JPS60200804A - Oxygen enriching device - Google Patents

Oxygen enriching device

Info

Publication number
JPS60200804A
JPS60200804A JP59054405A JP5440584A JPS60200804A JP S60200804 A JPS60200804 A JP S60200804A JP 59054405 A JP59054405 A JP 59054405A JP 5440584 A JP5440584 A JP 5440584A JP S60200804 A JPS60200804 A JP S60200804A
Authority
JP
Japan
Prior art keywords
air
atmospheric
atmosphere
enricher
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59054405A
Other languages
Japanese (ja)
Other versions
JPH0229601B2 (en
Inventor
Yorikata Shimote
下手 従容
Toshio Motoki
元木 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP59054405A priority Critical patent/JPH0229601B2/en
Publication of JPS60200804A publication Critical patent/JPS60200804A/en
Publication of JPH0229601B2 publication Critical patent/JPH0229601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To attenuate noise and to enable quiet operation by restricting the distance for passing cold air from a noise source to an outlet of the air and the vibration generated on the wall surface around an oxygen enriching device. CONSTITUTION:The oxygen enriching device comprises an air suction port 2 and discharging port 11 provided to a housing 1, a pump housing chamber 7, a passage 5 for introduced air restricting the stream of air from the inlet port 2 to the outlet port of the air 8, and a passage 10 for discharging the air restricting the stream of air from the outlet 9 of the air to a discharging port 11 of the air. A motor and a pump means are housed in said pump housing 7 to which said outlet 8, 9 are provided. Each length of said passages 5, 10 is designed to be larger than the minimum length between both ends of confronting surfaces constructing the housing 1, and the number of bending of each passage 5, 10 is designed to be >=3.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明は大気から酸素の豊富な空気を安定して効率よ(
得る装置に関するものであり、特に医療用に使用するに
適した酸素富化器に関する。
[Detailed description of the invention] a. Industrial application field The present invention is for stably and efficiently extracting oxygen-rich air from the atmosphere (
The present invention relates to an oxygen enricher suitable for medical use.

近年喘息、肺気朧症、慢性気管支炎等の呼吸気系器官の
挾患に苦しむ患者が多く、その最も効果的な治療法の1
つとして酸素吸入法がある。この酸素吸入法の酸素源と
しては現在の多くは深冷分離法によって得た純酸素をボ
ンベ等に詰め供給する方法あるいは液化酸素を直接蒸発
させて配管により供給する方法がとられているが、酸素
切れの監視、高圧ガスとなっている純酸素ガスによる火
気管理の複雑さ・厳しさ、あるいは高圧ガスボンベの取
扱い等管理の厳しさが要求され、ボンベの取換えや運搬
に煩雑さを伴なう、配管による場合は複雑な設備・経路
及び高い設置費が必要となる等により、この方式は特に
一般家庭内で使用するのは困難である。
In recent years, many patients have been suffering from respiratory system obstruction such as asthma, pulmonary oboronia, and chronic bronchitis, and this is one of the most effective treatments.
One method is oxygen inhalation. Most current oxygen sources for this oxygen inhalation method include supplying pure oxygen obtained by cryogenic separation into cylinders, or directly evaporating liquefied oxygen and supplying it through piping. Monitoring for oxygen exhaustion, complexity and severity of fire control due to pure oxygen gas, which is a high-pressure gas, and strict management of handling of high-pressure gas cylinders are required, making replacement and transportation of cylinders complicated. However, when using piping, complicated equipment and routes and high installation costs are required, making this method particularly difficult to use in general households.

一方患者のすぐ近くで大気中の酸素を分離・濃縮する酸
素富化器が簡便な酸素供給源として注目されてきている
。この様な酸素富化器は、酸素より窒素をより選択的に
吸着するゼオライト等の吸着剤を用いた吸着分離法と、
′Ij1素より大きい速度で酸素を透過させることht
−出来る選択性透過膜を用いた膜分離法との大別して2
種類ある。
On the other hand, oxygen enrichers that separate and concentrate atmospheric oxygen in close proximity to patients are attracting attention as a simple oxygen supply source. Such an oxygen enricher uses an adsorption separation method using an adsorbent such as zeolite, which adsorbs nitrogen more selectively than oxygen.
'To allow oxygen to permeate at a rate greater than 1 element.
- Broadly divided into membrane separation methods using selectively permeable membranes: 2
There are different types.

本発明は上述の如きの酸素富化器での、特に患者近くで
使用する際最も問題となる騒音につき改良を加えたもの
である。
The present invention improves the noise that is most problematic in the oxygen enricher as described above, especially when it is used near a patient.

b、従来技術 上述の酸素富化器は吸着分離法、膜分離法のいずれに於
ても、電動機の動力によりポンプを駆動せしめて、吸着
分離法では大気を1〜s ki/cda K圧縮して吸
着剤に接触させ窒素を吸着させ、膜分離法では選択性透
過膜を通過した酸素成分の多いガスを100〜300T
orrの真空状態に維持して所定の酸素濃度を得る構成
をとっている。
b. Prior Art In both the adsorption separation method and the membrane separation method, the oxygen enricher described above drives the pump with the power of an electric motor, and in the adsorption separation method, the atmosphere is compressed by 1 to s ki/cda K. In the membrane separation method, the oxygen-rich gas that has passed through a selective permeable membrane is heated to 100 to 300 T.
The structure is such that a predetermined oxygen concentration is obtained by maintaining the vacuum state at orr.

