JPS60201275A - Electroacoustic transducer - Google Patents

Electroacoustic transducer

Info

Publication number
JPS60201275A
JPS60201275A JP5804284A JP5804284A JPS60201275A JP S60201275 A JPS60201275 A JP S60201275A JP 5804284 A JP5804284 A JP 5804284A JP 5804284 A JP5804284 A JP 5804284A JP S60201275 A JPS60201275 A JP S60201275A
Authority
JP
Japan
Prior art keywords
wave
sound pressure
frequency
modulated
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5804284A
Other languages
Japanese (ja)
Inventor
Masahide Yoneyama
米山 正秀
Tomoo Kamakura
友男 鎌倉
Kazuo Iketani
池谷 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5804284A priority Critical patent/JPS60201275A/en
Publication of JPS60201275A publication Critical patent/JPS60201275A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/02Synthesis of acoustic waves

Landscapes

  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain the value of an optimum parameter for obtaining high reproduced sound pressure of a secondary wave by selecting the ultrasonic wave frequency of a carrier within a specific range and setting the initial sound pressure level of an unmodulated carrier ultrasonic wave within a fixed range. CONSTITUTION:The maximum frequency of a modulated wave which is considered as to a parametric speaker is fm=20kHz, and fm=8kHz is sufficient for only a voice wave containing no instrument sound component. The range of the primary wave frequency optimum for the parametric speaker is f=25-40kHz. The optimum value of the primary wave initial sound pressure in this case is >=150dB. Cavitation, however, occurs almost at 160dB, so the propagating wave motion equation of a finite amplitude wave does not hold any more. Therefore, the optimum value of the initial sound pressure is 150-155dB. The maximum sound pressure of the secondary wave is therefore about 110-120dB.

Description

【発明の詳細な説明】 従来技術 本発明は、可聴周波数帯の電気信号を音響信号として空
気中に放射するための電気音響変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION The present invention relates to an electroacoustic transducer for radiating an electrical signal in an audible frequency band into the air as an acoustic signal.

従来技術 現在、電気音響変換器としては、動電形直接放射スピー
カとホーンロードスピーカが主流であるが、いづれの方
式においても空気中において振動板を振動させることに
より空気の疎密波を作り機械振動エネルギーを音響エネ
ルギーに変換するものである。
Prior Art Currently, electrodynamic direct radiation speakers and horn-loaded speakers are the mainstream electroacoustic transducers, but in both systems, air compression waves are created by vibrating a diaphragm in the air, which generates mechanical vibrations. It converts energy into acoustic energy.

本発明は従来のスピーカ等の音響変換器とは全く異る手
段、つまり空気の非線形による有限振幅音波のパラメト
リック作用を利用するものであるが、パラメトリック作
用によって空気中で自己復調されて再生された音波(2
次波と称する)は。
The present invention uses a completely different means from conventional acoustic transducers such as speakers, that is, it utilizes the parametric effect of finite amplitude sound waves due to air nonlinearity. Sound waves (2
(referred to as the next wave).

超音波領域のキャリア音波と同等の指向性パターンを有
するのが特徴である。
It is characterized by having a directivity pattern equivalent to carrier sound waves in the ultrasonic range.

而して、可聴周波数帯域の信号によって振幅変調を施さ
れた超音波を有限振幅レベルで空気または水等の媒質中
に放射し、空気の非線形効果に基づく自己復調作用によ
って媒質中に生じる復調音波を通信手段として用いる方
式については、パラメトリックスピーカとして既に種々
報告されている。この音波の非線形現象を利用したパラ
メトリツク・スピーカは、その指向性の鋭さに一つの特
徴をもつが、一般に、超音波の周波数が高くなると、振
動子より放射される音波はビーム状になって直進する。
Ultrasonic waves that have been amplitude-modulated by signals in the audio frequency band are radiated into a medium such as air or water at a finite amplitude level, and a demodulated sound wave is generated in the medium by a self-demodulating action based on the nonlinear effect of the air. Various methods have already been reported for using parametric speakers as communication means. Parametric speakers that utilize this nonlinear phenomenon of sound waves are characterized by their sharp directivity, but in general, as the frequency of ultrasonic waves increases, the sound waves emitted from the transducer become beam-shaped. Go straight.

今、半径qの振動子アレーから振幅変調を受けた超音波
がビーム状で放射されると仮定した場合、アレーからX
なる距離の点での音圧Pは次式で表わせる。
Now, if we assume that amplitude-modulated ultrasonic waves are emitted in the form of a beam from a transducer array with radius q, then
The sound pressure P at a point of distance can be expressed by the following equation.

