JPS60200873A - Manufacture of alc - Google Patents

Manufacture of alc

Info

Publication number
JPS60200873A
JPS60200873A JP5401984A JP5401984A JPS60200873A JP S60200873 A JPS60200873 A JP S60200873A JP 5401984 A JP5401984 A JP 5401984A JP 5401984 A JP5401984 A JP 5401984A JP S60200873 A JPS60200873 A JP S60200873A
Authority
JP
Japan
Prior art keywords
weight
alo
raw materials
blast furnace
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5401984A
Other languages
Japanese (ja)
Other versions
JPH0261432B2 (en
Inventor
塩崎 功男
健志 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5401984A priority Critical patent/JPS60200873A/en
Publication of JPS60200873A publication Critical patent/JPS60200873A/en
Publication of JPH0261432B2 publication Critical patent/JPH0261432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 気泡コンクリート(以下ALOと略称する)の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing aerated concrete (hereinafter abbreviated as ALO).

更に詳しくは、主要原料のーっとして高炉水砕スラグを
使用した際のALOの製造方法に関するものである。
More specifically, the present invention relates to a method for producing ALO using granulated blast furnace slag as the main raw material.

ALOはケイ砂、ケイ石なとのケイ酸質原料と、石灰及
びセメントの石灰質原料とを粉砕したものに、適切な量
の水と少量の金属アルミニウム粉末を加えて攪拌したの
ち静置し、あるいは金属アルミニウム粉末を加えないで
、上記のスラリーに空気を混入させて夫々気泡を含有せ
しめたのち半可塑化し、さらにオートクレープに移して
高温高圧水蒸気養生を行なって製造されている。
ALO is made by pulverizing silicic acid raw materials such as silica sand and silica stone, and calcareous raw materials such as lime and cement, adding an appropriate amount of water and a small amount of metal aluminum powder, stirring, and then allowing it to stand still. Alternatively, without adding metal aluminum powder, air is mixed into the slurry to make it contain air bubbles, semi-plasticized, and then transferred to an autoclave and subjected to high-temperature, high-pressure steam curing.

このようにして製造されるALOは、建築用材料として
の一応の圧縮強度、湿乾収縮率、断熱性等の物理的性能
は備えているが、ALOとしてより良い性能のものが望
まれ、その向上のため各種の添加剤が従来より提案又は
実用されている。例えばALO製品の主要構成物質であ
るケイ酸カルシウム水和物の結晶化を促進させる目的で
少量のボーキサイト、カオリン、水酸化アルミニウム等
のアルミニウム含有物質の添加等である。
Although ALO manufactured in this way has physical properties such as compressive strength, wet-dry shrinkage, and heat insulation properties as a building material, it is desired that ALO have better performance. Various additives have been proposed or put into practical use to improve the performance. For example, a small amount of an aluminum-containing substance such as bauxite, kaolin, or aluminum hydroxide may be added for the purpose of promoting crystallization of calcium silicate hydrate, which is the main component of ALO products.

しかしながら、これらの添加剤はそれぞれ一応の効果は
認められるものの、欠点も多く実用には問題点が多い。
However, although these additives have certain effects, they also have many drawbacks and pose many problems in practical use.

即ちボーキサイトは、粉砕の際に容易に粉砕されない部
分がありこれらを均質に粉砕するためには長時間を要し
、且つ酸化鉄の含有率が高いため製品が着色するという
問題があり、カオリンは原料のスラリーの粘度を高め発
泡工程で気泡形成を乱し、又水酸化アルミニウムはカオ
リンと同様に該スラリーの粘度を高め且つ反応速度が早
過ぎるため、ケイ酸カルシウム水和物の結晶化が行なわ
れるオートクレーブ内での水熱反応時には、すでに他の
物質と化合物を形成しており、その大半は添加剤として
有効に働かない等の欠点がある。
In other words, bauxite has parts that are not easily crushed during crushing, and it takes a long time to homogeneously crush these parts, and the high content of iron oxide causes the product to be colored. Aluminum hydroxide increases the viscosity of the raw material slurry and disturbs bubble formation in the foaming process, and like kaolin, aluminum hydroxide increases the viscosity of the slurry and the reaction rate is too fast, leading to crystallization of calcium silicate hydrate. During the hydrothermal reaction in an autoclave, compounds have already been formed with other substances, and most of them have disadvantages such as not working effectively as additives.

