JPS60201249A - Wide-band ultrasonic wave transducer - Google Patents

Wide-band ultrasonic wave transducer

Info

Publication number
JPS60201249A
JPS60201249A JP5867084A JP5867084A JPS60201249A JP S60201249 A JPS60201249 A JP S60201249A JP 5867084 A JP5867084 A JP 5867084A JP 5867084 A JP5867084 A JP 5867084A JP S60201249 A JPS60201249 A JP S60201249A
Authority
JP
Japan
Prior art keywords
piezoelectric
transducer
vibrator
terminals
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5867084A
Other languages
Japanese (ja)
Inventor
Noritoshi Nakabachi
中鉢 憲賢
Hideichiro Yamamizu
山水 秀一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5867084A priority Critical patent/JPS60201249A/en
Publication of JPS60201249A publication Critical patent/JPS60201249A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes

Abstract

PURPOSE:To obtain an ultrasonic wave transducer improved in electroacoustic transducing efficiency and wide frequency characteristic transducing efficiency and wide frequency characteristics by a couple of electrode terminals to each piezoelectric oscillator of multilayered structure and weighting the intensity of an electric field applied to each piezoelectric layer. CONSTITUTION:Electrodes 3 are fitted to two piezoelectric plates 1 and 2 which differ in thickness to constitute a piezoelectric oscillator, which is stuck and layered by using an adhesive 4 to constitute the transducer of multilayered structure. This transducer, a sound field medium 5, and a back surface load medium 6 are joined together by using the adhesive 4 and used while coupled acoustically. The intensity of the electric field applied to each piezoelectric layer is weighted by connecting an impendance element 11 between electrode terminals 8' and 10 of the piezoelectric oscillator 2 in parallel and applying an exciting voltage to terminals 12 and 13, or connecting an impedance element 14 to the electrode terminal 10 of the piezoelectric oscillator 2 in series and applying the exciting voltage between the terminals 15 and 16. Consequently, wide-band frequency characteristics are obtained without any decrease in transducing efficiency.

Description

【発明の詳細な説明】 返歪立野 本発明は、超音波映像装置の分解能を向上させるのに必
要な、広帯域の周波数特性を有する多層構造圧電超音波
トランスジューサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multilayer piezoelectric ultrasonic transducer having broadband frequency characteristics necessary for improving the resolution of an ultrasonic imaging device.

l米辣歪 近年、超音波診断装置や超音波顕微鏡などに見られるよ
うに、高周波超音波や超高周波超音波による超音波映像
装置が開発されている。これらの超音波映像装置では、
極めて短い超音波パルスを能率よく発生させる必要があ
り、そのため圧電超音波トランスジューサの周波数特性
の広帯域化および高変換能率化に関する研究がなされて
いる。
In recent years, ultrasound imaging devices using high-frequency ultrasound and ultra-high-frequency ultrasound have been developed, as seen in ultrasound diagnostic equipment and ultrasound microscopes. These ultrasound imaging devices
It is necessary to efficiently generate extremely short ultrasonic pulses, and therefore research is being conducted on widening the frequency characteristics of piezoelectric ultrasonic transducers and increasing conversion efficiency.

一般に、圧電超音波トランスジューサは圧電振動子の共
振を利用するため、電気音響変換における周波数特性が
狭く、またその変換能率は、負荷となる音場媒体の材質
の音響インピーダンスに大きく依存する。電気音響変換
特性を改善する最も手軽な方法として、まず、電気的な
整合方法が取り入れられている。すなわち、トランスジ
ューサの電気人力(又、は出力)端子にインダクタンス
を直列あるいは並列に接続したり、トランスフォーマ−
を接続したりする方法である。しかしながら、トランス
ジューサの周波数特性は本質的には機械振動系の周波数
特性に依存するので、電気的な整合方法によるだけでは
Generally, piezoelectric ultrasonic transducers utilize the resonance of a piezoelectric vibrator, so the frequency characteristics in electroacoustic conversion are narrow, and the conversion efficiency largely depends on the acoustic impedance of the material of the sound field medium serving as the load. As the simplest method to improve electroacoustic conversion characteristics, an electrical matching method has been adopted. That is, you can connect an inductance in series or parallel to the electric power (or output) terminal of the transducer, or
This is a way to connect. However, since the frequency characteristics of the transducer essentially depend on the frequency characteristics of the mechanical vibration system, electrical matching cannot be used alone.

