JPS6020200A - Monitor device for deposited layer of radioactive gas - Google Patents

Monitor device for deposited layer of radioactive gas

Info

Publication number
JPS6020200A
JPS6020200A JP12814083A JP12814083A JPS6020200A JP S6020200 A JPS6020200 A JP S6020200A JP 12814083 A JP12814083 A JP 12814083A JP 12814083 A JP12814083 A JP 12814083A JP S6020200 A JPS6020200 A JP S6020200A
Authority
JP
Japan
Prior art keywords
radioactive gas
fixing member
deposited layer
radiation
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12814083A
Other languages
Japanese (ja)
Inventor
博信 木村
主税 小長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12814083A priority Critical patent/JPS6020200A/en
Publication of JPS6020200A publication Critical patent/JPS6020200A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は放射性ガスを固定する部材に形成さiする放射
性ガス沈@層の厚さを検出する放身寸性7Jス沈着層厚
さモニタ装置に関する。
Detailed Description of the Invention [Technical Field of the Invention 1] The present invention relates to a device for monitoring the thickness of a deposited layer of radioactive gas, which detects the thickness of a deposited layer of radioactive gas formed on a member for fixing radioactive gas. Regarding.

[発明の技術的背景] 第1図はKr−85のような放射性ガスを固定化する放
射性ガス固定化装置を示すもので、この放射性ガス固定
化装置では、Kr −85を導入りる配管1と、銅また
はニッケル等の金属で構成された中心電極2と、この中
心電極2を同軸状【こJIll!り囲む円周電極3とか
らなる放電チェンノ人−h’= Ifぢ成されている。
[Technical Background of the Invention] Figure 1 shows a radioactive gas immobilization device for immobilizing a radioactive gas such as Kr-85. and a center electrode 2 made of metal such as copper or nickel, and this center electrode 2 coaxially. A discharge wire consisting of a circumferential electrode 3 is formed.

なお、図において符号2a(ま中心電極2を冷却する冷
却配管を、符号3a4は放電チェンバー内を減圧ザる減
圧配管を示している。
In the figure, the reference numeral 2a indicates a cooling pipe for cooling the center electrode 2, and the reference numeral 3a4 indicates a decompression pipe for reducing the pressure inside the discharge chamber.

このような放射性ガス固定化装置では、第2図に示すよ
うに、中心電極2がアース電位に円周電極3が−4kV
程度の高電圧に保持され、放電により)(r−85かイ
オン化され、Kr −85イAン4になり、このKr 
−85イオン4は電界によって加速され、円周電極3の
内側に打ち込まれて固定化される。
In such a radioactive gas immobilization device, as shown in FIG. 2, the center electrode 2 is at ground potential and the circumferential electrode 3 is at -4kV.
R-85 is ionized (kr-85 is held at a high voltage of about
The -85 ions 4 are accelerated by the electric field, and are implanted inside the circumferential electrode 3 and fixed therein.

しかしながら、このような方法で放射性ガスを固定化す
る場合には、ある時間がたつとKr −85イオン4が
円周電極3に打ち込まれて固定化する割合と、Kr −
85イオン4により円周電極3に固定化されたKr −
85がたたき出される割合が平衡に達してKr −85
の固定化が限度に達する。
However, when immobilizing radioactive gas using such a method, the rate at which Kr-85 ions 4 are implanted into the circumferential electrode 3 and immobilized after a certain period of time, and the Kr-
Kr − immobilized on the circumferential electrode 3 by 85 ions 4
The rate at which Kr 85 is ejected reaches equilibrium and Kr -85
immobilization reaches its limit.

そこで、この時、第3図に示すように、中心電極2に−
4kV程度の電圧が印加され、円周電極3がアースされ
る。この結果、Kr −85イオン4は中心電極2にぶ
つかりこの中心電極2の金属原子6がスパッタされ、円
周電極3の内周に沈着され、円周電極3にたたきこまれ
たKr−85ガス5が固定化される。そしである程度の
厚さまで金属層が沈着されると第2図に示す状態に戻さ
れ、Kr −85イオン4が再度円周電極3の内面に打
ち込まれる。
Therefore, at this time, as shown in FIG.
A voltage of about 4 kV is applied, and the circumferential electrode 3 is grounded. As a result, the Kr-85 ions 4 hit the center electrode 2 and the metal atoms 6 of the center electrode 2 are sputtered and deposited on the inner periphery of the circumferential electrode 3, and the Kr-85 gas is blown into the circumferential electrode 3. 5 is fixed. When the metal layer is deposited to a certain thickness, the state shown in FIG. 2 is restored, and Kr-85 ions 4 are again implanted into the inner surface of the circumferential electrode 3.