上記の欠点のないALOを製造するに当って、ケイ酸質
原料の石英分含有率(品質)、石英の水熱反応時におけ
る反応性(質)等が製品の品質に微妙に影響を与えるこ
とは公知である。
When manufacturing ALO without the above drawbacks, the quartz content (quality) of the silicic acid raw material, the reactivity (quality) of quartz during hydrothermal reaction, etc., have a subtle influence on the quality of the product. is publicly known.

しかしながら上記の両面を常に満足するケイ砂、ケイ石
をめるのは困難であり又資源的にも制約がある。
However, it is difficult to produce silica sand and silica stone that always satisfy both of the above requirements, and there are resource constraints.

一方石灰質原料について見ても、上記の反応性に適した
生石灰、セメントを常時供給するのは同様の困難さを伴
なう。
On the other hand, when looking at calcareous raw materials, it is similarly difficult to constantly supply quicklime and cement suitable for the above-mentioned reactivity.

このような資源問題を背景に、近年ケイ酸質的な性質と
石灰質的な性質とを兼ね備えた資源として高炉水砕スラ
グが、セメントの原料に内割りで5重量%程度、A ’
L Oの原料に内割りで4・0〜50重量%重量%用さ
れつ−ある。
Against the background of such resource issues, in recent years granulated blast furnace slag, a resource that has both silicic and calcareous properties, has been used as a raw material for cement by approximately 5% by weight, A'
It is used in the raw material of L O in an amount of 4.0 to 50% by weight.

しかしながら、高炉水砕スラグはAI Oの含有3 量が10〜20重量%と高い。そしてこのようにAt 
03 含有量の高い原料を使用してALOを製造した場合、ケ
イ酸カルシウム水和物へのAt Oの固溶は3 4重量%程度と云われており、これを超える量のAt 
Oを含有させた場合には、所謂バイトロガー3 ネットが生成され、製品の圧縮強度を大幅に低下させる
という致命的な欠点があった。
However, the content of AIO in granulated blast furnace slag is as high as 10 to 20% by weight. And like this At
03 When ALO is manufactured using raw materials with a high content, the solid solution of At O in calcium silicate hydrate is said to be about 34% by weight, and it is said that the amount of At that exceeds this is about 34% by weight.
When O is included, a so-called bite logger 3 net is generated, which has a fatal drawback of significantly reducing the compressive strength of the product.

本発明の目的は、主要原料として大量の高炉水砕スラグ
を使用しても、前述の欠点が解消されたALCの製造方
法を提供することにある。
An object of the present invention is to provide a method for producing ALC that eliminates the above-mentioned drawbacks even when a large amount of granulated blast furnace slag is used as the main raw material.

この目的を達成するため本願発明者等は鋭意研究の結果
、主要原料として生石灰を使用することなく、あるいは
極く少量の生石灰とセメント及びケイ石の粉末全固形分
に対し内割りで40〜50重量%相当量の高炉水砕スラ
グ粉末を使用し、これに粉末状の7エロシリコン、金属
シリコン又は炭化ケイ素のうち一つ以上の0.5〜4重
量%を添加し、以下通常の方法に従ってALOを製造す
ると・ハイドロガーネットの生成を殆んど抑制すること
が可能でALCとして充分な強度の製品が得られること
を見出し本発明法に到達したものである。
In order to achieve this objective, the inventors of the present application have conducted extensive research and found that the amount of 40 to 50 Using granulated blast furnace slag powder in an amount equivalent to 1% by weight, 0.5 to 4% by weight of one or more of powdered 7erosilicon, metal silicon, or silicon carbide is added thereto, and the following is carried out according to the usual method. The present method was developed based on the discovery that when ALO is produced, it is possible to almost suppress the formation of hydrogarnet and a product with sufficient strength as ALC can be obtained.

