JPS6020087A - Seal mechanism of rotary regenerative type heat exchanger - Google Patents

Seal mechanism of rotary regenerative type heat exchanger

Info

Publication number
JPS6020087A
JPS6020087A JP58126907A JP12690783A JPS6020087A JP S6020087 A JPS6020087 A JP S6020087A JP 58126907 A JP58126907 A JP 58126907A JP 12690783 A JP12690783 A JP 12690783A JP S6020087 A JPS6020087 A JP S6020087A
Authority
JP
Japan
Prior art keywords
heat exchanger
fan
rotary regenerative
roller bearing
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58126907A
Other languages
Japanese (ja)
Inventor
Kiyohide Kuji
久治 清秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gadelius KK
Original Assignee
Gadelius KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gadelius KK filed Critical Gadelius KK
Priority to JP58126907A priority Critical patent/JPS6020087A/en
Priority to KR1019840004157A priority patent/KR920007297B1/en
Publication of JPS6020087A publication Critical patent/JPS6020087A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/047Sealing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Braking Arrangements (AREA)

Abstract

PURPOSE:To improve the reliability of a seal mechanism by a method wherein a gas between the tip of a seal and a fan plate from the axis-of-rotation side towards the outer peripheral side of a rotary heat reservoir is kept nearly constant regardless of the thermal expansion of the rotary heat reservoir. CONSTITUTION:Buffering gears 18a and 18b are respectively fitted to fan plates 5a and 5b. Roller bearings 21a and 21b respectively support the rotating shafts 7a and 7b of guide rollers 6a and 6b, to which rotor tyres 14a and 14b are fitted respectively. Due to the structure as just mentioned above, the gaps between the respective tips of seals 10a and 10b and the respective fan plates 5a and 5b can be automatically kept surely constant over a long period of time in a high temperature and highly corrosive fluid with high dust and high moisture contents regardless of the deformation due to the thermal expansion. Accordingly, the reliability of a seal mechanism is improved.

Description

【発明の詳細な説明】 (技術分野) この発明は、流体の排熱を回収する回転再生型熱交換機
において、高温流体と低温流体との混合を防止するため
、両流体の供給又は排出部の中間に設置された仕切部分
と、この仕切部分に近接して仕切部分と相対運動する蓄
熱体のシールの尖端との間隙が、回転再生型熱交換機の
熱膨張の影響を受けて拡大して、高渦流体と低温流体と
の間の流体漏洩が増加することを防止すると共に、高塵
芥、高湿分、高腐蝕性、高温度の悪環境においても、こ
の間隙を長期に亘って自動的処調整保持して流体の漏洩
防止機能を維持する回転再生型熱交換機の7一ル機構に
関するものである。
Detailed Description of the Invention (Technical Field) The present invention provides a rotary regenerative heat exchanger for recovering waste heat from fluids, in order to prevent mixing of high-temperature fluid and low-temperature fluid. The gap between the partition installed in the middle and the tip of the seal of the heat storage body that is close to the partition and moves relative to the partition increases due to the influence of thermal expansion of the rotary regenerative heat exchanger. In addition to preventing an increase in fluid leakage between high-vortex fluid and low-temperature fluid, this gap can be automatically cleaned over a long period of time even in harsh environments with high dust, high humidity, high corrosivity, and high temperature. This invention relates to a rotary regenerative heat exchanger mechanism that adjusts and maintains a fluid leakage prevention function.

(従来技術) 従来型の回転再生型熱交換機のシール機構においては、
蓄熱体に高泥流体と低温流体とを供給又は排出するそれ
ぞれのケーシング又放射方向仕切壁に設けられたシール
の尖端との間隙が、回転再生型熱交換機の熱膨張変形に
よって拡大した場合に、手動によって間隙を調整するか
、自動によるセンサー検出機構によって間隙を調整する
かしていた。
(Prior art) In the sealing mechanism of a conventional rotary regenerative heat exchanger,
When the gap between the tip of the seal provided on each casing or radial partition wall for supplying or discharging high mud fluid and low temperature fluid to the heat storage body expands due to thermal expansion deformation of the rotary regenerative heat exchanger, The gap was adjusted either manually or by an automatic sensor detection mechanism.

手動調整においては、調整の煩雑さと不連続性という不
都合があり、自動調整においては、一般に、自動調整装
置が高価であることから、回転再生型熱交換機の高価格
化を招いていた。
Manual adjustment has disadvantages such as complexity and discontinuity of adjustment, and automatic adjustment generally requires an expensive automatic adjustment device, leading to an increase in the price of the rotary regenerative heat exchanger.

更に、回転再生型熱交換機の置かれている雰]ノ11気
は高塵芥、高湿分、高腐蝕性及び高温下にあるので、シ
ール機構のガイドローラーにより、扇形板を支持する発
想はあっても、ガイドローラーを支持する軸受の摩耗に
対応できないため、シール機構の間隙調整機能の長期に
亘る。tr+持が困難であって、コロガリ軸C・を実際
面に応用する技術は開発されていなかった。
Furthermore, the atmosphere in which the rotary regenerative heat exchanger is located is highly dusty, humid, highly corrosive, and at high temperatures, so the idea of supporting the fan-shaped plates using the guide rollers of the sealing mechanism has not been considered. However, since the bearings that support the guide rollers cannot cope with wear and tear, the gap adjustment function of the seal mechanism will not last for a long time. It is difficult to maintain tr+, and no technology has been developed to practically apply the rotary axis C.

このような事情から、回転再生型熱交換機の熱膨張変形
と、シール機構作動環境の悪化との影響を受けることな
く、シールの尖端と扇形板との間隙を長期に亘って、連
続的且つ確実゛に自動調整し、しかも安価である間隙調
整シール機構の出現が要請されていた。
Under these circumstances, the gap between the tip of the seal and the sector plate can be maintained continuously and reliably over a long period of time without being affected by thermal expansion deformation of the rotary regenerative heat exchanger or deterioration of the seal mechanism operating environment. There has been a demand for a gap adjustment seal mechanism that can be automatically adjusted and is inexpensive.