トランスジューサの周波数特性の広帯域化および高変換
能率化を計るには、どうしても限度がある。そこで1機
械振動系の構造を変えることにり特性を改善する方法と
して、(1)圧電振動子と音場媒体との間に174波長
厚さの整合層を挿入する方法、(2)圧電振動子を多層
構造にする方法、などが取り上げられている。しかし、
まず、(1)の方法では、圧電振動子と音場媒体のイン
ピーダンスに対して、整合条件を与えるインピーダンス
をもつ整合層用材料を得ることが多くの場合に困難であ
る。次に、(2)の方法では、同種圧電材料で同じ厚さ
、すなわち1ノ2波長振動子を複数個、あるいは異種圧
電材料の圧電振動子を複数個、1層毎に圧電分極の極性
を反転して貼り合わせた構造のものがよく用いられてい
るが。
There is a limit to the ability to widen the frequency characteristics of a transducer and increase conversion efficiency. Therefore, as a method to improve the characteristics by changing the structure of the mechanical vibration system, (1) a method of inserting a matching layer with a thickness of 174 wavelengths between the piezoelectric vibrator and the acoustic field medium, (2) a method of piezoelectric vibration How to create a multilayer structure for children is discussed. but,
First, in method (1), it is difficult in many cases to obtain a matching layer material having an impedance that provides matching conditions for the impedances of the piezoelectric vibrator and the acoustic field medium. Next, in method (2), the polarity of piezoelectric polarization is determined for each layer by using a plurality of piezoelectric vibrators of the same thickness with the same type of piezoelectric material, that is, one or two wavelengths, or a plurality of piezoelectric vibrators of different types of piezoelectric materials. A structure that is inverted and pasted together is often used.

各圧電振動子の圧電層に対する電界の印加方法としては
、電気端子を圧電振動子を多層に重ねた構造の最上面(
表面)および最下面(内部)に設けられた電極に接続し
てあり、各圧電層には各々の圧電層の厚さおよび誘電率
で決まる電界が印加されるような構成になっている。し
たがって、同種圧電材料で同じ厚さの圧電振動子で構成
される多層構造のトランスジューサでは波長が1/2と
なる周波数において。
The method of applying an electric field to the piezoelectric layer of each piezoelectric vibrator is to connect the electrical terminal to the top surface (
The structure is such that an electric field determined by the thickness and dielectric constant of each piezoelectric layer is applied to each piezoelectric layer. Therefore, in a transducer with a multilayer structure made up of piezoelectric vibrators of the same type of piezoelectric material and the same thickness, at a frequency where the wavelength is 1/2.

各圧電振動子から発生される超音波は加算的に強められ
高能率のトランスジューサが得られ、実効的に音場媒体
とのインピーダンス整合が得られることになる。しかし
、能率が上がり挿入損失の改善はできるものの2周波数
帯域幅が振動子の暦数にほぼ反比例して狭くなるという
欠点がある。一方、異種圧電材料の圧電振動子を多層構
造にしたトランスジューサでは各圧電層に印加される電
界強度が変化するので、同種圧電材料で同じ厚さの圧電
振動子で構成される多層構造のトランスジューサに比し
て変換能率がそれほど改善されないが、やはり波長が1
/2となる周波数において、変換能率に最大があられれ
る。
The ultrasonic waves generated from each piezoelectric vibrator are additively intensified, resulting in a highly efficient transducer and effectively impedance matching with the sound field medium. However, although efficiency can be increased and insertion loss can be improved, there is a drawback that the two-frequency bandwidth narrows in almost inverse proportion to the number of oscillators. On the other hand, in a transducer with a multilayer structure of piezoelectric vibrators made of different piezoelectric materials, the electric field strength applied to each piezoelectric layer changes, so a transducer with a multilayer structure made of piezoelectric vibrators of the same type of piezoelectric material and the same thickness changes. Although the conversion efficiency is not much improved compared to the
The maximum conversion efficiency is achieved at a frequency of /2.