すなわち、以上のように構成された放射性ガス固定化装
置では、このにうな動作を繰り返し、Kr−85ガスが
入り込んでいる沈着層7を順次成長させ、Kr−85ガ
スが固定化される。
That is, in the radioactive gas immobilization device configured as described above, the above operation is repeated to sequentially grow the deposited layer 7 into which Kr-85 gas has entered, and the Kr-85 gas is immobilized.

「背景技術の問題点」 しかしながら、従来のこのような方法により放射性ガス
を固定化する場合には、Kr−85の沈着層7の厚さを
正確に計測する適当な手段がないという問題がある。
"Problems with the Background Art" However, when radioactive gas is immobilized by such a conventional method, there is a problem that there is no suitable means for accurately measuring the thickness of the deposited layer 7 of Kr-85. .

すなわち、円周電極3に固定化されたKr −85の状
態が不明であり、固定化の安全性および信頼性を保証す
ることができないという問題があった。
That is, the state of Kr-85 immobilized on the circumferential electrode 3 is unknown, and there is a problem that the safety and reliability of immobilization cannot be guaranteed.

[発明の目的] 本発明はかかる従来の事情に対処してなされたもので、
放射性ガスの沈着層の厚さを容易に測定することができ
、放射性ガス廃棄物処理の安全性および信頼性を向上す
ることのできる放射性ガス沈着層厚ざモニタ装置を]是
供しようとηるものである。
[Object of the invention] The present invention has been made in response to such conventional circumstances,
We aim to provide a radioactive gas deposit layer thickness monitoring device that can easily measure the thickness of the radioactive gas deposit layer and improve the safety and reliability of radioactive gas waste treatment. It is something.

[発明の概要1 すなわら本発明は、放射性ガスが固定される放射性ガス
沈着層を有する放射性ガス固定部材の前記放射性ガス沈
着層の厚さを測定する放射性ガス沈着層厚さモニタ装置
において、前記放射性ガス固定部材の側方に配設されビ
ーム状の放射線を前記放射性ガス固定部材に放射する放
射線発生装置と、前記放射性ガス固定部材を介して前記
放射線発生装置に対向して配設され前記放射性ガス固定
部材を通過した放射線を検出する放射線検出器と、この
放射線検出器で検出された信号を増幅する増幅器と、こ
の増幅器で増幅された信号を前記放射線発生装置と前記
放射性ガス固定部材との位置関係とともに記憶する記憶
装置と、この記憶装置に記憶された情報を入力し前記放
射性ガス固定部材に形成される前記放射性ガス沈着層の
厚さをめる演算装置とを備えたことを特徴とする放射性
ガス沈着層厚さモニタ装置である。
[Summary of the Invention 1 In other words, the present invention provides a radioactive gas deposited layer thickness monitoring device for measuring the thickness of a radioactive gas deposited layer of a radioactive gas fixing member having a radioactive gas deposited layer to which a radioactive gas is fixed. a radiation generating device disposed on the side of the radioactive gas fixing member and radiating beam-shaped radiation to the radioactive gas fixing member; and a radiation generating device disposed opposite to the radiation generating device via the radioactive gas fixing member. a radiation detector that detects radiation that has passed through the radioactive gas fixing member; an amplifier that amplifies the signal detected by the radiation detector; and a signal amplified by the amplifier that is transmitted to the radiation generating device and the radioactive gas fixing member. and a calculation device that inputs the information stored in the storage device and calculates the thickness of the radioactive gas deposited layer formed on the radioactive gas fixing member. This is a radioactive gas deposit layer thickness monitoring device.

[発明の実施例] 以下本発明の詳細を図面に示す一実施例について説明す
る。
[Embodiment of the Invention] The details of the present invention will be described below with reference to an embodiment shown in the drawings.

第4図は本発明の放射性ガス沈着層厚さモニタ装置の一
実施例を示すもので、図において符号3は円周電極を示
し−Cいる。この円周電極3の内側にはX線またはγ線
に対しC吸収のよい、例えばタングステン、モリブデン
等からなる極薄肉の内筒8が配設されている。円周電極
30図の左側方にはX線またはγ線を発生させる放射線
発生装置の放射線源9が配設されCおり、この放射線源
9は絞り9aにより細いビーム状に絞り込まれる。
FIG. 4 shows an embodiment of the radioactive gas deposited layer thickness monitoring device of the present invention, and in the figure, reference numeral 3 indicates a circumferential electrode. Inside this circumferential electrode 3, an extremely thin inner cylinder 8 made of, for example, tungsten, molybdenum, etc., which has good C absorption for X-rays or γ-rays, is disposed. A radiation source 9 of a radiation generating device that generates X-rays or γ-rays is disposed on the left side of the circumferential electrode 30, and this radiation source 9 is focused into a narrow beam by an aperture 9a.

