JPS6020106A - Thin film forming device provided with optical interference type film thickness monitor - Google Patents

Thin film forming device provided with optical interference type film thickness monitor

Info

Publication number
JPS6020106A
JPS6020106A JP12816683A JP12816683A JPS6020106A JP S6020106 A JPS6020106 A JP S6020106A JP 12816683 A JP12816683 A JP 12816683A JP 12816683 A JP12816683 A JP 12816683A JP S6020106 A JPS6020106 A JP S6020106A
Authority
JP
Japan
Prior art keywords
light
thin film
optical interference
reflected
forming device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12816683A
Other languages
Japanese (ja)
Other versions
JPH022946B2 (en
Inventor
Shiro Fukushima
福島 志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp, Anelva Corp filed Critical Canon Anelva Corp
Priority to JP12816683A priority Critical patent/JPS6020106A/en
Publication of JPS6020106A publication Critical patent/JPS6020106A/en
Publication of JPH022946B2 publication Critical patent/JPH022946B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To realize a clear detection with a simple structure by placing a reflector and a light transmitting plate in a gap between plural substrates placed on a substrate holder, and using reflected light for detecting a synchronizing signal. CONSTITUTION:Monochromatic light for monitoring an optical interference, projected from a laser light source 1 is reflected by mirrors 41, 42- provided between plural substrates 51, 52- on a substrate holder 55 rotating around a shaft 10, and reaches a synchronizing signal detecting sensor 64. An optical path reaching a regular optical interference monitoring sensor 6 is path of measuring light reflected by the surface of the substrate 51, etc.

Description

【発明の詳細な説明】 この発明は透明薄膜作成装置に於ける膜厚制御用光干渉
モニタの同期信号発生装置の改良に関す明薄肺作成装置
の膜厚モニターとしては第1図に示す如く所定波長の光
2を光源1より被測定基板5の面上に投光し基板5の上
面で反射した光15と透明薄膜4の上面で反射した光1
4の間の光路差により干渉が起り、光15と光14の合
成反射光3の光強度が第2図の如く透明薄膜の膜厚の成
長に従って周期的な明暗を生ずるのを利用する方法が周
知されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a synchronizing signal generating device for an optical interference monitor for film thickness control in a transparent thin film forming apparatus.As shown in FIG. Light 2 of a predetermined wavelength is projected onto the surface of the substrate 5 to be measured from the light source 1, and the light 15 reflected from the top surface of the substrate 5 and the light 1 reflected from the top surface of the transparent thin film 4 are generated.
There is a method that takes advantage of the fact that interference occurs due to the optical path difference between the light beams 15 and 4, and the light intensity of the combined reflected light beam 3 of the light beams 15 and 14 causes periodic brightness and darkness as the thickness of the transparent thin film grows, as shown in FIG. It is well known.

しかしこの方法は、当該基板5が静止している場合は問
題を生じないが、基板が移動、又は回転している場合に
は、基板5以外の周辺の反射面からも、同様な干渉光が
発生し、その干渉光が9条件によっては該基板5からの
干渉光にまぎられしいものとなり、正しいモニタができ
なくなるという欠点があった。
However, this method does not cause any problems when the substrate 5 is stationary, but when the substrate is moving or rotating, similar interference light is generated from surrounding reflective surfaces other than the substrate 5. The problem is that depending on the conditions, the interference light may be confused with the interference light from the substrate 5, making it impossible to monitor correctly.

その為、当該基板5から反射される光のみを選択的検出
する手段が必要とされ9例えば第3図の回転式基板ホル
ダーの場合のように、基板ホルダー55の回転軸10に
取付けられた穴あき板11゜光源1から出る光の反射光
を光センサ6で受け。
Therefore, a means for selectively detecting only the light reflected from the substrate 5 is required. For example, as in the case of the rotary substrate holder shown in FIG. Perforated plate 11° Reflected light emitted from light source 1 is received by optical sensor 6.

クアツプする方法が採用されている。The method of cupping is adopted.

しかしかかる同期検出器を別設する方法には、その取付
にスペースを必要とすること、同期調整が必要となるこ
となどかなり面倒な問題を生む。
However, such a method of separately installing a synchronization detector causes quite troublesome problems such as the space required for its installation and the necessity of synchronization adjustment.

この問題を解決するものに、後述するような、基板ホル
ダーに向けて投光される光干渉モニタ用の光ビームの反
射光を直接その寸ま同期検出に使う方法がある。
One way to solve this problem is to use the reflected light of a light beam for optical interference monitoring, which is projected toward the substrate holder, for direct dimension synchronization detection, as will be described later.

