JPS60201269A - Detecting method of accident point on power transmission and distribution line by photosensor - Google Patents

Detecting method of accident point on power transmission and distribution line by photosensor

Info

Publication number
JPS60201269A
JPS60201269A JP5731184A JP5731184A JPS60201269A JP S60201269 A JPS60201269 A JP S60201269A JP 5731184 A JP5731184 A JP 5731184A JP 5731184 A JP5731184 A JP 5731184A JP S60201269 A JPS60201269 A JP S60201269A
Authority
JP
Japan
Prior art keywords
accident
optical
point
zero
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5731184A
Other languages
Japanese (ja)
Other versions
JPH0535385B2 (en
Inventor
Masayuki Kurihara
栗原 雅幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP5731184A priority Critical patent/JPS60201269A/en
Publication of JPS60201269A publication Critical patent/JPS60201269A/en
Publication of JPH0535385B2 publication Critical patent/JPH0535385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To reduce speedily and securely the cost of construction and detect the generation point of a wire breaking accident by providing an optical fiber line which pieces photosensors provided at respective accident detection points successively and sends light to the respective photosensors in series. CONSTITUTION:Light pulse signal transmitters 7 and 8 are controlled by a pulse signal oscillator 6 to send out light pulse signals PA and PB continuously, and photocouplers 9 and 10 send them into the optical fiber line PL. If one wire breaking accident occurs between accident detection point (c) and (d), zero- phase voltage detectors Fd-Fn generate outputs although respective zero-phase voltage detectors Fa-Fc between a power station T to the accident generation point (c) are zero. Therefore, light which passes throgh the zero-phase voltage detectors Fd-Fn from the accident generation point (c) changes in plane of palarization to vary the level of a light pulse signal. Then, level variation detectors 13 and 14 connected to optical receivers 11 and 12 detect the points of time when the level varies and an accident point detector 18 calculates the time difference to detect the accident generation point.

Description

【発明の詳細な説明】 +Δ1+14 rコ削=”r峠立尚$ヱシ、田11占立
山−ノ止l−シ1送配電系統の事故点検出方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a fault point detection method in a power transmission and distribution system.

送配電系統においては事故発生点を迅速かつ適確に検出
して、停電回復のための適切な措置をとることがサービ
スの向上にとって重要である。そこで長大な送電線にお
いては早くから故障点標定器、例えば両端の電気所から
標定用のパルス波を送電線中に発射し、故障点からの反
射波の帰来までの時間をそれぞれ測定して、電気所から
故障点までの距離をめる故障点標定器が採用されている
。しかし送電線に比べて面的な拡がりをもち、しかも各
種のノイズ源をもつ配電系統においてはその適用が難か
しい場合が多い。
In power transmission and distribution systems, it is important to quickly and accurately detect the point of occurrence of an accident and take appropriate measures to recover from a power outage in order to improve services. Therefore, on long power transmission lines, fault point locators, for example, emit pulse waves for locating into the transmission line from electrical stations at both ends, and measure the time it takes for each reflected wave to return from the fault point. A fault point locator is used to measure the distance from the location to the fault point. However, it is often difficult to apply it to power distribution systems, which have a wider area than power transmission lines and have various noise sources.

そこで配電系統においては、例えば配電線の適当距離毎
に区分開閉器を設けておき、事故によも)停電した線路
の区分開閉器を変電所から順次投入して行き、線路に異
常な電気量の変化を生じた投入区分開閉器以降に事故が
発生したとして検出する方法がとられている。しかしこ
れでは迅速に事故点を検出して対策を施こし、早期に停
電を回復することができないため、サービスの低下を来
すことになる。
Therefore, in the distribution system, for example, sectional switches are installed at appropriate distances along the distribution line, and the sectional switches for lines that have lost power (in case of an accident) are sequentially turned on from the substation. A method is used to detect the accident as occurring after the closing section switch that caused the change. However, this method makes it impossible to quickly detect the point of failure, take countermeasures, and recover from a power outage quickly, resulting in a decline in service.