いずれにしても1周波数帯域幅が振動子の暦数にほぼ反
比例して狭くなるという欠点は免れない。これらの特性
は、たとえ、電気端子に電気的な整合回路を併用しても
、特性の改善は期待できない。
In any case, there is an unavoidable drawback that one frequency bandwidth becomes narrow in almost inverse proportion to the number of oscillators. These characteristics cannot be expected to be improved even if an electric matching circuit is used together with the electric terminal.

光里皇亜叉 本発明の目的は良好な電気音響変換能率と共に。Hikari Koyasha The object of the invention is to have good electro-acoustic conversion efficiency.

周波数特性も広帯域特性を有する超音波トランスジ1−
サを提供することにある。
Ultrasonic transducer 1- which also has broadband frequency characteristics
The aim is to provide services.

本発明は、構造上、圧電多層構造のトランスジューサに
属するが、多層に貼り合わされる複数個の圧電振動子の
各々に、すなわち、各圧電層に独立に電界を印加するた
めの電極端子対をとりつけて、各々の圧電層に印加され
る電界強度に所定の重み付けを施すものである。具体的
には、1つ以上の電極端子対にインダクタンスやキャパ
シタンスなどの電気インピーダンス素子を直列又は並列
に接続してなる新らたな端子対を、さらに他の圧電振動
子の電極端子対と直列又は並列に接続して、しかも各層
の圧電振動子の振動変位方向が1層毎に交互に反転する
ように印加電界が各圧電振動子に加えられ、るように配
線するのである。この場合、多層に貼り合わされる複数
個の圧電振動子について、それらの圧電分極の極性を必
ずしも1層毎に反転して貼り合わせた構造にする必要は
なく、ただ圧電振動子の音響的振動変位方向が1層毎に
反転するように、電極端子対に加えられる電気信号の位
相だけ、圧電分極方向との関係で正しく決定すればよい
。以下1図面により説明する。
Structurally, the present invention belongs to a piezoelectric multilayer structure transducer, but each of a plurality of piezoelectric vibrators bonded together in multiple layers, that is, an electrode terminal pair is attached to each piezoelectric layer to apply an electric field independently. Accordingly, a predetermined weighting is applied to the electric field strength applied to each piezoelectric layer. Specifically, a new terminal pair formed by connecting an electrical impedance element such as an inductance or capacitance in series or parallel to one or more electrode terminal pairs is further connected in series with an electrode terminal pair of another piezoelectric vibrator. Alternatively, the piezoelectric vibrators may be connected in parallel, and the wiring may be such that an applied electric field is applied to each piezoelectric vibrator so that the direction of vibration displacement of the piezoelectric vibrator in each layer is alternately reversed for each layer. In this case, for multiple piezoelectric vibrators bonded together in multiple layers, it is not necessary to create a structure in which the polarity of their piezoelectric polarization is reversed for each layer, but the acoustic vibration displacement of the piezoelectric vibrators is It is only necessary to correctly determine the phase of the electric signal applied to the electrode terminal pair in relation to the piezoelectric polarization direction so that the direction is reversed for each layer. This will be explained below with reference to one drawing.