この放射線源9に対向して円周電極3の図の右側方には
細いスリット10aを有するコリメータ10が配設され
ており、このコリメータ10内には、例えばゲルマニウ
ム、半導体検出器、シンチレータ、光電子増倍管等から
なる放射線検出器11が収容されている。
A collimator 10 having a thin slit 10a is disposed on the right side of the circumferential electrode 3 in the figure, facing the radiation source 9. Inside this collimator 10, for example, a germanium detector, a semiconductor detector, a scintillator, a photoelectron detector, etc. A radiation detector 11 consisting of a multiplier tube or the like is housed.

図において符号12および13は、放射線検出器11か
らの信号を増幅するプリアンプおよびリニアアンプを示
している。図において符号14はリニアアンプ13から
入力される信号のノイズ弁別を行なうディスクリミネー
タを示しており、また符号15は計数値をカウントする
スケーラ15を示している。図において符号16はスケ
ーラ15からの信号を入力しこの信号を記憶する記憶装
置およびこの信号を処理し円周電極3に固定される放射
性ガス沈着層7の厚さをめる演算装置とを備えたコンピ
ュータ16を示している。
In the figure, numerals 12 and 13 indicate a preamplifier and a linear amplifier that amplify the signal from the radiation detector 11. In the figure, reference numeral 14 indicates a discriminator that discriminates noise from the signal inputted from the linear amplifier 13, and reference numeral 15 indicates a scaler 15 that counts a count value. In the figure, reference numeral 16 includes a storage device that inputs a signal from the scaler 15 and stores this signal, and an arithmetic device that processes this signal and calculates the thickness of the radioactive gas deposition layer 7 fixed to the circumferential electrode 3. A computer 16 is shown.

以上のように構成された放射性ガス沈@層厚さモニタ装
置では、円周電極3の両側に対向して配設される放射線
[9およびコリメータ10が図の矢符A方向に走査され
る。この時、円周電極3を透過してきた放射線の計数率
は、走査距離に従って第5図に示すように変化する。
In the radioactive gas deposition/layer thickness monitoring device configured as described above, the radiation [9] and the collimator 10, which are disposed opposite to each other on both sides of the circumferential electrode 3, are scanned in the direction of arrow A in the figure. At this time, the counting rate of the radiation transmitted through the circumferential electrode 3 changes as shown in FIG. 5 according to the scanning distance.

すなわち、第5図において、吸収の肩aにあたる部分は
放射線が円周電極3の上下端を通過している時の信号で
あり、また吸収ビークbは放射線が円周電極3に内接す
る放射線吸収係数の大きい内筒8の上下端を通過した時
の計数値である。そして吸収の屑Cが測定したいKr 
−85の沈@層7を放射線が通過している時の計数値を
示している。
That is, in FIG. 5, the absorption shoulder a is the signal when the radiation passes through the upper and lower ends of the circumferential electrode 3, and the absorption peak b is the signal when the radiation is absorbed by the radiation inscribed in the circumferential electrode 3. This is the count value when passing the upper and lower ends of the inner cylinder 8 having a large coefficient. And the absorbed waste C is Kr that you want to measure.
It shows the count value when radiation passes through layer 7 of -85.

このようにして、円周電極3を通過した放射線は、放射
線検出器11で電気信号に変換され、プリアンプ12お
よびリニアアンプ13により増幅された後、ディスクリ
ミネータ14によりノイズ弁別され、スケーラ15によ
り計数値がカウントされる。
In this way, the radiation that has passed through the circumferential electrode 3 is converted into an electrical signal by the radiation detector 11, amplified by the preamplifier 12 and linear amplifier 13, noise-discriminated by the discriminator 14, and then by the scaler 15. The count value is counted.

このようにして、スケーラ15によりカウントされた信
号は、その計数されIC場所の情報とともにコンピュー
タ16の記憶装置に記憶される。
In this manner, the signals counted by the scaler 15 are stored in the memory of the computer 16 along with the information of the counted IC locations.