そこで最近高電圧回路における電圧電流などの無接触測
定法として利用されている光センナ、例えば第1図のよ
うに電圧または電流の電磁作用により、光の偏光面を変
化するポッケルス効果素子や、ファラディ効果素子など
の電磁光学効果素子(1)と、第1.第2集光レンズ(
2)(3)、第l、第2偏光子(4)(5)などよI】
なる光センサPSと、これを介して光を送受光する光フ
アイバ線路PLとにより検出系を形成して、事故点を検
出しようとする案か本発明者等によって出されている。
Recently, optical sensors have been used as a non-contact measurement method for measuring voltage and current in high-voltage circuits. an electromagnetic optical effect element (1) such as an effect element; Second condensing lens (
2) (3), the first polarizer, the second polarizer (4), (5), etc.
The inventors of the present invention have proposed a method of detecting an accident point by forming a detection system with a photosensor PS and an optical fiber line PL that transmits and receives light via the optical fiber line PL.

この方法は例えは第2図のように線路りの適当間隔イリ
゛に、それぞれ設けた光センサPSa、PSb、PSc
・・・・PSnをそれぞれ介して、光をそれぞれ送受光
する光フアイバ線路PLa、PLb、PLc・・・・P
Ln を設けて、事故発生位置じた電圧電流の変化によ
る、%1図中に(a、)(b)によって示すような電磁
光学効果素子(1)を通る光の偏光■1の変化により、
光フアイバ中を送られる光信号にレベルの変化を巧え、
このレベル変化を生じた光信号から事故点を検出しよう
とするものである。
For example, as shown in Fig. 2, this method uses optical sensors PSa, PSb, and PSc installed at appropriate intervals along the track.
....Optical fiber lines PLa, PLb, PLc, which respectively transmit and receive light via PSn, respectively...P
Ln is provided, and the polarization of light passing through the electromagnetic optical effect element (1) (1) as shown by (a,) (b) in the figure changes due to changes in voltage and current depending on the location of the accident.
By carefully changing the level of the optical signal sent through the optical fiber,
The aim is to detect the fault point from the optical signal that causes this level change.

この方法は光信号を光フアイバ中において伝送するため
、電気パルス波を利用する故障点標定器のように、ノイ
ズにより誤標定を行うことがなく、光センサによる検出
点を数多く設けることによって各種の事故による事故発
生点を確実かつ迅速に検出しうる。しかしこの方法では
各光センサ毎に光フアイバ線路とレベルの検出器を設け
る必要がある。従って検出系が極めて複雑高価となり、
また大量の光ファイバを必要とするため、配電コストの
上昇を招くのを避けることができない。
Since this method transmits optical signals through optical fibers, it does not cause incorrect localization due to noise, unlike fault point locators that use electrical pulse waves. The point where an accident occurs can be detected reliably and quickly. However, in this method, it is necessary to provide an optical fiber line and a level detector for each optical sensor. Therefore, the detection system becomes extremely complicated and expensive.
Furthermore, since a large amount of optical fibers are required, an increase in power distribution costs cannot be avoided.

本発明は故障時流れる零相電流により、電気所において
成る程度の検出が可能な地絡事故に対して、故障を示す
電気量が電気所に流れることがなく、電気所における事
故発生点の検出が困難である配電系統において多く発生
する断線事故の発生点を、光センサと光フアイバ線路を
用いて確実迅速に検出する方法を提供し、零相電流によ
る事故の検出と併せて、各種事故に対して迅速な対策を
とりうるようにして、サービスの向上を図りうるように
したものである。次に図面を用いてその詳細を説明する
The present invention prevents the amount of electricity indicating a failure from flowing to the electric station, even in the case of a ground fault that can be detected at an electric station, due to the zero-sequence current that flows at the time of a failure, and the point of occurrence of the fault can be detected at the electric station. We provide a method to reliably and quickly detect the occurrence point of disconnection accidents, which often occur in power distribution systems where it is difficult to detect, using optical sensors and optical fiber lines. This allows for prompt countermeasures to be taken to improve services. Next, the details will be explained using the drawings.