本発明の要点を簡単に説明するため、2層構造の圧電振
動子で構成する場合について取り上げる。第1図は厚さ
の異なる2枚の圧電板(層)1および2に、それぞれ電
極3を取付で圧電振動子とし、接着剤4を用いて層状に
貼り合わせた多層構造のトランスジューサで、これを音
場媒体5.および背面負荷媒体6に接着剤4を用いて接
合し音響的にカップルさせた場合を示すものである。な
お、圧電材料としては同種材料でも異種材料でもよく、
また各電極にはそれぞれ電極端子?、8.9おび10が
引き出されである。この構成において、各圧電層に印加
する電界に重み付けるための電気回路の構成方法例を第
2図(A)および(II)に示す0通常、接着剤の厚さ
および電極の厚さは圧電板の厚さに比較して非常に薄い
ので、それら接着剤および電極が音響特性に及ぼす影響
は無視できる。したがって、第2図および以下の図面に
おいて”は、接着剤および電極の厚さを零とし、さらに
端子8.9を同電位とし、これら二つの端子をまとめて
8′で表すことにする。また9図には背面負荷媒体を省
いているが9通常トランスジューサに背面負荷媒体を付
ければ広帯域特性が得られることはよ(知られているこ
とであり1本発明には直接関係しないからである。
In order to briefly explain the main points of the present invention, a case will be discussed in which the piezoelectric vibrator has a two-layer structure. Figure 1 shows a transducer with a multilayer structure in which two piezoelectric plates (layers) 1 and 2 of different thickness are each attached with an electrode 3 as a piezoelectric vibrator, and are bonded together in layers using an adhesive 4. Sound field medium 5. This shows the case where the back load medium 6 is bonded to the backside load medium 6 using adhesive 4 and acoustically coupled. Note that the piezoelectric material may be the same type of material or different types of materials;
Also, each electrode has an electrode terminal? , 8.9 and 10 are the drawers. In this configuration, an example of how to configure an electric circuit for weighting the electric field applied to each piezoelectric layer is shown in FIGS. 2(A) and (II). Normally, the thickness of the adhesive and the thickness of the electrode are Since they are very thin compared to the thickness of the plate, the influence of the adhesive and electrodes on the acoustic properties is negligible. Therefore, in FIG. 2 and the following drawings, the thickness of the adhesive and the electrode is zero, and the terminals 8 and 9 are at the same potential, and these two terminals are collectively designated as 8'. Although the back loading medium is omitted in Figure 9, it is generally known that broadband characteristics can be obtained by adding a back loading medium to the transducer (this is well known and is not directly relevant to the present invention).

まず、第2図(A)は、音場媒体に接する圧電振動子2
(これを以下第2振動子と呼ぶ)の電極端子対8′、1
0間に、コイルまたはコンデンサ、あるいは抵抗、など
のインピーダンス素子11を並列に接続した場合である
。このとき、電極端子8′は第1図の説明でで述べたよ
うに、すでに次の層の圧電振動子の電極端子に接続され
ているので、この場合、インピーダンス素子11が並列
に接続されてなる新らたな端子対8’、10は次の圧電
振動子(これを以下第2振動子と呼ぶ)の電極端子対7
,8′に直列接続されたことになる。その結果、ここで
得られた端子対12、13が励振電圧を印加するための
トランスジューサの電気端子となる。なお、インピーダ
ンス素子11の値は調節できるように可変にしておけば
、製作したトランスジューサの特性の爾後の調整に都合
がよい0次に、第2図(B)は、第2振動子の電気端子
10に直列にインピーダンス素子14を接続してできた
新らたな端子対、すなわち、14の端子と端子8′と。
First, FIG. 2(A) shows a piezoelectric vibrator 2 in contact with a sound field medium.
(hereinafter referred to as the second vibrator) electrode terminal pair 8', 1
This is a case where an impedance element 11 such as a coil, a capacitor, or a resistor is connected in parallel between 0 and 0. At this time, the electrode terminal 8' is already connected to the electrode terminal of the piezoelectric vibrator in the next layer as described in the explanation of FIG. 1, so in this case, the impedance element 11 is connected in parallel. The new terminal pair 8' and 10 are the electrode terminal pair 7 of the next piezoelectric vibrator (hereinafter referred to as the second vibrator).
, 8' are connected in series. As a result, the terminal pair 12, 13 obtained here becomes the electrical terminal of the transducer for applying the excitation voltage. Note that if the value of the impedance element 11 is made variable so that it can be adjusted, it is convenient for later adjustment of the characteristics of the manufactured transducer. A new terminal pair is created by connecting impedance element 14 in series with terminal 10, that is, terminal 14 and terminal 8'.

第1振動子の電極端子対7,8とを並列に接続した回路
構成になっており、端子対15.16が、とりもなおさ
ず励振電圧を印加するためのトランスジューサの電気端
子となる。
The circuit has a circuit configuration in which the electrode terminal pair 7 and 8 of the first vibrator are connected in parallel, and the terminal pair 15 and 16 serve as the electrical terminals of the transducer to which the excitation voltage is applied.