(本発明の目的) この発明は上記要請に応えるだめなされたもので、その
目的とする所は、塵芥、湿分を多く含み且つ高腐蝕性、
高温である流体を供給又は排出して、高低温両流体間の
熱交換を行う回転再生型熱交換機において、高温流体と
低温流体とを分離して供給又は排出するケーシングの中
間部に設けられた両流体を仕切具#上 る扇形板に相対して相対運動する蓄熱体の7−ルの尖端
との間隙を回転再生型熱交換機の熱膨張の前後において
も、一定の最適値に自動的に調整し、その調整機能が長
期に亘って連続的に維持され得る信頼性を有し、且つ安
価である新規な回転再生型熱交換機のシール機構を提供
することにある。
(Objective of the present invention) The present invention was made in response to the above-mentioned request, and its purpose is to remove waste that contains a lot of dust and moisture and is highly corrosive.
In a rotary regenerative heat exchanger that supplies or discharges high-temperature fluid and exchanges heat between both high and low-temperature fluids, it is installed in the middle of the casing that separates and supplies or discharges high-temperature fluid and low-temperature fluid. The gap between both fluids is automatically adjusted to a constant optimum value even before and after the thermal expansion of the rotary regenerative heat exchanger. However, it is an object of the present invention to provide a sealing mechanism for a new rotary regenerative heat exchanger, which has reliability that allows its adjustment function to be continuously maintained over a long period of time, and is inexpensive.

(実施例の構成) 枠数の放射方向仕切壁によって区画された扇形区画室内
に熱吸収兼放熱材を包含する蓄熱体が回転するa1輛型
の回転再生型熱交換機において、回転再生型熱交換機に
熱が加わった場合、一般に、回転蓄熱体は、回転中心軸
が下部支持軸受を起点として、上方に向って熱膨張し、
外周部が下方に向って熱膨張垂下して、全体的に逆皿型
の弓状変形を起す。これに対し、回転蓄熱体を包含して
、高温流体府令V して、回転蓄熱体に両流体を供給又 は排出するケーシングは、回転蓄熱体に比し、熱膨張変
形は著しく小さい。回転蓄熱体の放射方向仕切壁の上部
及び下部に取付けられたノールは回転蓄熱体の変形に応
じて弓状変形を起す。一方、高温流体と低渦流体とを区
分して回転蓄熱体に供給又は排出するためにケーシング
に取付けられた扇形板はケーシングの変形と同様に熱膨
張変形は小さい。高温流体と低渦流体との間の流体漏洩
を防止することを目的として、シールと扇形板は相対面
して相対運動をしており、シールの尖端と扇形板との間
隙は、回転再生型熱交換機の熱膨張前に、わずかな間隙
に設定されて、両流体間の漏洩を防止しているが、熱膨
張後には、シールの尖端と扇形板゛とのそれぞれの熱膨
張変形量が相異するため、上部の7−ルの尖端と扇形板
との間隙は、回転中心軸側で減少し、外周側で増大し、
下部のシールの尖端と扇形板との間隙は、回転中心軸側
でほとんど変化しないが、外周側で減少して、回転再生
型態交換機全体としては、この間隙が増大し、それに応
じて、両流体間の漏洩は増大する。本発明による/−ル
機構はこの間隙の増大部分と減少部分とを常に適正に長
期に且つ自動的に維持できるように構成する。
(Configuration of Example) In an A1-shaped rotary regenerative heat exchanger in which a heat storage body containing a heat absorbing and heat dissipating material rotates in a fan-shaped compartment compartment divided by a number of radial partition walls, the rotary regenerative heat exchanger When heat is applied to the rotating heat storage body, the central axis of rotation of the rotating heat storage body generally thermally expands upward from the lower support bearing.
The outer circumferential portion thermally expands and hangs downward, causing an inverted dish-shaped arcuate deformation as a whole. On the other hand, a casing that encloses the rotating heat storage body and supplies or discharges both fluids to the rotating heat storage body by supplying or discharging both fluids to the rotating heat storage body has significantly smaller thermal expansion deformation than the rotating heat storage body. The knolls attached to the upper and lower parts of the radial partition walls of the rotating heat storage body undergo arcuate deformation in response to the deformation of the rotating heat storage body. On the other hand, the fan-shaped plate attached to the casing for separating the high-temperature fluid and the low-vortex fluid and supplying or discharging them to the rotating heat storage body has a small thermal expansion deformation similar to the deformation of the casing. In order to prevent fluid leakage between high-temperature fluid and low-vortex fluid, the seal and the fan-shaped plate face each other and move relative to each other, and the gap between the tip of the seal and the fan-shaped plate is created by a rotary regeneration type. Before thermal expansion of the heat exchanger, a small gap is set to prevent leakage between the two fluids, but after thermal expansion, the amount of thermal expansion deformation of the tip of the seal and the fan-shaped plate is proportional to each other. Therefore, the gap between the tip of the upper 7-rule and the fan-shaped plate decreases on the rotation center axis side and increases on the outer peripheral side,
The gap between the tip of the lower seal and the sector plate does not change much on the rotational center axis side, but decreases on the outer circumferential side, and for the rotary regeneration type exchanger as a whole, this gap increases, and accordingly, the gap between the two sides increases. Leakage between fluids increases. The /-ru mechanism according to the present invention is constructed so that the increased and decreased portions of the gap can always be maintained appropriately over a long period of time and automatically.