この光干渉モニタ用の光ビームの反射光を利用すン〕場
合は1例メば回転する基板ホルダー55ではその上の基
板5]、、52・・・の間の隙間に第4図のようにミ”
’41 、42、−・・を設けるが、これらミラーの取
付位僅□か透明薄膜が付着成長する部分にある場合は上
記と同様その反射光に強弱が生じ。
If the reflected light of the optical beam for optical interference monitoring is used, for example, in a rotating substrate holder 55, the space between the substrates 5, 52, etc. on it is used as shown in Fig. 4. “Nimi”
'41, 42, . . . , but if these mirrors are installed only in the area where the transparent thin film is attached and grown, the intensity of the reflected light will vary as described above.

従ってこれを同期用の検定光として用いることができな
い。従って透明薄膜の付着しない部分にミラーを取付け
このミラー位置に捷で光ビームを導き、かつその反射光
を所定位置に樽いて、それを受光する必要があり、あら
かじめ光路設計を考慮しておく必要があった。
Therefore, this cannot be used as verification light for synchronization. Therefore, it is necessary to install a mirror in the area where the transparent thin film does not adhere, guide the light beam to this mirror position, and receive the reflected light at a predetermined position, so it is necessary to consider the optical path design in advance. was there.

さて本発明の第1の目的は真空槽内の測定光を直接同期
検出に利用することにより、装置内外に別設の同期信号
発生装置を取付けることを不要とすることである。
The first object of the present invention is to make it unnecessary to install a separate synchronization signal generator inside or outside the apparatus by directly utilizing the measurement light inside the vacuum chamber for synchronization detection.

本発明の第2の目的は同期測定用反射光に強弱の変化を
生ずることのない同期信号発生方法を提供することであ
る。
A second object of the present invention is to provide a synchronization signal generation method that does not cause changes in the strength of reflected light for synchronization measurement.

壕だ9本発明の第3の目的は Jl、iJ付着によって
同期信号に不安定を生ずることがなく、シかも頻繁なミ
ラー等の交換操作などを必要としない同期検出方法を提
供することである。
A third object of the present invention is to provide a synchronization detection method that does not cause instability in the synchronization signal due to adhesion of Jl and iJ, and does not require frequent replacement of mirrors, etc. .

第4図に本発明の実施例を示す。第4図はレーザ光源1
から投射された光干渉モニタ用の単色光が。
FIG. 4 shows an embodiment of the present invention. Figure 4 shows laser light source 1
The monochromatic light for the optical interference monitor is projected from the.

軸10のまわりに回転する基板ホルダー55上の複数の
基板51,52.・・・間に設けられたミラー41.4
2.・・・で反射し同期信号検出用センサー64に到る
光の径路の概略を実線で示している。
A plurality of substrates 51 , 52 . on a substrate holder 55 rotating around an axis 10 . ...mirror 41.4 provided between
2. The outline of the path of light that is reflected by ... and reaches the synchronization signal detection sensor 64 is shown by a solid line.

正規の光干渉モニタ用センザー6に到る光路は基4ii
 51 的の表面で反射する測定yt、の径路であり図
には点線3で示しである。
The optical path to the regular optical interference monitor sensor 6 is based on base 4ii.
51 This is the path of the measurement yt reflected on the surface of the target, and is indicated by the dotted line 3 in the figure.

第5図は第4図のミラー41部の拡大IH’l 1lj
i面図。
Figure 5 is an enlarged view of mirror 41 in Figure 4.
i-side view.

及び光の径路の模式図である。90は真空槽の壁。and a schematic diagram of a light path. 90 is the wall of the vacuum chamber.

91はシール材、7はのぞき窓である。91 is a sealing material, and 7 is a peephole.

レーザ光(Jb’、 ]から投射された光2は半透ガラ
ス板17を通過したのち真空槽ののぞき窓7を通過して
真空槽内に入91回転軸】0を中心として回転する基板
ホルダー55の支柱9に取付けられた透明筒Bp付着防
止ガラス板18を通過したのち、前記の基板51等の表
面50(50は基板51等がこののぞき窓7の位置に到
着したとき占める位置を示す。)に対して角αだはわず
かに傾けて取付けられた反射板40に当って反射し光路
19を経てフォトセンサー64に入って電気的同期信号
となる。このような本発明の構成によると2作成中の透
明薄膜付着ガラス′4υ18に付着し9反射板40には
付着しない。
The light 2 projected from the laser beam (Jb', ) passes through the semi-transparent glass plate 17, passes through the peephole 7 of the vacuum chamber, and enters the vacuum chamber. After passing through the transparent cylinder Bp adhesion prevention glass plate 18 attached to the pillar 9 of 55, the surface 50 of the substrate 51 etc. (50 indicates the position occupied when the substrate 51 etc. arrives at the position of this viewing window 7) ), the light hits the reflector 40 mounted at a slight angle α and is reflected, passes through the optical path 19, enters the photo sensor 64, and becomes an electrical synchronization signal.According to the configuration of the present invention, 2. The transparent thin film adheres to the glass '4υ18 which is being prepared, and 9. it does not adhere to the reflective plate 40.