このような構成の超音波トランスジューサが、広帯域特
性、低損失特性を有するのは次のように説明される。ま
ず、使用する圧電振動子の材質および振動子厚さ比の適
当な選択により、前者では誘電率と電気機械結合係数の
値により、後者では印加電圧の差異により、各々の圧電
振動子の動作に重み付けがなされる。次に、1つの圧電
振動子(2層以上よりなる多層構造の場合には、1つ以
上の圧電振動子)に外部よりインピーダンス素子を付加
すれば、その値の変化にり圧電振動子への印加電圧の大
きさ、ならびに位相が調節され、したがって各圧電振動
子の励振電圧の大きさおよび位相が適当に調節され、そ
の動作に重み付けがなされる。以上の両方の効果による
動作の重み付けが相い重畳して、音場媒体中に所期の周
波数特性を示す超音波を発生、放射することが可能とな
る。すなわち1本発明によれば、変換能率を大きく低下
させずに広帯域特性が得られ、また外部より付加したイ
ンピーダンスの加減により。
The reason why the ultrasonic transducer having such a configuration has broadband characteristics and low loss characteristics is explained as follows. First, by appropriately selecting the material of the piezoelectric vibrator and the vibrator thickness ratio, the operation of each piezoelectric vibrator is affected by the values of dielectric constant and electromechanical coupling coefficient in the former case, and by the difference in applied voltage in the latter case. Weighting is done. Next, if an impedance element is added externally to one piezoelectric vibrator (or one or more piezoelectric vibrators in the case of a multilayer structure consisting of two or more layers), the change in the value will affect the piezoelectric vibrator. The magnitude and phase of the applied voltage are adjusted, and therefore the magnitude and phase of the excitation voltage of each piezoelectric vibrator are appropriately adjusted and their operations are weighted. The weighting of the operation due to both of the above effects is superimposed, making it possible to generate and radiate ultrasonic waves exhibiting desired frequency characteristics into the sound field medium. That is, according to the present invention, broadband characteristics can be obtained without greatly reducing conversion efficiency, and by adjusting the impedance added from the outside.

周波数特性の調整が簡単に行うことができる。Frequency characteristics can be easily adjusted.

去施班 以下に1本発明の実施例について、使用圧電振動子の材
料を同種と異種の場合に区別して、説明する。
EXAMPLE 1 An embodiment of the present invention will be described below, distinguishing whether the materials of the piezoelectric vibrators used are the same or different.

第3図及び第4図は、2枚のチタン酸デルコン酸鉛(P
ZT)圧電振動子を用いた同種圧電振動子で構成した場
合の実施例として、得られた電気音響変換特性を示すも
のである。まず、第3図は、厚さ比が0.4の2枚のP
ZT振動子を極性反転して貼り合わせた場合で、音場媒
体として溶融水晶(FQ)に接着した場合に得られた電
気音響変換損失、すなわち実効減衰量の周波数特性であ
る。図において横軸には第1振動子の半波長共振角周波
数ω。に対する規格化周波数を、又縦軸には電源内部抵
抗50(Ω)に対する実効減衰量(dB)をとっている
。なお、ここに示す特性曲線には、普遍性のあるパラメ
ータとしてω。Cを用い、ω。C−0,02とした場合
についてとりあげる。ここでCは第1振動子の制動容量
である。
Figures 3 and 4 show two sheets of lead derconate titanate (P
ZT) This is an example in which the obtained electroacoustic conversion characteristics are shown in a case where the same type of piezoelectric vibrators using piezoelectric vibrators are used. First, Figure 3 shows two P sheets with a thickness ratio of 0.4.
This is the frequency characteristic of the electroacoustic conversion loss, that is, the effective attenuation amount, obtained when ZT vibrators are bonded together with their polarities reversed and bonded to fused quartz (FQ) as a sound field medium. In the figure, the horizontal axis represents the half-wavelength resonance angular frequency ω of the first vibrator. The vertical axis shows the effective attenuation (dB) with respect to the power supply internal resistance of 50 (Ω). Note that the characteristic curve shown here has ω as a universal parameter. Using C, ω. Let us consider the case of C-0,02. Here, C is the damping capacity of the first vibrator.