以下、本発明の実施例について、図面を参照しがら説明
する。第1図は、下部が支持軸受1に、上部が案内軸受
2に保持された回転蓄熱体の回転中心軸側の中心と、高
温流体と低温流体とを供給又は排出するケーシング4の
中間部に高低温両流体を分離するために設けられた扇形
板5の外周側に取付けられたガイドローラー6の回転軸
7の中心とを通る面で、回転再生Aす熱交換機を切断し
た断面図であり、定置式のケーシング4にvii すれ
て、回転中心軸側環境囲に円筒状に配設された回転蓄熱
体を構成する放射方向仕切壁8とシェル9とが収められ
ている状態を示し、放射方向仕切壁8の上部と下部とに
は、それぞれシール10 a及び10 bが取付けられ
、シール1.Oa及びIQ bに相対して、相形板5a
と5bとがシール】0;1及び10 bとわずかな間隙
を持って、シール10 aの上部及びシール10 bの
下部にそねぞね配設されている。
Embodiments of the present invention will be described below with reference to the drawings. Figure 1 shows the center of the rotating heat storage body on the rotational axis side, whose lower part is held by the support bearing 1 and the upper part by the guide bearing 2, and the middle part of the casing 4 that supplies or discharges high-temperature fluid and low-temperature fluid. It is a cross-sectional view of the rotary regenerating heat exchanger taken along a plane passing through the center of the rotating shaft 7 of the guide roller 6 attached to the outer peripheral side of the fan-shaped plate 5 provided to separate both high and low temperature fluids. , shows a state in which a radial partition wall 8 and a shell 9, which constitute a rotating heat storage body arranged in a cylindrical shape around the rotation center axis side, are housed in a stationary casing 4. Seals 10a and 10b are attached to the upper and lower parts of the directional partition wall 8, respectively, and the seals 1. Opposite Oa and IQ b, phase plate 5a
and 5b are arranged at the upper part of the seal 10a and the lower part of the seal 10b with a slight gap between the seals 1 and 10b.

上部扇形板5aの回転中心1llI]3側においては、
回転中心l1115が熱膨張によって、支持軸受1を起
点として、上方に伸びだ場合、扇形板5aが回転中心[
I’lIl 5の伸びに連動して、上方へ移動するよう
に、上部が回転中心f?lb sの上端部11に接続さ
れ、又、下部が扇形板5aの支点を構成するビン12 
a K接続されたハンガーロッド13によって、案内軸
受2に連結されており、上部扇形板5aの外周側におい
ては、回転蓄熱体のシェル9の外周上部に取伺合\m形
板5aがロータータイヤ14 X+の垂下に連動して、
下方へ移動するように、ガイドローラー63が取付けら
れており、更に、ガイドローラー68が常にロータータ
イヤ14+1の回転に・一応じて接触転勤を強制される
ように、スプリング15aに押圧された押圧棒16 a
が取伺けられている。下部扇形板511の回転中心軸6
側においては、上部が扇形板5bの支点を構成するピン
12 b Ic接続され、下部がケーシング4に接続さ
れたサポートロッド17によって、扇形板5bが支持さ
れており、下部扇彫版5bの外周側においては、回転蓄
熱体のンエル9の外周下部に取付けられたロータータイ
ヤ14 bが回転蓄熱体の熱膨張の影響を受けて、下方
へ垂下変形した場合、扇形板5bがロータータイヤ14
【〕の垂下に連動して、下方へ移動するように、ガイド
ローラー61〕がIJV付けられており、更に、ガイド
ローラー6bが常にロータータイヤ14 bの回転に応
じて接触転勤を強制されるように、スプリング151)
 (tこ抑圧された押圧棒16 bが取イ″1けられて
いる。
On the rotation center 1llI]3 side of the upper sector plate 5a,
When the center of rotation l1115 extends upward from the support bearing 1 due to thermal expansion, the fan-shaped plate 5a moves toward the center of rotation [
The upper part is the center of rotation f? so that it moves upward in conjunction with the extension of I'lIl 5. A bin 12 connected to the upper end 11 of lb s and whose lower part constitutes the fulcrum of the fan-shaped plate 5a.
It is connected to the guide bearing 2 by a K-connected hanger rod 13, and on the outer circumferential side of the upper fan-shaped plate 5a, the m-shaped plate 5a is connected to the upper outer circumference of the shell 9 of the rotating heat storage body. 14 In conjunction with the drooping of X+,
A guide roller 63 is attached to move downward, and a pressure rod is pressed by a spring 15a so that the guide roller 68 is always forced to make contact transfer in accordance with the rotation of the rotor tire 14+1. 16a
has been investigated. Rotation center axis 6 of lower fan-shaped plate 511
On the side, the fan-shaped plate 5b is supported by a support rod 17 whose upper part is connected to a pin 12 b Ic that constitutes a fulcrum of the fan-shaped plate 5b, and whose lower part is connected to the casing 4, and the outer circumference of the lower fan-shaped engraving 5b. On the side, when the rotor tire 14 b attached to the lower outer periphery of the rotary heat storage body well 9 is deformed downward under the influence of thermal expansion of the rotary heat storage body, the fan-shaped plate 5 b is attached to the rotor tire 14
A guide roller 61] is attached with an IJV so as to move downward in conjunction with the drooping of , spring 151)
(The depressed pressing rod 16b is removed.)

r11形板らの形状は、回転蓄熱体の放射方向仕切^」
1f8によって区画された1r固の扇形区画室よりやや
太き目の寸法になっているため、回転蓄り!(体の回転
に従って、1枚の放射方向仕切B% 8が扇形板5部分
に入り初めると、先行していた他の1枚の放射方向仕切
壁8が扇形板5部分から出初める。(第2図参照)この
時、入り初めだ放射方向仕切壁8の回転方向の011面
及び後面において、高渦流体と低温流体との圧力の相異
によ乞圧力差が生じる。
The shape of the r11 plates is a radial partition of the rotating heat storage body.
The size is slightly thicker than the fan-shaped compartment of the 1r fixed section divided by 1f8, so it can accumulate rotation! (According to the rotation of the body, when one radial partition wall B% 8 begins to enter the sector plate 5 section, the other preceding radial partition wall 8 begins to come out from the sector plate 5 section. (See Figure 2) At this time, a pressure difference occurs on the 011 plane and the rear face in the rotational direction of the radial partition wall 8 at the beginning of entry due to the difference in pressure between the high vortex fluid and the low temperature fluid.