(ただし、Goは音速、αは角周波数ω0の音波の減衰
係数、poは初期音圧、mは変調度、g(し)は変調波
である。) (1)式で表わされる有限振幅レベルの調音波が空気中
で非線形パラメトリック作用によって復調されて生じる
2次波の音圧は以下の非斉次波動方程式によって表わさ
れる。
(Where, Go is the speed of sound, α is the attenuation coefficient of the sound wave with angular frequency ω0, po is the initial sound pressure, m is the degree of modulation, and g is the modulated wave.) A finite amplitude level expressed by equation (1) The sound pressure of the secondary wave generated when the harmonic wave of is demodulated in air by nonlinear parametric action is expressed by the following non-homogeneous wave equation.

(2)式において、Psは2次波の音圧、ρ0は空気の
密度、qは1次波ビーム中に生じる2次波の仮想音源密
度で、このqは次式で表わせる。
In equation (2), Ps is the sound pressure of the secondary wave, ρ0 is the air density, and q is the virtual sound source density of the secondary wave generated in the primary wave beam, and this q can be expressed by the following equation.

従って、(1)、(3)式よりアレーからの距離X(軸
上)の点での仮想音源密度を計算すると次式を得る (4)式の右辺第1項は信号成分に基づく仮想音源密度
を表わしており、第2項はひずみ成分の仮想音源密度を
表わしている。
Therefore, by calculating the virtual sound source density at a point at distance X (on the axis) from the array from equations (1) and (3), we obtain the following equation. The second term represents the virtual sound source density of the distortion component.

更に、2次波のひずみ成分を低減させるため変調方式と
して、rAM変調方式がある。
Furthermore, there is an rAM modulation method as a modulation method for reducing distortion components of secondary waves.

このFAM変調方式は、変調信号にある直流成分を加え
てF変調した後にキャリア信号との積をとる様な変調方
式で、この場合、被変調信号は次式で表わせる。
This FAM modulation method is a modulation method in which a certain DC component is added to a modulated signal, F-modulated, and then the product with a carrier signal is calculated. In this case, the modulated signal can be expressed by the following equation.

V= 5l−17Li〒) sin (11゜t: 叩
・−(5)従って、振動子アレーからXなる距離の点で
の1次波(被変調超音波)の音圧は となる。この場合の2次波の仮想音源密度け(3)式を
用いて、 となる。従って1本変調方式を用いると(4)式右辺第
2項に示されるごときひずみ成分が消減し、再生音の品
質が著しく向上する。
V= 5l-17Li 〒) sin (11゜t: Strike・-(5) Therefore, the sound pressure of the primary wave (modulated ultrasonic wave) at a distance of X from the transducer array is. In this case Using equation (3) for the virtual sound source density of the secondary wave, we get: Therefore, if the single modulation method is used, the distortion component shown in the second term on the right side of equation (4) will be reduced, and the quality of the reproduced sound will be improved. is significantly improved.

しかしながら、上述のごときパラメトリック作用を利用
した電気音響変換器を実用に供する場合、変換効率の低
さが大きな問題である。面して、2次波の再生音圧レベ
ルは、各種パラメータによって決定されるが、これ等の
パラメータの内ρ02CO+ β等のパラメータは使用
媒質によって固定的な値を有するが、超音波周波数(f
)、初期音圧(Po)、アレー径(0)等のパラメータ
は設H1の際に値を選択出来るパラメータである。
However, when an electroacoustic transducer using the parametric effect as described above is put into practical use, low conversion efficiency is a major problem. On the other hand, the reproduced sound pressure level of the secondary wave is determined by various parameters. Among these parameters, parameters such as ρ02CO+β have fixed values depending on the medium used, but the ultrasonic frequency (f
), initial sound pressure (Po), array diameter (0), etc. are parameters whose values can be selected at the time of setting H1.

l−的一 本発明は、上述のごとき実情に鑑みてなされたもので、
特に、空気中でのパラメトリック作用を利用した可聴音
再生用の電気音響変換器を実用化するに当って、2次波
の高い再生音圧を得るための最適パラメータの値を得る
ことを目的としてなされたものである。
The present invention has been made in view of the above-mentioned circumstances.
In particular, when putting into practical use electroacoustic transducers for audible sound reproduction that utilize parametric effects in the air, we aimed to obtain optimal parameter values to obtain high reproduction sound pressure of secondary waves. It has been done.