図中(1)の曲線は第2図(A)の直列接続構成につい
て得られた特性で、付加インピーダンス11としてコイ
ルを用いた場合の特性である。付加インピーダンスの大
きさは、それが第1振動子の制動容1cとで共振角周波
数ω。において共振する値、すなわち。
The curve (1) in the figure is the characteristic obtained for the series connection configuration shown in FIG. 2(A), and is the characteristic when a coil is used as the additional impedance 11. The magnitude of the additional impedance is such that it resonates with the damping capacitor 1c of the first vibrator at a resonance angular frequency ω. The value that resonates at, ie.

Lo−1/ω。′Cの0.4倍である。図中(2)の曲
線は(1)と同じ接続で、付加インピーダンスを無限大
にしたときの特性に相当する。さらに(3)の曲線は比
較のために、PZT振動子から直接、溶融水晶に超音波
を放射したときの特性である。図を見てわかるように、
2層構成にコイルを付加し、比帯域幅が100%の広帯
域特性が得られている。
Lo-1/ω. 'C is 0.4 times. The curve (2) in the figure corresponds to the characteristics when the additional impedance is made infinite with the same connection as (1). Furthermore, for comparison, the curve (3) shows the characteristics when ultrasonic waves are directly radiated from the PZT vibrator to the molten crystal. As you can see from the diagram,
By adding a coil to the two-layer structure, broadband characteristics with a fractional bandwidth of 100% are obtained.

第4図は、第2図(B)の並列接続構成の場合の周変位
方向が反転する。図中9曲線(1)はコイルを付加した
場合1曲線(2)はコンデンサを付加した場合で、それ
ぞれの大きさは4Loと0.5Gである。これらの特性
は第3図の特性に比して、若干損失が増加するが、広帯
域の周波数特性が得られている。
In FIG. 4, the circumferential displacement direction in the case of the parallel connection configuration of FIG. 2(B) is reversed. In the figure, curve 9 (1) shows the case when a coil is added, and curve 1 (2) shows the case when a capacitor is added, and the respective sizes are 4Lo and 0.5G. Although these characteristics have a slight increase in loss compared to the characteristics shown in FIG. 3, broadband frequency characteristics are obtained.

次に、異種圧電材料を用いたときの特性例を第5図に示
す。曲線(1)は、第1振動子にPZTを、第2振動子
にポリ弗化ビニリデン(PVDF)高分子圧電膜を、そ
れぞれの厚さを1:0.4とした場合で、音場媒体とし
た水を取り上げた場合である。なお、電極端子の接続は
、第2図(B)の並列接続構成に相当し。
Next, an example of characteristics when different types of piezoelectric materials are used is shown in FIG. Curve (1) shows the case where the first vibrator is PZT, the second vibrator is a polyvinylidene fluoride (PVDF) polymer piezoelectric film, and the thickness of each is 1:0.4, and the sound field medium is This is the case when water is taken up. Note that the connection of the electrode terminals corresponds to the parallel connection configuration shown in FIG. 2(B).

図中で第1振動子に直列に記されているコイルのインピ
ーダンスが零の場合について得られた周波数特性である
。なお9図には比較のため、単層構造の圧電トランスジ
ューサの特性を1曲線(2)はPZTから2曲線(3)
はPVDF膜振動子から直接水中へ超音波を放射した場
合の周波数特性を示しているが、比較してわかるように
、単層構造よりもはるかに広帯域で低損失の良好な特性
が得られていることがわかる。
This is a frequency characteristic obtained when the impedance of the coil shown in series with the first vibrator in the figure is zero. For comparison, Figure 9 shows the characteristics of a piezoelectric transducer with a single layer structure, with curve 1 (2) and curve 2 (3) of PZT.
shows the frequency characteristics when ultrasonic waves are emitted directly into water from a PVDF membrane transducer, and as can be seen from the comparison, good characteristics with a much wider band and lower loss are obtained than with a single layer structure. I know that there is.