このような1回の走査により、放射線透過方向に垂直な
方向の沈着層7の厚さをほぼ計ff1llすることがで
きる。次に円周電極3が、例えば図の矢符B方向に微小
角度回転され、同様の走査が繰り返され、スケーラ15
によりカラン]〜された信号(よ、それぞれコンピュー
タ16の記憶装置に記憶される。
By one such scan, the total thickness of the deposited layer 7 in the direction perpendicular to the direction of radiation transmission can be approximately ff1ll. Next, the circumferential electrode 3 is rotated by a small angle, for example in the direction of arrow B in the figure, and the same scanning is repeated, and the scaler 15
The generated signals are stored in the storage device of the computer 16.

このようにして、円周電極3に沿っての走査が終了後、
コンピュータ16はこのコンピュータ16の記憶装置に
記憶された情報に基づいてこのコンピュータ16の演算
装置により情報の再構成処理を行ない、これにより正確
な沈、着層7の厚さを二次元的にめることができる。
In this way, after scanning along the circumferential electrode 3,
The computer 16 performs information reconstruction processing using the arithmetic unit of the computer 16 based on the information stored in the storage device of the computer 16, thereby accurately determining the thickness of the deposited layer 7 in two dimensions. can be done.

なお以上述べた実施例では、放射性ガスとしてクリプト
ンを使用した例について説明し1こ′b′X1本発明は
かかる実施例に限定されるもので(まなく、キセノン、
ヘリウム、トリチウム等の’fj19A性−)Jスにも
適用できることは勿論である。
In the embodiments described above, an example in which krypton was used as the radioactive gas was explained.
Of course, it can also be applied to 'fj19A-)J gases such as helium and tritium.

[発明の効果] 以上述べたように本発明の放射性ガス沈着層厚さモニタ
装置によれば、放射性ガスが固定される沈着層の厚さを
2次元的に正確に計測できるlこめ、放射性ガス廃棄物
処理の安全性、信頼性を従来に比較して大幅に向上する
ことができる。
[Effects of the Invention] As described above, according to the radioactive gas deposited layer thickness monitoring device of the present invention, the thickness of the deposited layer to which radioactive gas is fixed can be accurately measured two-dimensionally. The safety and reliability of waste treatment can be significantly improved compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のクリプトン固定化装置を示す縦断面図、
第2図および第3図は第1図に示すり1ノブトン固定化
装置の横断面図、第4図(ま本邦1月の一実施例の11
J、銅性ガス沈着層厚さモニタ装置を示す構成図、第5
図は代表的測定データを示す説1揚図である。 2・・・・・・・・・・・・中心電極 3・・・・・・・・・・・・円周電極 7・・・・・・・・・・・・沈着層 8・・・・・・・・・・・・内 筒 9・・・・・・・・・・・・放射線源 10・・・・・・・・・・・・コリメータ11・・・・
・・・・・・・・放射線検出器12・・・・・・・・・
・・・プリアンプ13・・・・・・・・・・・・リニア
アンプ14・・・・・・・・・・・・ディスクリミネー
タ15・・・・・・・・・・・・カウンタ16・・・・
・・・・・・・・コンピュータ代理人弁理士 須 山 
佐 −
Figure 1 is a longitudinal cross-sectional view showing a conventional krypton fixation device;
Figures 2 and 3 are a cross-sectional view of the Knobton immobilization device shown in Figure 1, and Figure 4 (11
J, Block diagram showing the copper gas deposit layer thickness monitoring device, No. 5
The figure is a schematic diagram showing representative measurement data. 2... Center electrode 3... Circumferential electrode 7... Deposit layer 8... ......Inner tube 9...Radiation source 10...Collimator 11...
...... Radiation detector 12 ......
・・・Preamplifier 13・・・・・・・・・・・・Linear amplifier 14・・・・・・・・・Discriminator 15・・・・・・・・・Counter 16・・・・・・
・・・・・・Computer agent patent attorney Suyama
Sa -

Claims (1)