即ち本発明の方法は、主要原料としてケイ石、ケイ砂等
のケイ酸質原料とセメントと、高炉水砕スラグとを粉末
状として使用し、必要により生石灰を加え、この混合物
の全固形分中に0.5〜4・重量%含有するように粉末
状好ましくは200メツシユ以下が50重量%以上の金
属シリコン、フェロシリコン又は炭化硅素のうち一つ以
」二を添加し、次いて適当量の水を加えて混合し以下通
常の方法に従ってALCを製造するというものである。
That is, the method of the present invention uses siliceous raw materials such as silica stone and silica sand, cement, and granulated blast furnace slag in powder form as main raw materials, adds quicklime as necessary, and At least 50% by weight of metal silicon, ferrosilicon or silicon carbide is added to the powder, preferably 200 meshes or less, so as to contain 0.5 to 4% by weight, and then an appropriate amount of silicon carbide is added. Water is added and mixed, and ALC is then produced according to a conventional method.

本発明の方法において、金属シリコン、フェロシリコン
等の添加量を限定する理由は、これ以下では本発明の効
果か顕著でなく、これ以上加えるとケイ酸カルシウムの
水和に際して急激な発熱が起り半可塑化の時点でクラン
クが発生するからである。
In the method of the present invention, the reason why the amount of metal silicon, ferrosilicon, etc. added is limited is that the effect of the present invention is not noticeable if it is less than this, and if it is added more than this, rapid heat generation occurs during hydration of calcium silicate. This is because cranking occurs at the time of plasticization.

本発明法の添加剤がこのように少量で顕著な効果があり
、しかも少し過剰に用いればクランクが発生するという
ように、反応性が高い理由についでは明確ではない。
It is not clear why the additive of the present invention has such high reactivity, as it has a remarkable effect in such a small amount, and cranking occurs when used in excess.

本発明法により得られるALCは、AtOを10 3 重量%以上含有する高炉水砕スラグを内割りで約60重
量%程度まで主要原料として使用した場合でも、ハイド
ロガーネットの生成が極めて少なく、ALCとしての充
分な強度のものが確実に得られる。
The ALC obtained by the method of the present invention generates very little hydrogarnet even when granulated blast furnace slag containing 10 3 weight % or more of AtO is used as the main raw material to about 60 weight %. It is possible to reliably obtain a material with sufficient strength.

又、主要原料のケイ石で、Si0分が85重量%と低い
粗悪な物を使用する場合、あるいはセメントて比較的A
tO成分の高いものを使用する場合3 でも、本発明法を適用すれば容易に従来のALO相当品
あるいはそれ以上の性状のものを得ることがてきる。
In addition, when using poor-quality silica stone with a low Si0 content of 85% by weight as the main raw material, or when using cement with a relatively low Si content of 85% by weight,
Even in the case of using a material with a high tO content3, by applying the method of the present invention, it is possible to easily obtain a product with properties equivalent to or better than conventional ALO.

尚本発明法においては、通常生石灰は使用【−2ないが
、適宜3〜5重量%程度の量を併用すると、半可塑化時
の硬化促進に効果が認められるのでコストの面で許容さ
れるならば生石灰を添加することもできる。
In the method of the present invention, quicklime is not normally used, but when used in an appropriate amount of about 3 to 5% by weight, it is effective in accelerating hardening during semi-plasticization, so it is acceptable in terms of cost. If so, you can also add quicklime.

以下実施例について説明する。Examples will be described below.

実施例 高炉水砕スラグ10〜60重量部、普通ポルトランドセ
メント 混合物の全固形分に対し内割りで5電歇%以下の金属シ
リコン、炭化ケイ素又は商品名トヨノぐウタ。
Examples: 10 to 60 parts by weight of granulated blast furnace slag, 5% or less of metallic silicon, silicon carbide, or the trade name Toyonoguta, based on the total solid content of an ordinary Portland cement mixture.

−、東洋電化■製のフェロシリコン(何れも200メツ
シュ以下50重量%以上)を添加し、これGこ67重量
部の水を加え、以下通常の操作Gこ従って夫々ALOを
製造し、ALC製品の圧縮強度(J工SA i16 )
及びハイドロガーネットのビ−りの比較値を測定した。
- Add ferrosilicon manufactured by Toyo Denka (both have a mesh size of 200 or less and 50% by weight or more), add 67 parts by weight of water, and proceed with the following normal operations to produce ALO and ALC products. Compressive strength (J Engineering SA i16)
Comparative values of bead and hydrogarnet were measured.