本発明の特徴とするところは要するに次の点にある。即
ち第3図に示すように各事故検出点a。
The features of the present invention are summarized in the following points. That is, as shown in FIG. 3, each accident detection point a.

b、c、d、・・・・nにそれぞれ設けた各光センサP
Sa+PSb、PSc+PSd+ *・*IIPSnを
串刺し状にして各光センサに直列に光を通ず光フアイバ
線路PLを設けて、図中矢印のようにその端部A→B、
B→Aの順逆双方向に、例えば第4図(a)(b)に示
す第1. 第2の光パルス信号列PA、PBを送信する
。そして断線事故が例えば第3図の0点に発生したとき
、検出点Cからnまでの光センサを通る光の偏光面が、
c −nの各検出点に現われる事故にもとづく電気量(
例えば零相電圧)により変化して、A、B端から光ファ
イバ線路PL内に送りこまれた光パルス列信号PA、P
Bにレベルの変化を与え、このレベルの変化を受けてA
、B端に到達した光パルス列信号P; p ; のレベ
ル最低点間に第4図(C)(d)のような事故発生位置
にもとづく時間差tを生ずることを利用して検出するこ
とを特徴とするものである。次に本発明の実施例を第5
図によって説明する。
Each optical sensor P provided at b, c, d, ... n
Sa+PSb, PSc+PSd+ *・*IIPSn is skewered and an optical fiber line PL is provided in series to each optical sensor without transmitting light, and the ends A→B, as shown by the arrows in the figure.
For example, in the forward and reverse directions from B to A, the first . A second optical pulse signal train PA, PB is transmitted. When a disconnection accident occurs, for example, at point 0 in Figure 3, the polarization plane of the light passing through the optical sensor from detection point C to n will be
The amount of electricity (
For example, the optical pulse train signals PA, P are changed by the zero-sequence voltage) and are sent into the optical fiber line PL from the A and B ends.
Give a change in level to B, and in response to this change in level, A
, detection is performed by utilizing the fact that a time difference t is created based on the accident occurrence position as shown in FIG. That is. Next, a fifth embodiment of the present invention will be described.
This will be explained using figures.

第5図においてPSa、PSb、PSo、PS、−・・
・・・PSnは光センサであって、例えば電圧によって
光の偏光面の変化を生ずるポッケルス効果素子などより
なる前記第1図の光センサが使用される。
In Fig. 5, PSa, PSb, PSo, PS, --...
. . . PSn is an optical sensor, and the optical sensor shown in FIG. 1, which is made of, for example, a Pockels effect element which causes a change in the plane of polarization of light depending on a voltage, is used.

FEl r Fb r FQ r Fd・・・・Fnは
零相電圧検出器を示し、各事故検出点a+ b++ c
・・・・nの零相電圧を検出してポッケルス効果素子の
電極に加える。PLは光フアイバ線路であって、各光セ
ンサを直列に貫通して光を送りうるように各光センサを
串刺しにするように線路りに沿って設けられる。CPは
信号処理部であって、次の各部から形成される。(6)
は電気パルス信号発振器、(7)(81は光パルス信号
送信器、(9)0υは光結合器例えばハーフミラ−であ
って、光パルス信号送信器(7)(8)はパルス信号発
振器(6)の出力により共通に制御されて、第4図(=
)(b)に示す同期した第1.第2光パルス信号PA、
PBを連続的に送出し、光結合器(9)aαはこれをA
端とB端とから光ファイバ線路PL内に送りこむ。0υ
azは光受信器であって、A端から送りこまれてB端に
達した光パルス信号PA′と、B端から送りこまれてA
端に達した光パルス信号へ゛を電気信号PaとPbに変
換する。α漕α4はレベル変化検出器’、;(149は
クロックパルス発振器、αHηは時間検出器、ttSは
事故点検出器であって、これらは次のように動作する。
FEl r Fb r FQ r Fd...Fn indicates a zero-phase voltage detector, and each fault detection point a+ b++ c
. . . n zero-sequence voltage is detected and applied to the electrode of the Pockels effect element. PL is an optical fiber line, and is provided along the line so as to skewer each optical sensor so that light can be transmitted through each optical sensor in series. CP is a signal processing section, and is formed from the following sections. (6)
is an electric pulse signal oscillator, (7) (81 is an optical pulse signal transmitter, (9) 0υ is an optical coupler such as a half mirror, and the optical pulse signal transmitters (7) and (8) are pulse signal oscillators (6). ) is commonly controlled by the output of
) The synchronized first . second optical pulse signal PA,
The optical coupler (9) aα sends out PB continuously, and the optical coupler (9) aα converts it into A.
It is fed into the optical fiber line PL from the end and the B end. 0υ
az is an optical receiver, which receives the optical pulse signal PA' sent from the A end and reaches the B end, and the optical pulse signal PA' sent from the B end and reaches the B end.
The optical pulse signal that has reached the end is converted into electrical signals Pa and Pb. α4 is a level change detector; (149 is a clock pulse oscillator, αHη is a time detector, and ttS is a fault point detector, which operate as follows.