【特許請求の範囲】[Claims] (1)放射性ガスが固定される放射性ガス沈着層を有す
る放射性ガス固定部材の前記放射性ガス沈@層の厚さを
測定する放射性ガス沈着層厚さモニタ装置において、前
記放射性ガス固定部材の側方に配設されビーム状の放射
線を前記放射性ガス固定部材に放射する放射線発生装置
と、前記放射性ガス固定部材を介して前記放射線発生装
置に対向して配設され前記放射性ガス固定部材を通過し
た放射線を検出する放射線検出器と、この放射線検出器
で検出された信号を増幅する増幅器と、この増幅器で増
幅された信号を・前記放射線発生装置と前記B’l t
JJ性ガス固定部材との位置関係とともに記憶する記憶
装置と、この記憶装置に記憶された情報を入力し前記放
射性ガス固定部材に一形成される前記放射性ガス沈着層
の厚さをめる演算装置とを備えたことを特徴とする放射
性ガス沈着層厚さモニタ装置。
(1) In a radioactive gas deposited layer thickness monitoring device that measures the thickness of the radioactive gas deposited layer of a radioactive gas fixing member having a radioactive gas deposited layer to which a radioactive gas is fixed, the side of the radioactive gas fixing member is provided. a radiation generating device that is disposed in the air and emits a beam-shaped radiation to the radioactive gas fixing member; and a radiation generating device that is disposed opposite to the radiation generating device via the radioactive gas fixing member and that passes through the radioactive gas fixing member. a radiation detector that detects a radiation detector; an amplifier that amplifies a signal detected by the radiation detector; and a signal amplified by the amplifier;
a storage device that stores the positional relationship with the JJ gas fixing member; and a calculation device that inputs the information stored in the storage device and calculates the thickness of the radioactive gas deposited layer formed on the radioactive gas fixing member. A radioactive gas deposit layer thickness monitoring device comprising:
JP12814083A 1983-07-14 1983-07-14 Monitor device for deposited layer of radioactive gas Pending JPS6020200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12814083A JPS6020200A (en) 1983-07-14 1983-07-14 Monitor device for deposited layer of radioactive gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12814083A JPS6020200A (en) 1983-07-14 1983-07-14 Monitor device for deposited layer of radioactive gas

Publications (1)

Publication Number Publication Date
JPS6020200A true JPS6020200A (en) 1985-02-01

Family

ID=14977385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12814083A Pending JPS6020200A (en) 1983-07-14 1983-07-14 Monitor device for deposited layer of radioactive gas

Country Status (1)

Country Link
JP (1) JPS6020200A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093443A (en) * 2002-09-02 2004-03-25 Katsuhiko Ogiso Measuring method for dimension of multilayer structured vessel
JP2014031554A (en) * 2012-08-03 2014-02-20 Tocalo Co Ltd Radiation shielding coating member
US11501894B2 (en) 2018-12-12 2022-11-15 Autonetworks Technologies, Ltd. Wiring member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093443A (en) * 2002-09-02 2004-03-25 Katsuhiko Ogiso Measuring method for dimension of multilayer structured vessel
JP2014031554A (en) * 2012-08-03 2014-02-20 Tocalo Co Ltd Radiation shielding coating member
US11501894B2 (en) 2018-12-12 2022-11-15 Autonetworks Technologies, Ltd. Wiring member

Similar Documents

Publication Publication Date Title
US3911280A (en) Method of measuring a profile of the density of charged particles in a particle beam
US2383478A (en) Radiographic exposure meter
Curran et al. II. Investigation of soft radiations by proportional counters
JP4663234B2 (en) Method and apparatus for measuring the intensity distribution of a radiation field
Duval et al. Position-sensitive x-ray detector
Musket et al. Oxide‐thickness determination by proton‐induced x‐ray fluorescence
JP3535045B2 (en) Device for determining gamma-ray incident direction from trajectory image of recoil electrons by MSGC
JPS6020200A (en) Monitor device for deposited layer of radioactive gas
JP2004093224A (en) Defect evaluating device utilizing positron
Spejewski Beta-spectrum shape measurements with a 4π semiconductor spectrometer
Leidner et al. Energy calibration of the GEMPix in the energy range of 6 keV to 2 MeV
Bailey et al. Non-resonant radiation from the N14 (p, γ) reaction
Vampola Measuring energetic electrons—What works and what doesn't
Ankoviak et al. Construction and performance of a position detector for the UA1 uranium-TMP calorimeter
Evans Fundamentals of radioactivity and its instrumentation
Gils et al. A 4πβ-γ-coincidence spectrometer using Si (Li) and NaI (Tl) detectors
Bukshpan et al. Detection of imperfections by means of narrow beam gamma scattering
JP2799994B2 (en) X-ray detector
JPH0949809A (en) Instrument and method for moessbauer spectroscopy
Albrecht et al. Low pressure avalanche detectors in relativistic heavy ion experiments
JPH05333158A (en) Radiation detecting device
Crespo et al. Pulse shape analysis in the liquid xenon multiwire ionisation chamber for PET
MacCuaig et al. Industrial tomography using a position sensitive carbon fibre anode proportional counter
JPS5897674A (en) Alpha ray measuring apparatus
Foote Measuring MeV ions from fusion reactions in magnetic-mirror experiments