上記ハイドロガーネットのビ−りの比較イi(i iま
、粉末法X線回折において2017.4・0付近に見ら
れるd.=5.07のピークのカウント数をめ、本発明
法の主要原料(生石灰無添加、ケイ石はS i 0 2
9 5重量%を使用)で添加剤なしの場合(jil16
)を100とし、この値に相当する数値を比較値とした
Comparison of the beads of the above-mentioned hydrogarnet. Raw materials (no added quicklime, silica stone is S i 0 2
95% by weight) without additives (jil16
) was set as 100, and the numerical value corresponding to this value was set as the comparison value.

その結果を第2表に参考例と対比して示す。The results are shown in Table 2 in comparison with reference examples.

尚本実施例に使用した高炉水砕スラグ並びに普通ポルト
ランドセメントの主要成分値を第1表に、X線回折によ
るハイドロガーネットの波形同定の結果を図に夫々参考
として示す。
The values of the main components of the granulated blast furnace slag and ordinary Portland cement used in this example are shown in Table 1, and the results of waveform identification of hydrogarnet by X-ray diffraction are shown in the figure for reference.

尚圧縮強度は40 kgf10trb以上、ノ1イドロ
ガーネットのピーク値は30以下のものを合格品の目安
とした。
In addition, the compressive strength was 40 kgf10trb or more, and the peak value of No. 1 drogarnet was 30 or less as a guideline for passing the product.

第 1 表 高炉水砕スラグ OaO SiO 7I7!O S K
O NaO2 23 2 2 41、20 33.21 11.70 1.05 − 
−普通ポルトランドセメント 61.4・8 21.8
8 5.29 2.27 0.75 0.54高炉水砕
スラグ FeO Mg。
Table 1 Granulated blast furnace slag OaO SiO 7I7! OSK
O NaO2 23 2 2 41, 20 33.21 11.70 1.05 -
-Ordinary Portland cement 61.4・8 21.8
8 5.29 2.27 0.75 0.54 Granulated blast furnace slag FeO Mg.

3 普通ポルトランドセメント 2.82 1.51第 2
 表 表註)×印はSiO品位の低いケイ石で、不純物として
含まれる粘土中には10重量%以上のアルミナを含有す
るものである。
3 Ordinary Portland cement 2.82 1.51 2nd
Notes on the table) The x mark indicates a silica stone with a low SiO grade, and the clay contained as an impurity contains 10% by weight or more of alumina.

第2表より明らかなように・参考例として示した実験A
6、16(添加剤無添加)及び添加剤を本発明法の範囲
以上に添加した実験AI+以外は、何れも大量の水砕ス
ラグを使用したにもかかわらず充分な圧縮強度を示し、
ハイドロガーネットのピーク比較値も低かった。
As is clear from Table 2, Experiment A shown as a reference example
6 and 16 (no additives added) and Experiment AI+ in which additives were added beyond the range of the method of the present invention, all showed sufficient compressive strength despite using a large amount of granulated slag,
The peak comparison value of hydrogarnet was also low.

ちなみにハイドロガーネット比較値と圧縮強度とでは相
関はあるが、例えば実験A14・のようにハイドロガー
ネット比較値が充分に低くても強度の弱いものもあった
Incidentally, although there is a correlation between the hydrogarnet comparison value and the compressive strength, there were cases where the strength was weak even if the hydrogarnet comparison value was sufficiently low, such as in Experiment A14.

これは、前述したように半可塑化の時点で微細なりラッ
クが発生した結果とみられる。
This appears to be the result of the formation of fine racks during semi-plasticization as described above.

尚参考のため添付した図は、実験A6とj610の粉末
法X線回折チャートであるが、本発明法の添加剤を用い
ず大量の水砕スラグを原料とした実験A6は明瞭なハイ
ドロガーネツ)(HG)が認められるが実験AIOでは
、そのピークが大幅に小さくなっているのが判る。又、
実験A17及びA18に示したように粗悪なケイ石を原
料とした場合でも一応の性状を示すALOが得られた。
The figures attached for reference are the powder method X-ray diffraction charts of experiments A6 and j610, but experiment A6, which used a large amount of granulated slag as a raw material without using any additives according to the present invention, had a clear hydrogarnet structure. ) (HG), but in the experimental AIO, it is seen that the peak has become significantly smaller. or,
As shown in Experiments A17 and A18, ALO with reasonable properties was obtained even when poor quality silica was used as the raw material.