今事故の発生がないものとすれば各事故検出点毎に設け
た零相電圧検出器Fat Fb+ Fc、 Fd・・・
・F の出力は零である(各相電圧は3相平衡している
ものとする)。従って各光センサPSa。
Assuming that no accident occurs now, the zero-phase voltage detectors Fat Fb+ Fc, Fd... installed at each accident detection point.
・The output of F is zero (assuming that the voltages of each phase are balanced among the three phases). Therefore, each optical sensor PSa.

PSb、・・・・PSnにおける偏光面の変化はなく、
送られる光パルス信号PA、PBはレベルの変化を受け
ることがないので、送信レベルと殆ど同じレベルP。で
B端とA端にPA′ と PB′として到達する。その
結果レベル変化検出器(13141はレベル変化を検出
することがないので、時間検出器叫Q7)、事故点検出
器α榎は動作することがなく、事故点の検出動作は行わ
れない。
There is no change in the plane of polarization in PSb, ...PSn,
Since the transmitted optical pulse signals PA and PB are not subject to any change in level, the level P is almost the same as the transmission level. and reaches end B and end A as PA' and PB'. As a result, the level change detector (13141 never detects a level change, so the time detector Q7) and the fault point detector αE do not operate, and the fault point detection operation is not performed.

しかし例えば第3図のように光センサPS0の設置点C
とdの間において1線断線事故が発生したとすると、電
気所Tから事故発生点Cまでの各零相電圧検出器Fa、
Fb、Foの出力は零であるが事故発生点C以後の各零
相電圧検出器Fd+ Fe+・・・・Fnには出力が現
われる。従って電気所Tから事故発生点までの各光セン
サPSa、PSb、PS。
However, for example, as shown in Fig. 3, the installation point C of the optical sensor PS0
If a one-wire disconnection accident occurs between and d, each zero-phase voltage detector Fa,
The outputs of Fb and Fo are zero, but outputs appear in each zero-phase voltage detector Fd+Fe+...Fn after the accident occurrence point C. Therefore, each optical sensor PSa, PSb, PS from the electrical station T to the point where the accident occurred.

を通る光の偏光面の変化はなく、事故発生点Cから以下
の光センサPS PS ・・・・ps を通るd r 
e 、 n 光に偏光面の変化を生ずる。そこで光フアイバ線路PL
のA端から送りこまれる光パルス信号PAの1つの信号
について考えると、このパルス信号は第6図(a+のよ
うに電気所Tから検出点Cまでは(al〜(C1点に設
置された光センサによってレベルの変化を受けることが
ないので送信レベルP0で進む。
There is no change in the plane of polarization of the light passing through d
e, n Produces a change in the plane of polarization of the light. Therefore, the optical fiber line PL
Considering one signal of the optical pulse signal PA sent from the A end of the Since there is no level change due to the sensor, the process proceeds at the transmission level P0.

そして事故発生点Cを過ぎるとd −nの光センサによ
り、レベルの変化を受けてB端にPA′として連する。
Then, after passing the accident occurrence point C, a change in level is detected by the optical sensor d-n, and the signal is connected to the B end as PA'.