璽−一底 本発明の構成について、以下、実施例に基づいて説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the present invention will be described below based on examples.

第1図は、1次波に関するパラメータである1次波周波
数(f)と1次波の初期音圧(Po)が2次波音圧に及
ぼす影響をコンピュータシミュレーションによってめた
ものであるが、同図から明らかなように、1次波周波数
は低い程よい事になるが少なくとも変調波の最大周波数
fmの2倍以上でなくてはならない。これ以下の周波数
では、第2図に示すように、変調時にスペクトルの折返
しが生ずる。更に、周波数が低い場合には、空気中での
1次波の減衰が小さい為、受聴者に与える生理的影響が
問題となり実用上望ましくない。又、1次波周波数が2
0kHz以下の場合には、2次波と共に1次波が受聴者
に聞えてしまうという欠点が生じる。
Figure 1 shows the effects of the primary wave frequency (f) and the initial sound pressure (Po) of the primary wave on the secondary wave sound pressure, which are parameters related to the primary wave, determined by computer simulation. As is clear from the figure, the lower the primary wave frequency, the better, but it must be at least twice the maximum frequency fm of the modulated wave. At frequencies below this, as shown in FIG. 2, spectral folding occurs during modulation. Furthermore, when the frequency is low, the attenuation of the primary wave in the air is small, which poses a problem of physiological effects on the listener, which is not desirable in practice. Also, the primary wave frequency is 2
If the frequency is below 0 kHz, there is a drawback that the listener can hear the primary wave together with the secondary wave.

今、考えられる変調波の最大周波数はfm=20kll
zであり、楽器を含まない音声波のみの場合はfm=8
kHz程度で十分である。以上の考察から、パラメトリ
ック・スピーカに最適な1次波周波数の範囲はf =2
5 kHz〜40 kl(zである。この場合の1次波
初期音圧の最適値は第1図より約150dB以上となる
。しかし、160dB近傍になるとキャビテーションが
生じ始めるので、この場合は有限振幅波の伝搬波動方程
式が成立しなくなる。したがって、初期音圧の最適値は
150〜155dBとなる。従って、f=25kllz
〜40kllz、Po=150〜155dBの範囲で得
られる2次波の最大音圧は約110dB−120dBで
ある。
The maximum frequency of the modulated wave that can be considered now is fm = 20kll
z, and in the case of only audio waves without instruments, fm = 8
About kHz is sufficient. From the above considerations, the optimal primary wave frequency range for parametric speakers is f = 2
5 kHz to 40 kl (z). In this case, the optimum value of the initial sound pressure of the primary wave is approximately 150 dB or more as shown in Fig. 1. However, cavitation begins to occur near 160 dB, so in this case, the finite amplitude The wave propagation wave equation no longer holds true. Therefore, the optimal value of the initial sound pressure is 150 to 155 dB. Therefore, f = 25kllz
The maximum sound pressure of the secondary wave obtained in the range of ~40 kllz and Po=150 to 155 dB is approximately 110 dB to 120 dB.

層−−−米 以上の説明から明らかなように、本発明によると、実用
的なレベルでの高い2次波音圧を得るための1次波の最
適条件が得られる。
Layer---US As is clear from the above description, according to the present invention, optimal conditions for the primary wave can be obtained to obtain a high secondary wave sound pressure at a practical level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、1次波の初期音圧が2次波音圧に及ぼす影響
を1次波周波数をパラメータとしてコンピュータシミュ
レーションした結果を示す図、第2図は、1次波周波数
が変調波の最大周波数の2倍以下の場合におけるスペク
トルを示す図である。 第 10図 初期音JL P。 第2図 手続補正書(帥 昭和59年5月11日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和59年 特許願 第58042号 2、発明の名称 電気音響変換装置 3、補正をする者 事件との関係 特許出願人 オオタ り ナカマゴメ 住所 東京都大田区中馬込1丁目3番6号氏名(名称)
 (674)株式会社リコー代表者 浜 1) 広 4、代 理 人 住 所 〒231 横浜市中区不老町1−2−77、補
正の内容 (1)、明細書第1頁第16行目に記載のr叉米肢亙」
を「弦■史互」に補正する。 (2)、同第2頁第16行目に記載の「空気の非線形効
果」を[媒質の非線形効果」に補正する。 (3)、同第4頁第3行目に記載の に補正する。
Figure 1 shows the results of a computer simulation of the influence of the initial sound pressure of the primary wave on the secondary wave sound pressure using the primary wave frequency as a parameter. It is a figure which shows the spectrum in the case of twice or less of a frequency. Figure 10 Initial sound JLP. Figure 2 Procedural amendment (May 11, 1980 Director General of the Patent Office Kazuo Wakasugi 1, Indication of the case 1983 Patent Application No. 58042 2, Title of invention Electro-acoustic transducer 3, Make amendments) Relationship with the Patent Applicant Ota Ri Nakamagome Address 1-3-6 Nakamagome, Ota-ku, Tokyo Name (Name)
(674) Ricoh Co., Ltd. Representative Hama 1) Hiro 4, Agent Address 1-2-77 Furo-cho, Naka-ku, Yokohama 231 Contents of amendment (1), page 1, line 16 of the specification The description of “R” and “rice”
is corrected to ``string ■ history''. (2) The "nonlinear effect of air" described in the 16th line of page 2 is corrected to "nonlinear effect of medium." (3), amended as stated on page 4, line 3 of the same.