例えば、入り初めだ放射方向仕切壁8の後面が、圧力の
高い低温流体側であり、前面が圧力の低い高泥流体側で
あるとすると、扇形区画室側より垂直に扇形板5を押す
力を構成する圧力はほとんど圧力の低い高温流体によっ
て支配される。放射方向仕切壁8が扇形板5の中央部分
に回転して来ると押す力をf1+)成する圧力は圧力の
低い高渦流体と圧力の高い低温流体との両流体によって
支配される。放射方向仕切壁8が扇形板5の出口部分に
回転して近付くと、押す力を構成する圧力は圧力の高い
低渦流体によって支配される。回転蓄熱体の回転に従っ
て、扇形板5はこのようにして回転蓄熱体側から交番す
る力が加わり、上下方向に周期的に脈動させられる。扇
形板5の脈動を吸収し、シール10の尖端と扇形板との
間隙を一定に安定させるため、緩衝装置18がケーシン
グ4に取付けられ、ロッド19によって、扇形板5の脈
動を拘束する。緩衝装置18の緩衝力は機械的、流体的
及び電気的装置のいずれか又はこれ等の組合によって構
成される。
For example, if the rear surface of the radial partition wall 8 at the beginning of entry is the high-pressure low-temperature fluid side, and the front surface is the low-pressure high mud fluid side, then the force pushing the fan-shaped plate 5 vertically from the fan-shaped compartment side The pressure that constitutes this is mostly dominated by low-pressure, high-temperature fluid. When the radial partition wall 8 rotates toward the central portion of the sector plate 5, the pressure that produces the pushing force f1+) is dominated by both the low-pressure, high-vortex fluid and the high-pressure, low-temperature fluid. When the radial partition wall 8 rotates closer to the outlet part of the sector plate 5, the pressure constituting the pushing force is dominated by the high pressure, low vortex fluid. As the rotary heat storage body rotates, alternating forces are applied to the fan-shaped plate 5 from the rotary heat storage body side, causing it to periodically pulsate in the vertical direction. In order to absorb the pulsation of the sector plate 5 and to maintain a constant and stable gap between the tip of the seal 10 and the sector plate, a shock absorber 18 is attached to the casing 4, and a rod 19 restrains the pulsation of the sector plate 5. The damping force of the damping device 18 is constituted by mechanical, fluidic, and electrical devices or a combination thereof.

ガイドローラー6の回転軸7のuj受受註0は、ガイド
ローラー6の円滑な回転を長期に亘って維持することが
可能なローシーベアリング21が装備される。
The rotating shaft 7 of the guide roller 6 is equipped with a low sea bearing 21 that can maintain smooth rotation of the guide roller 6 over a long period of time.

ローラーベアリング21に熱交換流体中に含有された塵
芥、湿分、腐蝕性物質及び高渦流体が侵入することを防
止するため、防塵防湿装置として、軸受20の周囲に、
ベロ一式外部カバー22、カバーフレート23 、iQ
l+シニリング24付ボックス式内部カバー25が装(
ffiiされ、下部のボックス式内部カバー25 bと
カバープレート23bとには、更に、ボソクヌ式内部カ
バー25b内に落下する塵芥、湿分を抜き去るイブ1出
口26が装備され、排出口26は図示しない外部の集塵
部に接続される。
In order to prevent dust, moisture, corrosive substances, and high vortex fluid contained in the heat exchange fluid from entering the roller bearing 21, a dust-proof and moisture-proof device is installed around the bearing 20.
tongue set external cover 22, cover plate 23, iQ
A box-type internal cover 25 with l+shin ring 24 is installed (
ffii, and the lower box-type inner cover 25b and cover plate 23b are further equipped with an Eve 1 outlet 26 for removing dust and moisture that fall into the Bosoknu-type inner cover 25b, and the outlet 26 is not shown in the figure. Not connected to an external dust collector.

ローラーベアリング21の潤滑装置は、潤滑−えゆ、6
□1]、よ、□□やえ4゜2.、え、1は、本実施例に
示す如く、潤滑油の導通考27を軸受2OK接続して、
図示しない処置式ポンプによって潤滑油を循環する強制
循環方式にて構成される。
The lubrication device for the roller bearing 21 is a lubrication device for the roller bearing 21.
□1], Yo, □□ Yae4゜2. , 1, as shown in this embodiment, the lubricating oil continuity circuit 27 is connected to the bearing 2 OK,
It is constructed using a forced circulation system in which lubricating oil is circulated by a treatment pump (not shown).

ローラーベアリング21の冷却装置は、軸受20の周囲
の高温流体による加熱又はローラー°ベアリング210
回転による発熱によって、軸受20が過熱されることを
防止するため、冷却剤として水、油及び空気のいずれか
を導通する導通管28を軸受20に接続する冷却方式に
て+16成される。
The cooling device for the roller bearing 21 includes heating by high-temperature fluid around the bearing 20 or cooling the roller bearing 210.
In order to prevent the bearing 20 from being overheated due to heat generated by rotation, a cooling method is used in which a conduction pipe 28 that conducts water, oil, or air as a coolant is connected to the bearing 20.