一方B端から光ファイバ線路PL内に送りこまれたパル
ス列信号PBの1つのパルス信号は、第6図(b)のよ
うにB端から事故発生点Cまでの各光センサによるレベ
ル変化を受け、また事故発生点Cから電気所Tの間にお
いては、c−a点に設置された光センサによるレベル変
化を受けることなくA端に到達する。そして以上のレベ
ル変化はパルス信号列PA、PBの第2波以降について
も同様に生ずる。即ち第4図(C)のように事故が起っ
たとき、A端に向っている光パルス列九′のうちa −
cのト間に存在していたパルスa、b、cはそのま>A
端に到達し、c−d間に存在した光パルスdは0点にお
いてレベル変化を受け、d −e 。
On the other hand, one pulse signal of the pulse train signal PB sent into the optical fiber line PL from the B end undergoes level changes by each optical sensor from the B end to the accident point C, as shown in FIG. 6(b). Further, between the accident occurrence point C and the electrical station T, the light reaches end A without receiving a level change due to the optical sensor installed at point c-a. The above level changes also occur in the second and subsequent waves of the pulse signal trains PA and PB. That is, when an accident occurs as shown in FIG. 4(C), a − of the optical pulse train 9′ directed toward the A end
Pulses a, b, and c that existed between t and c remain as they are > A
The light pulse d that reached the end and existed between c and d undergoes a level change at the 0 point, d - e .

e−f 、f −、、g 、 ***m l’l −l
 〜n間に存在していてレベル変化を受け、受信光パル
ス列のレベルは第4図(C)のようになる。一方B端に
向っている光パルス列PA′は、事故が起ったときから
変化を受けるので第4図(d)のようになる。
e-f, f-,,g, ***m l'l-l
. On the other hand, the optical pulse train PA' directed toward the B end has undergone changes since the accident occurred, so it becomes as shown in FIG. 4(d).

従ってA端とB端に達した光パルス信号PA′とPdの
レベル、即ち光受信器Qυα4の出力レベルは、事故発
生前と発作後において第4図(a)(blから(C)(
d)のように変化し、各受信4号における最低レベルの
発生点には、第5図に示すA端から事故発生点Cまでの
線路の距離10と、B端;から事故発生点までの線路の
距離12の相異にもとづく時間差tを生ずることになる
。そこでレベル変化検出器(13Q4により、事故発生
前におけるレベルP。に対するレベルをそれぞわ をめ
て、レベル差を生じたとき出力を送出し、発振器Q9の
クロックパルスを基準としてレベルの変化時点を時間検
出器(10θηにより検出して事故点検出器08におい
て時間差tをとれば、これから事故発生点Cを知ること
ができる。
Therefore, the levels of the optical pulse signals PA' and Pd that have reached the A and B ends, that is, the output level of the optical receiver Qυα4, are as shown in Figure 4 (a) (bl to (C)) before and after the accident.
d), and the lowest level occurrence point in each receiving number 4 is the track distance 10 from end A to accident point C shown in Figure 5, and from end B to the accident point. This will result in a time difference t based on the difference in line distance 12. Therefore, the level change detector (13Q4) measures the level relative to the level P before the accident, sends out an output when a level difference occurs, and detects the point of level change based on the clock pulse of the oscillator Q9. By detecting with a time detector (10θη) and taking the time difference t at the accident point detector 08, the accident occurrence point C can be determined from this.

また事故が第3図のd点において発生した場合には、レ
ベルの最低点間に生ずる時間差tは光センサーつ分だけ
長くなるので、これによって事故発生点がd点であるこ
とを検出できる。
Furthermore, when an accident occurs at point d in FIG. 3, the time difference t between the lowest level points becomes longer by the length of the optical sensor, so that it can be detected that the accident point is point d.

以上本発明の一実施例を一線断線事故について説明した
が、二線断線事故についても同様に検出できる。また更
に以上においては、一本の光フアイバ線路の両端から光
パルス信号を送りこんで双方向に伝送する場合を説明し
たが、光センサと光フアイバ線路による建設コストが高
くなることな承知であれば、各検出点毎にそれぞれ2鋤
の光センサをそれぞれ設け、これらによる2組の光セン
サ系を串刺しにするように2本の光フアイバ線路を設け
て、順逆両方向の光の送受光系を形成して実施すること
ができる。また検出点間の距離を縮めたい場合には光セ
ンサと光ファイバを更に挿入すればよいので、拡張性に
すぐれている。
Although one embodiment of the present invention has been described above regarding a single wire breakage accident, a double wire breakage accident can also be detected in the same manner. Furthermore, in the above, we have explained the case where optical pulse signals are sent from both ends of a single optical fiber line and transmitted in both directions, but it is important to note that the construction cost due to the optical sensor and optical fiber line will be high. , two optical sensors are provided for each detection point, and two optical fiber lines are provided to skewer the two sets of optical sensor systems, forming a light transmitting and receiving system for transmitting and receiving light in both forward and reverse directions. It can be implemented by Moreover, if it is desired to shorten the distance between detection points, it is sufficient to insert an additional optical sensor and an optical fiber, so it is highly expandable.

