reduction of coke oven flue gas
CA1181929A (en) Process of controlling nox in fcc flue gas in which an so2 oxidation promoter is used
Kwong et al. Application of amines for treating flue gas from coal‐fired power plants
CN106552505B (en) Method for treating sulfur-containing waste gas
GB1578149A (en) Removal of the oxides of sulphur and/or nitrogen from the flue gases of power generation apparatus
CA1089193A (en) Power generation