第2図は、第1図のA−A矢視を示す図で2組のガイド
ローラー6とその付属装置とが数句けられた実施例であ
り、扇形板5a上にガイドローラー6a、ガイドローラ
ーの軸受20.1、ベロ一式外部カバー22a、+14
4]7リング24;1付ボックス式内部カバー25a1
潤滑油の導通IR27a 1 冷却剤の導通管28 a
、押圧棒16a1緩衝装置N 1.8 aのロッド19
a1ハンガーロツド13が装(iifiされ、又、扇形
区画室の1藺の区画を構成するシール10 aを装着し
た放射方向仕切壁の1枚が扇形板S a il1分に入
り初め、放射方向仕切壁の他の1枚が扇形板5a部分を
出初めている状態を示す。ここで、矢印B−回転蓄熱体
の回転方向を示す。
FIG. 2 is a view taken along arrow A-A in FIG. 1, and shows an embodiment in which two sets of guide rollers 6 and their attached devices are shown. Roller bearing 20.1, tongue set external cover 22a, +14
4] 7 rings 24; Box type internal cover 25a1 with 1
Lubricating oil conduction IR27a 1 Coolant conduction pipe 28a
, pressure rod 16a1 shock absorber N 1.8 a rod 19
A1 hanger rod 13 is installed (iifi), and one of the radial partition walls equipped with the seal 10a constituting one section of the fan-shaped compartment begins to enter the fan-shaped plate Sa il1, and the radial partition wall The other one is beginning to emerge from the fan-shaped plate 5a.Here, arrow B--indicates the direction of rotation of the rotating heat storage body.

第ろ図は、ガイドローラー6aがロータータイヤ+4 
aに接触転動している状態を表わすガイドローラー6a
の側面を示す図であり、ロータータイヤ14 aの転動
面に付着する塵芥、湿分等の異物を排除するスフレノパ
−29がホルダー30に保持され、ガイドローラー6a
の転勤面に付着する塵芥、湿分等の異物を排除スルスフ
レノパ−31がホルダー32に保持され、潤滑油の導通
管27a1冷却剤の導通管28. aが軸受20 aに
接続され、高温流体と低渦流体とを分離して供給又は排
出するケーシング4に流体を導通するダクト33が接続
されている状態を示す。ここに、矢印Cは回転蓄熱体の
回転方向を示す。
In the figure, the guide roller 6a is rotor tire +4
Guide roller 6a showing a state in which it is rolling in contact with a.
2 is a side view of the rotor tire 14a, in which a souffle nozzle 29 for removing foreign matter such as dust and moisture adhering to the rolling surface of the rotor tire 14a is held in a holder 30, and a guide roller 6a is
A sulphurenoper 31 is held in a holder 32 to remove foreign matter such as dust and moisture adhering to the transfer surface of the lubricating oil conduit 27a1 and the coolant conduit 28. A shows a state in which the bearing 20a is connected to the duct 33 that conducts fluid to the casing 4 that separates and supplies or discharges high-temperature fluid and low-vortex fluid. Here, arrow C indicates the rotation direction of the rotating heat storage body.

上記実施例の7一ル機構は、回転中心軸が縦1111+
型の回転再生型熱交換機の回転蓄熱体の放射方向仕切壁
におけるシールの尖端と扇形板との間隙を自動的に長期
間一定に維持する機構の構成について説明したが、本発
明のシール機構はこれに限定されるものではなく、例え
ば、回転蓄熱体の外周部円周方向、外周部回転軸方向、
回転中心軸が横軸型の回転再生ハリ熱交換機の回転蓄熱
体等にも構成するこトカ”1能であり、又、ガイドロー
ラー、o−タータイヤ、押圧装置、緩4Mj装置、ガイ
ドローラーの軸受、防塵防溝装置、潤滑゛装置、冷却装
置、スフレノパー等についても、本発明の昂−神から離
れないで、各種の変更がなされ得ることは1叫らがであ
る。
In the 7-1 mechanism of the above embodiment, the rotation center axis is vertical 1111+
The structure of the mechanism that automatically maintains the gap between the tip of the seal and the fan-shaped plate in the radial partition wall of the rotary heat storage body of the rotary regenerative heat exchanger of the mold type has been described, but the seal mechanism of the present invention This is not limited to, for example, the circumferential direction of the outer circumference of the rotating heat storage body, the direction of the rotational axis of the outer circumference,
It can also be used as a rotating heat storage body of a rotary regenerating heat exchanger with a horizontal axis of rotation, and can also be used as guide rollers, o-tar tires, pressing devices, loose 4Mj devices, and guide roller bearings. It is to be understood that various changes may be made to the dust-proof and groove-proof device, the lubrication device, the cooling device, the souffler, etc. without departing from the spirit of the present invention.