以上の説明から明らかなように、本発明によれば光セン
サと光フアイバ線路を用いる従来の方法に比べて、遥か
に建設コストが安価であって迅速確実に断線事故の発生
点を検出できる方法を提出しうるもので、送配電線に適
用してその効果は大きい。
As is clear from the above explanation, according to the present invention, the construction cost is much lower than the conventional method using optical sensors and optical fiber lines, and the method can quickly and reliably detect the point of occurrence of a disconnection accident. can be submitted, and its effects are significant when applied to power transmission and distribution lines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光センサの構成概略図、第2図は光センナによ
る事故点検出の従来方法を示す図、第3図およ゛び第4
図は本発明の原理説明用の回路図および動作説明用パル
ス信号波形図、第5図および第6図は本発明の一実施例
回路図および動作説明用の信号レベル波形図である。 (1)・・・・電磁光学効果素子、 (2)(3)・・
・・集光レンズ、。 (4)(5)・・・・偏光子、 PSa、PSb、PSo・・・・PSn・・・・光セン
サ、PL・・・・光フアイバ線路、 L・・・・配電線
路、FFF’ ・・・・F ・・・・零相電圧検出器、
a+ 1)+ Q n CP・・・・信号処理部、 (6)・・・・電気パルス
信号発振器、(’7)(8)・・・・光パルス信号送信
器、(9101・・・・光結合器、 aυoz・・・・
光受信器、(+3) Q4)・・・・レベル変化検出器
、α9・・・・クロックパルス発振器、 Qlli) (IT)・・・・時間検出器、 αυ・・
・・事故点検出器。
Figure 1 is a schematic diagram of the configuration of the optical sensor, Figure 2 is a diagram showing the conventional method of detecting fault points using the optical sensor, Figures 3 and 4 are
The figure is a circuit diagram for explaining the principle of the present invention and a pulse signal waveform diagram for explaining the operation, and FIGS. 5 and 6 are a circuit diagram and a signal level waveform diagram for explaining the operation of an embodiment of the present invention. (1)... Electromagnetic optical effect element, (2) (3)...
··Condenser lens,. (4) (5)... Polarizer, PSa, PSb, PSo... PSn... Optical sensor, PL... Optical fiber line, L... Distribution line, FFF' ・・・・F ・・・Zero-phase voltage detector,
a+ 1)+ Q n CP...signal processing unit, (6)...electric pulse signal oscillator, ('7)(8)...optical pulse signal transmitter, (9101... Optical coupler, aυoz...
Optical receiver, (+3) Q4)... Level change detector, α9... Clock pulse oscillator, Qlli) (IT)... Time detector, αυ...
...Fault point detector.

Claims (1)

【特許請求の範囲】[Claims] 電磁光学効果素子よりなる光センサを送配電線路の事故
検出点毎に設け、さらにこれら各光センサを串刺し状と
するように光フアイバ線路を設けて、事故時線路に生ず
る電気量により光ファイバを通過する光に偏光面の変化
が起るようにすると共に、双方向の光パルス列信号の送
受光系を形成し、その双方向に送られる第1.第2の光
パルス列信号の事故発生時における最低レベル変化の時
間的位置が異ることを利用して、事故点を検出すること
を特徴とする光センサによる送配電線の事故点検出方法
。′
An optical sensor consisting of an electromagnetic optical effect element is installed at each fault detection point on the power transmission and distribution line, and an optical fiber line is installed so that each of these optical sensors is skewered, and the optical fiber is connected by the amount of electricity generated on the line at the time of an accident. In addition to causing a change in the polarization plane of the passing light, a bidirectional optical pulse train signal transmitting/receiving system is formed, and the first . A method for detecting a fault point on a power transmission and distribution line using an optical sensor, characterized in that the fault point is detected by utilizing the temporal position of the lowest level change of the second optical pulse train signal at the time of occurrence of the fault being different. ′
JP5731184A 1984-03-27 1984-03-27 Detecting method of accident point on power transmission and distribution line by photosensor Granted JPS60201269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5731184A JPS60201269A (en) 1984-03-27 1984-03-27 Detecting method of accident point on power transmission and distribution line by photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5731184A JPS60201269A (en) 1984-03-27 1984-03-27 Detecting method of accident point on power transmission and distribution line by photosensor