従ってその反射光には透明薄膜付着によって生ずる干渉
光の強弱の変化は殆んど生じない。又、透明薄膜付着防
止ガラス板18では、入射光2と反射板40で反射され
た反射光19の光路は互に離れているため9両者の間に
干渉は起きない。
Therefore, in the reflected light, there is almost no change in the intensity of the interference light caused by the attachment of the transparent thin film. Further, in the transparent thin film adhesion prevention glass plate 18, the optical paths of the incident light 2 and the reflected light 19 reflected by the reflecting plate 40 are separated from each other, so that no interference occurs between the two.

透明薄膜付着防止ガラス板18と透明薄膜との屈折率を
同一、又は近いものにしておくと、光学理論に示される
ように透明薄膜が付着付着成長してもこの部分の透過光
は極端に弱くなるという事態を生じ々い。
If the refractive index of the transparent thin film adhesion prevention glass plate 18 and the transparent thin film are made to be the same or similar, as shown in optical theory, even if the transparent thin film adheres and grows, the transmitted light in this part will be extremely weak. This can easily happen.

またかかる構成にすると同期信号検出用装置は極めて小
さい空間内に収納される。透明薄膜付着防止ガラス18
2反射板40はその交換を頻繁に行う必要はなく長期に
亘って強度がほぼ一定の同期検出光を得ることが可能で
ある。
Furthermore, with such a configuration, the synchronization signal detection device can be housed in an extremely small space. Transparent thin film adhesion prevention glass 18
There is no need to frequently replace the second reflecting plate 40, and it is possible to obtain synchronized detection light whose intensity is approximately constant over a long period of time.

第6図は本発明の他の実施例を示す。この実)ili例
は直線移動する基板ホルダーの場合であって水平に移動
する基板ホルダー9上の基板51,52゜・・・間の隙
間に同期信号発生用の本発明のミラー41.42.・・
・を取付けている。
FIG. 6 shows another embodiment of the invention. This example is a case of a substrate holder that moves linearly, and mirrors 41, 42, .・・・
・It is installed.

本発明の光干渉式モニタ付薄膜作成装置の同期信号検出
構造は上記の通りであって単純な構造でありながら、極
めて明瞭な同期信号の検出を可能にする。しかも長期に
亘って交換、清拭等を必要とせず、その実用性は高い。
The synchronization signal detection structure of the thin film forming apparatus with an optical interference type monitor of the present invention is as described above, and although it has a simple structure, it enables extremely clear detection of synchronization signals. Furthermore, it does not require replacement or cleaning over a long period of time, making it highly practical.

回転、移動しながら透明薄膜を作成する装置に於いて、
その工業的効果は著しいものである。
In a device that creates a transparent thin film while rotating and moving,
Its industrial effects are remarkable.

なお1本発明は図示の実施例に限定されるものではない
。例えば光路は自由に設計しうるものである。また広く
、移動式基板ホルダー全般に適用しうるものである。
Note that the present invention is not limited to the illustrated embodiment. For example, the optical path can be freely designed. Furthermore, it can be broadly applied to all types of movable substrate holders.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、2図は本発明の原理及び干渉光の強弱状態を示
す説明図である。第3図は蒸発源9円筒基板ホルダーを
有する薄膜作成装置に干渉モニターを取付けた従来例を
示す図である。 第4図は本発明による同期信号発生機の実施例であり、
第5図にその詳細断面図を示す。第6図は本発明の第2
の実施例を示す。 図において。 1・・・レーザ光源 4・・・該透明薄膜 5・・・基
板 18・・・付着防止ガラス板 18′・・・反射板
である。 特許出願人 日電アネルバ株式会社 FIG、6 〈−4142
FIGS. 1 and 2 are explanatory diagrams showing the principle of the present invention and the strength and weakness states of interference light. FIG. 3 is a diagram showing a conventional example in which an interference monitor is attached to a thin film forming apparatus having nine evaporation sources and a cylindrical substrate holder. FIG. 4 shows an embodiment of the synchronous signal generator according to the present invention,
FIG. 5 shows a detailed sectional view thereof. Figure 6 shows the second embodiment of the present invention.
An example is shown below. In fig. DESCRIPTION OF SYMBOLS 1...Laser light source 4...The transparent thin film 5...Substrate 18...Adhesion prevention glass plate 18'...Reflector plate. Patent applicant: Nichiden Anelva Co., Ltd. FIG, 6 〈-4142