【図面の簡単な説明】[Brief explanation of drawings]

図は一部の試料の粉末法X線回折チャー1・である。 HG・・ハイドロガーネット。 出願人 住友金属鉱山株式会社 、/誦−)・5、 The figure shows powder method X-ray diffraction chart 1 of some samples. HG...Hydro Garnet. Applicant: Sumitomo Metal Mining Co., Ltd. ,/recitation-)・5,

Claims (1)

【特許請求の範囲】[Claims] (1) 主要原料としてケイ石等のケイ酸質原料と、セ
メント又はセメントと少量の石灰と、高炉水砕スラグと
を使用するALOの製造方法において、上記主要原料の
混合物全固形分中に0.5〜7I・重量%含有するよう
に粉末状の金属シリコン、フェロシリコン又は炭化ケイ
素のうち一つ以上を添加することを特徴とするALOの
製造方法。
(1) In a method for manufacturing ALO that uses siliceous raw materials such as silica stone, cement or cement and a small amount of lime, and granulated blast furnace slag as the main raw materials, 0% of the total solid content of the mixture of the above-mentioned main raw materials is used. A method for producing ALO, characterized in that one or more of powdered metal silicon, ferrosilicon, or silicon carbide is added so as to contain .5 to 7 I.% by weight.
JP5401984A 1984-03-21 1984-03-21 Manufacture of alc Granted JPS60200873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5401984A JPS60200873A (en) 1984-03-21 1984-03-21 Manufacture of alc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5401984A JPS60200873A (en) 1984-03-21 1984-03-21 Manufacture of alc

Publications (2)

Publication Number Publication Date
JPS60200873A true JPS60200873A (en) 1985-10-11
JPH0261432B2 JPH0261432B2 (en) 1990-12-20

Family

ID=12958871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5401984A Granted JPS60200873A (en) 1984-03-21 1984-03-21 Manufacture of alc

Country Status (1)

Country Link
JP (1) JPS60200873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375251A (en) * 1989-08-15 1991-03-29 Sumitomo Cement Co Ltd High-strength hydraulic substance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496016A (en) * 1972-05-10 1974-01-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496016A (en) * 1972-05-10 1974-01-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375251A (en) * 1989-08-15 1991-03-29 Sumitomo Cement Co Ltd High-strength hydraulic substance

Also Published As

Publication number Publication date
JPH0261432B2 (en) 1990-12-20

Similar Documents

Publication Publication Date Title
CN110885203A (en) Composite mineral admixture and preparation method thereof
WO2007070427A2 (en) Multi-function composition for settable composite materials and methods of making the composition
CN110662731A (en) Mineral additive and light composite product produced from carbonatable calcium silicate
CN111003991A (en) Light high-strength silicate ceramsite concrete
US5082501A (en) Method of preparing building materials
CN115650624B (en) Metal smelting waste residue derived material and preparation method and application thereof
CN112592145A (en) Preparation method of early-strength phosphogypsum expansion mortar
CN115872644A (en) Phosphogypsum hydraulic cementing material and preparation method and application thereof
CN110128043B (en) Submicron active mixed material and preparation method thereof
Vickers et al. Precursors and additives for geopolymer synthesis
US5395443A (en) Method for preparing a cement base material, together with a cement composition containing this base material
CN112851264A (en) High-temperature-resistant concrete based on iron tailings and steel slag powder
JPS60200873A (en) Manufacture of alc
CN112960924B (en) High-chlorine fly ash cementing material and preparation method thereof
JPS58176159A (en) Manufacture of amorphous calcium silicate formed body
US3920466A (en) Binder for cementing wells
He et al. Rheological performance and hydration kinetics of lithium slag-cement binder in the function of sodium sulfate
CN115432966B (en) Permeable concrete and preparation method thereof
JPS62265160A (en) Manufacture of alc
KR810000249B1 (en) Manufacturing method for neutralizing agent in a steel making furnace
Pavlish et al. Concretes for Pile Shielding
JPS60191070A (en) Manufacture of alc
CN116606091A (en) Full solid waste carbon-fixing prestressed green concrete hollow slab and preparation method thereof
CN117682811A (en) Ultra-high-performance prestressed duct grouting material and preparation method thereof
CN117700189A (en) High-performance solid waste-based cementing material and preparation method thereof