Publications (2)

Publication Number Publication Date
JPS60201269A true JPS60201269A (en) 1985-10-11
JPH0535385B2 JPH0535385B2 (en) 1993-05-26

Family

ID=13052012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5731184A Granted JPS60201269A (en) 1984-03-27 1984-03-27 Detecting method of accident point on power transmission and distribution line by photosensor

Country Status (1)

Country Link
JP (1) JPS60201269A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184474A (en) * 1988-01-19 1989-07-24 Furukawa Electric Co Ltd:The Partial discharging position locating device for cable
CN106124925A (en) * 2016-06-12 2016-11-16 广东电网有限责任公司惠州供电局 The distance-finding method of transmission line malfunction and device and locating verification method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139079A (en) * 1982-02-12 1983-08-18 Mitsubishi Electric Corp Fault point detector for transmission wire
JPS58142265A (en) * 1982-02-19 1983-08-24 Toshiba Corp Power transmission line fault point locating apparatus for gas insulated switch gear
JPS58215569A (en) * 1982-06-09 1983-12-15 Hitachi Cable Ltd Detecting method of cloud-to-ground discharge section

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139079A (en) * 1982-02-12 1983-08-18 Mitsubishi Electric Corp Fault point detector for transmission wire
JPS58142265A (en) * 1982-02-19 1983-08-24 Toshiba Corp Power transmission line fault point locating apparatus for gas insulated switch gear
JPS58215569A (en) * 1982-06-09 1983-12-15 Hitachi Cable Ltd Detecting method of cloud-to-ground discharge section

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184474A (en) * 1988-01-19 1989-07-24 Furukawa Electric Co Ltd:The Partial discharging position locating device for cable
CN106124925A (en) * 2016-06-12 2016-11-16 广东电网有限责任公司惠州供电局 The distance-finding method of transmission line malfunction and device and locating verification method and system

Also Published As

Publication number Publication date
JPH0535385B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
CN101345414B (en) Main electric power line integration fault location protection system based on GPS and fault transient signal
EP0922231A1 (en) Method of measurement for locating line faults on hvdc lines
JP2017529818A (en) Method and apparatus for detecting arcs in photovoltaic systems
US4187504A (en) Fault monitoring and indicator system
JPS60201269A (en) Detecting method of accident point on power transmission and distribution line by photosensor
KR20140098742A (en) Method and device for synchronizing an apparatus connected to a communication network
US20020053914A1 (en) Arc location
JPH11183553A (en) System and method for location of surge in transmission line
JP2003232827A (en) Accident point orientation system
JP2626875B2 (en) Train detector for three-track track
JPH0454470A (en) Fault point locating device for power transmission line
JPS58180960A (en) Fault point locator
JPH02103478A (en) Fault locator
JPH1054863A (en) Method and apparatus for location of fault point
JPS63204167A (en) Fault point locator for power distribution system
JPS63300976A (en) Polarity decision type accident point locating device
JP2685906B2 (en) Transmission line accident section locator
RU2294040C1 (en) Method for revealing and elimination of synchronous operation of power system
SU1045175A1 (en) Electrical network insulation damage indicator
JPH0327728A (en) Device for synchronously measuring alternating currents
JPH0210170A (en) Locating device for fault point on electricity transmission line
JP2599133Y2 (en) Carrier generator
JPS60176336A (en) Method for discriminating faulty section of repeating transmission line
RU1798739C (en) Device for detecting emergency operation of three-phase power networks with insulated neutral
GB2074768A (en) Track circuit