Claims (1)

【特許請求の範囲】[Claims] 可聴周波数帯の信号源からの信号によって超音波周波数
帯のキャリア信号を変調し、電力増幅した後、超音波振
動子に導き、上記被変調波を有限振幅レベルの音波に変
換して空気中に放射し、空気の非線形効果によって元の
可聴音を再生するようにした電気音響変換装置において
、前記キャリアの超音波周波数を25kHz〜40kH
zの範囲に選びかつ無変調時のキャリア超音波の初期音
圧レベルを150〜155dBの範囲に設定したことを
特徴とする電気音響変換装置。
A carrier signal in the ultrasonic frequency band is modulated by a signal from a signal source in the audible frequency band, the power is amplified, and then guided to an ultrasonic transducer, where the modulated wave is converted into a sound wave with a finite amplitude level and transmitted into the air. In the electroacoustic transducer which reproduces the original audible sound by the nonlinear effect of the air, the ultrasonic frequency of the carrier is set to 25 kHz to 40 kHz.
An electroacoustic transducer characterized in that the initial sound pressure level of the carrier ultrasonic wave when not modulated is set in the range of 150 to 155 dB.
JP5804284A 1984-03-26 1984-03-26 Electroacoustic transducer Pending JPS60201275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5804284A JPS60201275A (en) 1984-03-26 1984-03-26 Electroacoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5804284A JPS60201275A (en) 1984-03-26 1984-03-26 Electroacoustic transducer

Publications (1)

Publication Number Publication Date
JPS60201275A true JPS60201275A (en) 1985-10-11

Family

ID=13072875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5804284A Pending JPS60201275A (en) 1984-03-26 1984-03-26 Electroacoustic transducer

Country Status (1)

Country Link
JP (1) JPS60201275A (en)

Similar Documents

Publication Publication Date Title
RU2569914C2 (en) Driving parametric loudspeakers
JP3267231B2 (en) Super directional speaker
Kite et al. Parametric array in air: Distortion reduction by preprocessing
JPH11164384A (en) Super directional speaker and speaker drive method
JP2005304028A (en) Device and method for producing high quality audio beam
US6108427A (en) Method and apparatus for eliminating audio feedback
CN101461254A (en) Audio transducer system with long port
CN110784799B (en) Sound directional transmission method and system
KR101981575B1 (en) An Audio Quality Enhancement Method And Device For Ultra Directional Speaker
US20050185800A1 (en) Parametric sound system with lower sideband
US7016508B1 (en) Audio apparatus
CN209897254U (en) Parameter burst sounding system
JPS60201799A (en) Electroacoustic transducer
JPH0458758B2 (en)
US20030039370A1 (en) Method and apparatus for eliminating audio feedback
JPH08149592A (en) Parametric speaker controller
JPS60201275A (en) Electroacoustic transducer
JP2000209691A (en) Parametric speaker
wook Kim et al. Novel preprocessing technique to improve harmonic distortion in airborne parametric array
US6466674B1 (en) Method and apparatus for eliminating audio feedback
JP3668187B2 (en) Sound reproduction method and sound reproduction apparatus
JP2003299180A (en) Method for driving ultrasonic loud speaker and loud speaker system
Bostwick An Efficient Loud Speaker at the Higher Audible Frequencies
Mori et al. Evaluation of thermal runaway control based on frequency modulated carrier wave in parametric array loudspeaker
JPH0221720B2 (en)