さて9以上は2層構成の場合を示したが、同様な構成は
多層の場合にも拡張される。第6図に3層構成の場合の
1実施例を示す。構造は1図中に示すように、3層とも
PZT振動子より構成され、第2振動子にはコイルを並
列に、第3振動子にはコンデンサを並列に接続した構成
である。特性は帯域内で若干うねっているが、非常に広
帯域な特性を示している。
Now, although 9 and above have shown the case of a two-layer structure, the same structure can also be extended to the case of a multi-layer structure. FIG. 6 shows an example of a three-layer structure. As shown in Figure 1, the structure is such that all three layers are composed of PZT vibrators, a coil is connected in parallel to the second vibrator, and a capacitor is connected in parallel to the third vibrator. Although the characteristics are slightly undulating within the band, they exhibit very wide-band characteristics.

効果 以上説明したように9本発明によれば、圧電振動子を多
層構造にした超音波トランスジューサにおいて、電気音
響変換効率を低下させずに広帯域の周波数特性をもたせ
ることができ、さらに1層を形成する個々の圧電振動子
の電極端子に外部より電気インピーダンスを、直列ある
いは並列に接続しているので、これらの電気インピーダ
ンスを可変にしておくことにより、すでに製作された多
層構造の圧電超音波トランスジューサの電気音響変換特
性の周波数特性を爾後に調節することが可能である。
Effects As explained above, according to the present invention, in an ultrasonic transducer in which a piezoelectric vibrator has a multilayer structure, it is possible to provide a broadband frequency characteristic without reducing the electroacoustic conversion efficiency. Since electric impedances are externally connected in series or parallel to the electrode terminals of each piezoelectric vibrator, by making these electric impedances variable, it is possible to improve the It is possible to subsequently adjust the frequency characteristics of the electroacoustic transduction characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2層構造の超音波トランスジューサの構成図、
第2図はその電極端子の接続回路で、(A)は直列接続
構成および(B)は並列接続構成を示す。第3図以降は
具体的な実施例を示し、第3図は同種の振動子を用いた
直列接続構成の特性、第4図は同じく並列接続構成の特
性、第5図は異種振動子を用いたときの並列接続構成、
および第6図は同種振動子の3層構成の場合の特性であ
る。 1.2・・・圧電振動子、3・・・電極、4・・・接着
剤。 5・・・音場媒体、6・・・背面負荷媒体、7. 8.
 9.10・・・電極端子、8′・・・端子8.9の二
つの端子をまとめた端子、 11.14・・・インピー
ダンス素子、 12.13゜15、16・・・電気端子 療1 1:il 坏Z品(A) *Z藺(E5) 謄3図 *51図
Figure 1 is a configuration diagram of a two-layer ultrasonic transducer.
FIG. 2 shows a connection circuit of the electrode terminals, in which (A) shows a series connection configuration and (B) shows a parallel connection configuration. Figure 3 and subsequent figures show specific examples. Figure 3 shows the characteristics of a series connection configuration using the same type of oscillators, Figure 4 shows the characteristics of a parallel connection configuration, and Figure 5 shows the characteristics of a parallel connection configuration using different types of oscillators. Parallel connection configuration when
FIG. 6 shows the characteristics of a three-layer structure of the same type of vibrator. 1.2... Piezoelectric vibrator, 3... Electrode, 4... Adhesive. 5...Sound field medium, 6...Back load medium, 7. 8.
9.10... Electrode terminal, 8'... Terminal that combines the two terminals of terminal 8.9, 11.14... Impedance element, 12.13°15, 16... Electrical terminal therapy 1 1:il Z product (A) *Z product (E5) Figure 3 * Figure 51

Claims (2)