Claims (1)

【特許請求の範囲】[Claims] 膜作成装置の該基板ホルダー上に配置された複数基板間
の隙間に、基板面とは傾角を異にする反射板、及びこの
反射板の前面ににあってこの反射板に該透明薄膜が付着
成長するのを防止する透光板を配置し、光源から投光さ
れた光が該透光板を透過して該反射板で反射されて来る
反射光を光干渉モニタの同期信号検出に使用したことを
特徴とする光干渉式膜厚モニタ付薄°膜作成装置。
In the gap between the plurality of substrates arranged on the substrate holder of the film forming device, there is a reflecting plate having an angle of inclination different from the substrate surface, and the transparent thin film is attached to the reflecting plate in front of the reflecting plate. A light transmitting plate was placed to prevent the growth, and the light emitted from the light source was transmitted through the light transmitting plate and reflected by the reflecting plate. The reflected light was used to detect the synchronization signal of the optical interference monitor. A thin film forming device with an optical interference type film thickness monitor.
JP12816683A 1983-07-14 1983-07-14 Thin film forming device provided with optical interference type film thickness monitor Granted JPS6020106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12816683A JPS6020106A (en) 1983-07-14 1983-07-14 Thin film forming device provided with optical interference type film thickness monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12816683A JPS6020106A (en) 1983-07-14 1983-07-14 Thin film forming device provided with optical interference type film thickness monitor

Publications (2)

Publication Number Publication Date
JPS6020106A true JPS6020106A (en) 1985-02-01
JPH022946B2 JPH022946B2 (en) 1990-01-19

Family

ID=14978024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12816683A Granted JPS6020106A (en) 1983-07-14 1983-07-14 Thin film forming device provided with optical interference type film thickness monitor

Country Status (1)

Country Link
JP (1) JPS6020106A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390503U (en) * 1986-11-27 1988-06-11
JPH01287274A (en) * 1988-05-12 1989-11-17 Nec Corp Method and device for forming film
US4914417A (en) * 1987-12-10 1990-04-03 Murata Manufacturing Co., Ltd. Variable resistor
US7573000B2 (en) 2003-07-11 2009-08-11 Lincoln Global, Inc. Power source for plasma device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390503U (en) * 1986-11-27 1988-06-11
US4914417A (en) * 1987-12-10 1990-04-03 Murata Manufacturing Co., Ltd. Variable resistor
JPH01287274A (en) * 1988-05-12 1989-11-17 Nec Corp Method and device for forming film
US7573000B2 (en) 2003-07-11 2009-08-11 Lincoln Global, Inc. Power source for plasma device

Also Published As

Publication number Publication date
JPH022946B2 (en) 1990-01-19

Similar Documents

Publication Publication Date Title
US5786594A (en) Multi-beam pitch adjustment system and method
EP0856728B1 (en) Optical method and apparatus for detecting defects
US4893922A (en) Measurement system and measurement method
US4087689A (en) Boresighting system for infrared optical receiver and transmitter
US20020135750A1 (en) Method and device for analysing flows
US4822165A (en) Device for illuminating components of transparent material in testing for irregularities
KR890010554A (en) Photoelectric particle detector
JPS6020106A (en) Thin film forming device provided with optical interference type film thickness monitor
US2435519A (en) Image-forming heat detector
CN207963768U (en) A kind of Photoelectric Detection reponse system based on MEMS mirror structures optical modules
JP2004170128A (en) Sensor
US6570661B2 (en) Optical system for oblique incidence interferometer and apparatus using the same
US7443518B2 (en) Measuring instrument, in particular for transmission measurement in vacuum system
JP2002071318A (en) Method for continuous determination of optical layer coating thickness
US4461017A (en) Fluorescent X-ray device
JPH10246616A (en) Method for observing surface state of multi-core tape optical fiber, method for detecting abnormality of the surface and device for measuring the surface state
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JPS6313446Y2 (en)
JP3354698B2 (en) Flatness measuring device
JP2702750B2 (en) Laser beam scanning device
JPH0714835Y2 (en) Radiation thermometer
JP2000019120A (en) Transparent plate body defect detecting method and device therefor
SU871136A1 (en) Device for measuring motion picture projector light flux
GB2186685A (en) Surface topography measuring apparatus
SU1218292A1 (en) Device for measuring coat thickness