(本発明の効果) 回転再生型熱交換機の熱膨張のぶ工後において、回転蓄
熱体の7−ルの尖端と扇形板との間隙を一定に維持する
ためには、回転蓄熱体の変位に応じて、扇形板を移動さ
せる効果を与える必要がある。上部扇形板の回転中心軸
側は、11シ」転中心l1ll+が熱膨張を受けて上方
に伸びると、この伸びと同量だけハンガーロットによっ
て引上げられるだめ、シールの尖端と扇形板との間隙は
ほとんど増減しない。上部扇形板の外周側は、回転蓄熱
体が熱1kW l1liiを受けて下方に垂下すると、
扇形板に取付けられたガイドローラーJj、(プリング
式押圧棒で回転蓄熱体に取付けられた一タータイヤに押
圧され、回転蓄熱体の垂下量に追従して、回転中心11
111側のハンガーロッド接続部を支点として、下方に
変位するプこめ、ソールの尖グ1°11と扇形板との間
隙はほとんど増減しない。下部扇形板の回転中心4Ql
+側は、サポートロノ1、によって支えられており、サ
ポートロットが熱影響を受けてもその伸びる量が小さい
/こめ、はとんど変位せず、又、回転中心−1+の下部
4分が熱影響を受けて上方に伸ひる量も小さいので、/
−ルの尖端と扇形板との間隙はほとんど増減しない。下
部扇形板の外周側は、回転蓄熱体が熱膨張を受けて下方
に垂下すると、扇形板に取付けられたガイドローラーが
スプリング式押IE棒で回転蓄熱体に取付けられだロー
タータイヤに押圧され、回転蓄熱体の垂下量に追従して
、回転中心側のサボートロンド接続部を支点として、下
方に変位するだめ、シールの尖端と扇形板との間隙はほ
とんど増減しない。このような作動効果により、上部及
び下部の放射方向仕切壁において、それぞれのシールの
尖端と扇形板との間隙は、回転中心軸側から外周測寸で
、回転蓄熱体の熱膨張に関係なくほとんど一定に維持さ
れ得る。
(Effects of the present invention) After the thermal expansion of the rotary regenerative heat exchanger, in order to maintain a constant gap between the tip of the rotary heat storage body and the fan-shaped plate, it is necessary to adjust the distance according to the displacement of the rotary heat storage body. It is necessary to give the effect of moving the sector plate. The rotation center axis side of the upper fan-shaped plate is 11". When the rotation center l1ll+ is extended upward due to thermal expansion, it is pulled up by the hanger rod by the same amount as this extension. Therefore, the gap between the tip of the seal and the fan-shaped plate is There is almost no increase or decrease. When the rotating heat storage body receives 1kW of heat and hangs downward on the outer peripheral side of the upper fan-shaped plate,
A guide roller Jj attached to a fan-shaped plate is pressed by a pull-type pressure rod to a tire attached to a rotating heat storage body, and follows the drooping amount of the rotating heat storage body to move the rotation center 11.
With the hanger rod connection part on the 111 side as a fulcrum, the gap between the sole tip 1° 11 and the fan-shaped plate hardly increases or decreases. Center of rotation of lower sector plate 4Ql
The + side is supported by support rod 1, and even if the support rod is affected by heat, the amount of expansion is small. The amount of upward expansion under the influence of heat is also small, so /
-The gap between the tip of the lever and the fan-shaped plate hardly increases or decreases. On the outer peripheral side of the lower fan-shaped plate, when the rotating heat storage body undergoes thermal expansion and droops downward, the guide roller attached to the fan-shaped plate is pressed by the rotor tire attached to the rotating heat storage body with a spring-loaded pushing IE rod. The gap between the tip of the seal and the fan-shaped plate hardly increases or decreases unless it is displaced downward about the servo rond connection part on the rotation center side as a fulcrum in accordance with the drooping amount of the rotating heat storage body. Due to this operating effect, in the upper and lower radial partition walls, the gap between the tip of each seal and the fan-shaped plate is almost the same as measured from the rotation center axis side, regardless of the thermal expansion of the rotating heat storage element. can be kept constant.

プールを装備した放射方向仕切壁が扇形板部分を通過す
る場合に、扇形板は高温流体と低温流体との圧力を交互
に衝撃的に受け、上下に振動する現象を起すが、緩衝装
置はこの振動を吸収し、シールの尖端と扇形板との間隙
の脈動的増減を防止する効果を持つ。
When a radial partition wall equipped with a pool passes through a fan-shaped plate, the fan-shaped plate is alternately shocked by the pressure of high-temperature fluid and low-temperature fluid, causing a phenomenon in which it vibrates up and down. It has the effect of absorbing vibrations and preventing pulsating increases and decreases in the gap between the tip of the seal and the sector plate.

回転再生型熱交換機は、高塵芥、高湿分、高jr′+1
蝕性、高温の流体中で作動することが多いため、ガイド
ローラーの軸受を包囲するベロ一式外部カバー、プレー
トカバー、輔ンーリング付ボックス式内部カバー、及び
塵芥、71ii!分抽出口からなる防塵防湿装置を設け
、更に、llh受に対し潤滑装置〜と冷却装置とを付加
して、従来型シール機イ14では、軸受の焼付を起すこ
とから使用不可能であったローラーベアリングの採用を
可能とし、軸受の円滑な作動を長期に亘って維持する効
果を得ることに成功した。
The rotary regenerative heat exchanger is suitable for high dust, high humidity, and high jr'+1
Because it is often operated in corrosive and high-temperature fluids, a tongue-type outer cover surrounding the guide roller bearing, a plate cover, a box-type inner cover with a foot ring, and dust, 71ii! A dust-proof and moisture-proof device consisting of a separation and extraction port was installed, and a lubricating device and a cooling device were added to the llh bearing, making it impossible to use with the conventional sealing machine I14 because it would cause bearing seizure. This made it possible to use roller bearings, and succeeded in maintaining the smooth operation of the bearings over a long period of time.

ガイドローラーとロータータイヤとの転勤面に数句けら
れた塵芥排除用ヌクレノパーは、それぞれの転動面に付
着する塵芥を排除し、ガイドローラーとロータータイヤ
との接触転勤を円滑化し、シールの尖端と扇形板との間
隙を長期に亘って一定に維持する効果を与える。
Nuklenopers for removing dust, which are installed on the rolling surfaces of the guide rollers and rotor tires, eliminate dust adhering to each rolling surface, smooth the contact transfer between the guide rollers and rotor tires, and remove the dirt from the tip of the seal. This provides the effect of maintaining a constant gap between the fan plate and the fan-shaped plate over a long period of time.