【特許請求の範囲】[Claims] (1)同種圧電材料の厚さの異なる複数個の圧電振動子
に、あるいは、異種圧電材料の複数個の圧電振動子に、
電界を印加するための電極端子対を取り付つけて、それ
ら複数個の圧電振動子を多層に貼り合わせて多層構造と
なし、その最外側となる圧電振動子の表面より音場媒体
に超音波を放射する構成の多層構造圧電超音波トランス
ジューサにおいて、1つ以上の電極端子対に電気インピ
ーダンス素子を直列又は並列に接続してなる新らたな端
子対を、さらに他の圧電振動子の電極端子対と直列又は
並列に接続して、しかも各層の圧電振動子の振動変位方
向が1層毎に交互に反転するように電界が各圧電振動子
に印加されるように構成された高周波超音波トランスジ
ューサ。
(1) To multiple piezoelectric vibrators made of the same type of piezoelectric material with different thicknesses, or to multiple piezoelectric vibrators made of different types of piezoelectric materials,
A pair of electrode terminals for applying an electric field is attached, and a plurality of piezoelectric vibrators are bonded together to form a multilayer structure, and ultrasonic waves are applied to the sound field medium from the surface of the outermost piezoelectric vibrator. In a multilayer piezoelectric ultrasonic transducer configured to radiate, a new terminal pair formed by connecting an electrical impedance element in series or parallel to one or more electrode terminal pairs is added to the electrode terminals of other piezoelectric vibrators. A high-frequency ultrasonic transducer connected in series or parallel with the pair and configured so that an electric field is applied to each piezoelectric vibrator so that the direction of vibration displacement of the piezoelectric vibrator in each layer is alternately reversed. .
(2)前記多層構造圧電超音波トランスジューサにおい
て、電極端子対に接続される電気インピーダンス素子が
可変であることを特徴とする特許請求の範囲第1項記載
の超音波トランスジューサ。
(2) The ultrasonic transducer according to claim 1, wherein in the multilayer structure piezoelectric ultrasonic transducer, an electric impedance element connected to the electrode terminal pair is variable.
JP5867084A 1984-03-27 1984-03-27 Wide-band ultrasonic wave transducer Pending JPS60201249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5867084A JPS60201249A (en) 1984-03-27 1984-03-27 Wide-band ultrasonic wave transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5867084A JPS60201249A (en) 1984-03-27 1984-03-27 Wide-band ultrasonic wave transducer

Publications (1)

Publication Number Publication Date
JPS60201249A true JPS60201249A (en) 1985-10-11

Family

ID=13091014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5867084A Pending JPS60201249A (en) 1984-03-27 1984-03-27 Wide-band ultrasonic wave transducer

Country Status (1)

Country Link
JP (1) JPS60201249A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027801B2 (en) 2005-09-01 2011-09-27 Hitachi Global Storage Technologies Netherlands B.V. Multi drive test system for data storage device
FR3076461A1 (en) 2018-12-07 2019-07-12 L V M H Recherche Cosmetic composition of active prevention signs of age.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027801B2 (en) 2005-09-01 2011-09-27 Hitachi Global Storage Technologies Netherlands B.V. Multi drive test system for data storage device
FR3076461A1 (en) 2018-12-07 2019-07-12 L V M H Recherche Cosmetic composition of active prevention signs of age.

Similar Documents

Publication Publication Date Title
US5321332A (en) Wideband ultrasonic transducer
US6552471B1 (en) Multi-piezoelectric layer ultrasonic transducer for medical imaging
US6225728B1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
US20030051323A1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
JPS61144565A (en) High-polymer piezo-electric type ultrasonic probe
JPH06261395A (en) Ultrasonic wave converter
JPS581850B2 (en) surface acoustic wave transducer
JPH1023598A (en) Piezoelectric conversion device
JP2004518319A (en) Broadband transducer
CN110508474B (en) Hybrid drive MUT unit structure and parametric excitation method thereof
JPWO2007145127A1 (en) Complex resonant circuit
US4016530A (en) Broadband electroacoustic converter
US20060150380A1 (en) Method for designing ultrasonic transducers with acoustically active integrated electronics
JPH0453117Y2 (en)
US3521089A (en) Piezoelectric feedthrough device
US5608692A (en) Multi-layer polymer electroacoustic transducer assembly
JPH06260881A (en) Surface acoustic wave convolver
US11185886B2 (en) Microelectromechanical systems, devices, and methods for fabricating a microelectromechanical systems device, and methods for generating a plurality of frequencies
JPS60201249A (en) Wide-band ultrasonic wave transducer
Toda Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers
JPS61253873A (en) Piezoelectric ceramic material
JP3485904B2 (en) Sound transducer
JP3934200B2 (en) Ultrasonic probe
US6333590B1 (en) Ultrasonic transducer having laminate structure, ultrasonic probe and production method thereof
JP3464529B2 (en) Broadband ultrasonic transducer and method of manufacturing broadband ultrasonic transducer