以上のような各種効果の集積により、回転蓄熱体の熱膨
張変形に関係なく、高塵芥、高湿分、高腐蝕性、高温の
流体中で、シールの尖端と扇形板との間隙を自動的にし
かも長期に亘って確実に維持して、高低温両流体間の漏
洩を最小とする安価で信頼性のある回転再生型熱交換機
のシール機構を提供することが可能となった。
Through the accumulation of the various effects described above, the gap between the tip of the seal and the sector plate can be automatically adjusted in a highly dusty, highly humid, highly corrosive, and high temperature fluid, regardless of the thermal expansion and deformation of the rotating heat storage body. Furthermore, it has become possible to provide an inexpensive and reliable sealing mechanism for a rotary regenerative heat exchanger that can be reliably maintained over a long period of time and minimize leakage between high and low temperature fluids.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回転再生型熱交換機を回転蓄熱体の回転中心軸
の中心とガイドローラーの回転軸の中心とを通る面で切
断した断面図、第2図は第1図のA−A矢視を示す図、
第6図はガイドローラーがロータータイヤに接触転動し
ている状態を表わすガイドローラーの側面を示す図であ
る。 尚、図中の主要部の符号は次の通りである。 1・・・・ 支持軸受 2・・・・ 案内1Inb受 6 ・・ 1司q云中心州j 4 ・・ ケーシング 5、+、5b・・・ 扇形板 ろ;+ 、 6 l)・・・・・・ ガイドローラー7
 、、 、 ’71ン・・・・・・ 回転1111+8
 ・・ 放射方向仕切壁 9・・・・ ンエル ]Oa、IOb・・・・・・ シール 11・ 回転中心軸の上端部 +2a、+2b・・・・・・ ビン 13・・・・ ハンガーロッド 14 a 、 14 b・・・・・ ロータータイヤ1
5a、15b・・・・・・ スプリング16 a、46
 b・・・・・ 押圧棒17・・・・・ サポートロッ
ド 18a、18b・・・・ 緩衝装置 19 a 、 19 b・・・・・・ ロッド20a、
20b ・・・・・ 軸 受 21 a 、 21 b・・・・・・ o−5−ベアリ
ング2.2 a 、 22 +〕・・・・・ ベロ一式
外部カバー23a、23b・・・・・ プレートカバー
24 a 、 24 b・・・・ 軸シーリング25a
、25b・・・・・ ボックス式内部カバー26・・・
・・ 排出口 27a、27b・・・・・・ 導通管 2811.281)・・・・・・ 導通管29・・・・
 スフレノバー 30・・・・・ ホルダー 31・・−・・・ スフレノバー 32・・・・・ ホルダー 33・・・・・・ ダクト
Fig. 1 is a cross-sectional view of the rotary regenerative heat exchanger taken along a plane passing through the center of the rotational axis of the rotating heat storage body and the center of the rotational axis of the guide roller, and Fig. 2 is a cross-sectional view taken along the line A-A in Fig. 1. A diagram showing
FIG. 6 is a side view of the guide roller showing a state in which the guide roller is rolling in contact with the rotor tire. Incidentally, the symbols of the main parts in the figure are as follows. 1... Support bearing 2... Guide 1 Inb bearing 6... 1st part center line j 4... Casing 5, +, 5b... Fan-shaped plate slot; +, 6 l)...・・Guide roller 7
,, , '71n... Rotation 1111+8
・・ Radial partition wall 9 ・・ Ner] Oa, IOb ・・ Seal 11 ・ Upper end of rotation center shaft +2a, +2b ・・・ Bin 13 ・・ Hanger rod 14 a , 14 b... Rotor tire 1
5a, 15b... Spring 16 a, 46
b...Press rod 17...Support rods 18a, 18b...Buffer devices 19a, 19b...Rod 20a,
20b...Bearing 21a, 21b...O-5-bearing 2.2a, 22+]...Bone set external cover 23a, 23b...Plate Covers 24a, 24b... Shaft sealing 25a
, 25b... Box type internal cover 26...
... Discharge ports 27a, 27b... Conduit pipe 2811.281)... Conduit pipe 29...
Souffle Nova Bar 30... Holder 31... Souffle Nova Bar 32... Holder 33... Duct

Claims (1)

【特許請求の範囲】 回転再生型熱交換機のシール機構 るケーシングと、複数の放射方向仕切壁に 2よって区
画された扇形区画室内に熱吸収兼放熱材を包含する蓄熱
体とが、相対的に運動する面を持つ回転再生型熱交換機
の相対運動面に装備されたシール機構において、ガイド
ローラーと、ガイドローラーが接触転動するロータータ
イヤと、ガイドローラーを口 ろ−タータイヤに押圧す
る装置と扇形板に作用する脈動荷重を吸収する緩衝装詔
と、ガイドローラーの軸受に装備したローラーベアリン
グと、ローラーベアリングの防塵防湿装置と、ローラー
ベアリングの潤滑装置と、ローラーベアリングの冷却装
雰と、ガイド 40−ラーとロータータイヤとの転勤面
の塵型熱交換機の熱膨張変形に対応してシールの尖端と
扇形板との間隙を常に最少に長期に亘って維持し、高低
温両流体間の漏洩を最少にすることを特徴とする回転再
生型熱交換機のシール機構。 ) ガイドローラーをロータータイヤに押圧する装置が
ヌプリング、重錘、空気圧、油圧及び電磁力のいずれか
又はこれ等の組合せによって構成されることを特徴とす
る特許請求の範囲第1項記載の回転再生型熱交換機のシ
ール機構。 ) 扇形ty+c作用する脈動荷重を吸収する緩@ii
装置が機械的、流体的及び電気的緩衝装置のいずれか又
はこれ等の組合せによって構成さノ1.ることを特徴と
する特許請求の範囲第1項乃至第2項のいずれかに記載
の回転再生型熱交換機のシール機構。 ) ローラーベアリングの防塵防湿装置が、軸受の外部
カバー、軸受の内部カバー及び塵芥、湿分排出口によっ
て構成されることを特徴とする特許請求の範囲第1項乃
至第 5゜5 r(4のいずれかに記載の回転再生型熱
交換機のシール機構。 5) ローラーベアリングの潤滑装置が軸受内装式潤滑
方式又は強制循環潤滑方式によって構成されることを特
徴とする特許請求の範囲第1項乃至第4項のいずれかに
記載の回転再生型熱交換機のシール機構。 6) ローラーベアリングの冷却装置が水、油及び空気
のいずれか又はこれ等の組合せによる冷却方式によって
構成されることを特徴とする特許請求の範囲第1項乃至
第5項のいずれかに記載の回転再生型熱交換機の7一ル
機構。 7) ガイドローラーとロータータイヤとの転勤面の塵
芥排除装置がそれぞれの転勤面に装備されたスクレソパ
ーによって構成されることを特徴とする特許請求の範囲
第1項乃至第6項のいずれかに記載の回転再生型熱交換
機のシール機構。
[Claims] The casing of the rotary regenerative heat exchanger with a sealing mechanism and the heat storage body containing a heat absorbing and heat dissipating material in a fan-shaped compartment divided by a plurality of radial partition walls 2 are relatively A sealing mechanism installed on the relative moving surface of a rotary regenerative heat exchanger having a moving surface includes a guide roller, a rotor tire on which the guide roller contacts and rolls, a device that presses the guide roller against the filter tire, and a fan-shaped A shock absorber that absorbs the pulsating load acting on the plate, a roller bearing installed in the guide roller bearing, a dust-proof and moisture-proof device for the roller bearing, a lubrication device for the roller bearing, a cooling system atmosphere for the roller bearing, and a guide 40 - In response to the thermal expansion and deformation of the dust heat exchanger on the transfer surface between the roller and rotor tire, the gap between the tip of the seal and the fan-shaped plate is always maintained at a minimum over a long period of time to prevent leakage between both high and low temperature fluids. A sealing mechanism for a rotary regenerative heat exchanger that is characterized by minimizing ) The rotational regeneration according to claim 1, characterized in that the device for pressing the guide roller against the rotor tire is constituted by any one of a nupling, a weight, pneumatic pressure, hydraulic pressure, and electromagnetic force, or a combination thereof. Seal mechanism of type heat exchanger. ) Fan-shaped ty+c to absorb the pulsating load acting @ii
1. The device is constituted by any one or a combination of mechanical, fluidic and electrical damping devices. A sealing mechanism for a rotary regenerative heat exchanger according to any one of claims 1 to 2, characterized in that: ) The dust-proof and moisture-proof device for a roller bearing is comprised of an outer cover of the bearing, an inner cover of the bearing, and a dust and moisture outlet. A sealing mechanism for a rotary regenerative heat exchanger according to any one of claims 1 to 5, wherein the lubrication device for the roller bearing is configured by an internal bearing lubrication method or a forced circulation lubrication method. 4. A sealing mechanism for a rotary regenerative heat exchanger according to any one of Item 4. 6) The roller bearing cooling device according to any one of claims 1 to 5, characterized in that the roller bearing cooling device is configured by a cooling method using any one of water, oil, and air, or a combination thereof. 7-l mechanism of rotary regenerative heat exchanger. 7) According to any one of claims 1 to 6, the dust removal device for the transfer surfaces of the guide roller and rotor tire is constituted by a scresoper installed on each transfer surface. Sealing mechanism of rotary regenerative heat exchanger.
JP58126907A 1983-07-14 1983-07-14 Seal mechanism of rotary regenerative type heat exchanger Pending JPS6020087A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58126907A JPS6020087A (en) 1983-07-14 1983-07-14 Seal mechanism of rotary regenerative type heat exchanger
KR1019840004157A KR920007297B1 (en) 1983-07-14 1984-07-14 Seal mechanism of rotary regenerative type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126907A JPS6020087A (en) 1983-07-14 1983-07-14 Seal mechanism of rotary regenerative type heat exchanger

Publications (1)

Publication Number Publication Date
JPS6020087A true JPS6020087A (en) 1985-02-01

Family

ID=14946839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126907A Pending JPS6020087A (en) 1983-07-14 1983-07-14 Seal mechanism of rotary regenerative type heat exchanger

Country Status (2)

Country Link
JP (1) JPS6020087A (en)
KR (1) KR920007297B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091966U (en) * 1983-11-22 1985-06-24 石川島播磨重工業株式会社 Air preheater sealing device
JPS6095469U (en) * 1983-11-30 1985-06-29 石川島播磨重工業株式会社 Air preheater sealing device
JPS63315891A (en) * 1987-06-18 1988-12-23 Gadelius Kk Seal mechanism for heat exchanger
US5029632A (en) * 1990-10-22 1991-07-09 The Babcock & Wilcox Company Air heater with automatic sealing
US5063993A (en) * 1990-10-22 1991-11-12 The Babcock & Wilcox Company Air heater with automatic sealing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091966U (en) * 1983-11-22 1985-06-24 石川島播磨重工業株式会社 Air preheater sealing device
JPS6095469U (en) * 1983-11-30 1985-06-29 石川島播磨重工業株式会社 Air preheater sealing device
JPS63315891A (en) * 1987-06-18 1988-12-23 Gadelius Kk Seal mechanism for heat exchanger
US5029632A (en) * 1990-10-22 1991-07-09 The Babcock & Wilcox Company Air heater with automatic sealing
US5063993A (en) * 1990-10-22 1991-11-12 The Babcock & Wilcox Company Air heater with automatic sealing

Also Published As

Publication number Publication date
KR920007297B1 (en) 1992-08-29
KR850001996A (en) 1985-04-10

Similar Documents

Publication Publication Date Title
JP6149089B2 (en) High speed flywheel system
US4402515A (en) Labyrinth seal with contamination trap
US4749199A (en) Seal assembly including a sealing ring having internal lubricant passageways
CN101532771B (en) Annular tube split type steam rotary dryer
JPS6020087A (en) Seal mechanism of rotary regenerative type heat exchanger
JP2511343B2 (en) Bearing device for doctor journal
US8845505B2 (en) Separator comprising a direct drive with an elastically supported motor
JPS59206604A (en) Cantilever steam turbine
CN1228155A (en) Device of rotary regenerative heat exchanger
CN108692331B (en) Air preheater
EP0499597A1 (en) Steam and condensate coupling for a drying cylinder in a paper machine
CN106552787A (en) Grease lubricating bearing not disassembly, cleaning device and method
KR20050050133A (en) Screw pump
US5853359A (en) Deflection adjustment roll
US3194302A (en) Regenerative heat exchanger
RU2194766C2 (en) Method of cooling shaft furnace charging device
US5087082A (en) Rotary joint
US20130160968A1 (en) Rotary regenerative heat exchanger
US3101171A (en) Axial flow compressor
US2441844A (en) Seal construction
CN207648430U (en) Lubricating system flow path
JP2007163046A (en) Multistage dryer
JP5973517B2 (en) Seal mechanism for air preheater
US4524755A (en) Friction heat generator
JP3680279B2 (en) Roll bearing sealing device for continuous casting machine, sealing method and continuous casting machine