連続的に酸素成分の濃縮された空気(以下富化空気と略
称する)を得るために、吸着分離法では吸着剤に空気を
吸着および離脱させる必要から操作圧力は加圧および/
又は減圧を繰返す、いわゆるプレッシャー・スイング方
式であり、圧縮機による騒音が大きくその騒音が大きく
なったり小さくなったりの繰返しで使用者、特に病人に
とって苦痛を感じさせる。膜分離法は生成された富化空
気を真空にするのみでかつ圧力(真空度)も一定である
ため吸着分離法に比し、真空ポンプより発生する騒音は
かなり低位にあるが、夜間等の周囲の騒音レベルが低い
場合特に睡眠時には患者あるいは周辺に夜店する人にと
っては苦痛を感じさせる。
In order to continuously obtain air enriched in oxygen components (hereinafter referred to as enriched air), the adsorption separation method requires air to be adsorbed and desorbed by the adsorbent, so the operating pressure is pressurized and/or
Alternatively, there is a so-called pressure swing method in which pressure reduction is repeated, and the noise caused by the compressor is loud and the noise repeatedly increases and decreases, causing pain to users, especially sick people. In the membrane separation method, the generated enriched air is only evacuated and the pressure (degree of vacuum) is also constant, so the noise generated by the vacuum pump is considerably lower than that in the adsorption separation method. Low ambient noise levels can be distressing for the patient or for people living nearby at night, especially when sleeping.

現在塩の酸素富化器は富化空気性状の高度化あるいは酸
素富化器の小型化に技術の焦点があてられ、使用者の立
場にたっての騒音対策を深く検討するに到っていない。
Currently, the technology of salt oxygen enrichers is focused on improving the quality of the enriched air or downsizing the oxygen enricher, and no deeper consideration has been given to noise countermeasures from the user's perspective.

酸素富化器に於ては電動機の動力によりポンプ手段を駆
動せしめているため電動機を冷却すること、ガスを圧縮
する(吸着分離法では大気を、膜分離法では富化空気を
真空から大気圧造夫々圧縮する。)ために発生するポン
プ自体の昇温を極力防止することが、酸素富化器を安定
し【効率よく作動させる必須要件である。従って、一般
には富化空気の数倍乃至数10倍り多量の空気を冷却フ
ァンを介して電動機及びポンプに接触させてこれらを冷
却させる方策を採っている3、このため酸素富化器には
冷却用の大気の通路として、その外壁には大気を流入出
させるための面積の大きな開口部を、その内部には大き
な空間をもつ流路が設置され【いる。
In an oxygen enricher, the pump means is driven by the power of the electric motor, so the electric motor is cooled and the gas is compressed (in the adsorption separation method, the atmosphere is transferred, and in the membrane separation method, the enriched air is transferred from vacuum to atmospheric pressure). It is an essential requirement for the oxygen enricher to operate stably and efficiently to prevent as much as possible the temperature rise of the pump itself, which occurs due to the production and compression. Therefore, in general, a method is adopted in which an amount of air several to several ten times larger than the enriched air is brought into contact with the electric motor and pump via a cooling fan to cool them3. As air passages for cooling, a large opening is installed on the outer wall for air to flow in and out, and a flow path with a large space is installed inside the opening.

一方酸素富化器における騒音の発生ポンプ。On the other hand, the pump that generates noise in the oxygen enricher.

電動機及び冷却ファンが主たるもので、更に吸着分離法
ではプレッシャー・スイングで吸着剤を再生する時に吸
着剤に吸着された音素成分の多い空気を除圧し【離脱さ
せて大気に排出させる際の排出音も瞬時的ではあるが割
合大きなものである。
Electric motors and cooling fans are the main components, and in the adsorption separation method, when the adsorbent is regenerated by pressure swing, the air rich in phonetic components adsorbed by the adsorbent is depressurized and the air that is released and discharged into the atmosphere is emitted. Although it is instantaneous, it is relatively large.

騒音を低位に保つためには騒音の発生源を密閉した空間
に設置するのが最も簡便で確実な方法であるが、上述の
説明で明らかなように各部位の冷却のための大気の通路
を確保する必要上から上記の方策の採用は難しい。
The easiest and surest way to keep noise levels low is to install the noise source in a closed space, but as is clear from the above explanation, it is best to install air passages to cool each part. It is difficult to adopt the above measures due to the need to ensure the above.

C1発明の目的 本発明は上記の点を鋭意研究し、特に騒音発生源から酸
素富化器外壁に設けられた開口部迄の冷却風の通る距離
及び騒音発生源周りの周壁に生ずる壁面振動に着目して
なされたもので、騒音レベルの低位な酸素富化器、特に
医療用に好適な酸素富化器を提供することを目的とする
C1 Purpose of the Invention The present invention has focused on the above-mentioned points, and has particularly focused on the distance through which the cooling air passes from the noise source to the opening provided in the outer wall of the oxygen enricher, and the wall vibration that occurs on the peripheral wall around the noise source. The object of this invention is to provide an oxygen enricher with a low noise level, particularly an oxygen enricher suitable for medical use.

d1発明の構成 電動機の動力により駆動せめるポンプ手段を少なくとも
1個使用して大気より酸素富化空気を得るrR素素化化
器おいて、紋富化器の外殻を形成する面に設けられた大
気取入口及び大気排出口と、該富化器に内蔵された#電
動機及び骸ポンプ手段を収納する室構造であって計重構
造を形成する面に設けられた該室構造への大気流入開口
部及び該室構造からの大気流出開口部を有する少なくと
も1個のポンプ収納室と、該大気取入口から該大気流入
開口部への大気の流れを拘束する大気流入通路と、該大
気流出開口部から該大気排出口への大気の流れを拘束す
る大気排出通路とを有し、該大気流入通路の長さと該大
気排出通路の長さの各々が該富化器外殻を構成する面に
おける相対する両端間の長さの最小値以上であり、該大
気流入通路と該大気排出通路の各々の屈曲回数が3回以
上となるように構成されていることを特徴とする酸素富
化器及びさらに該富化器の前面側の外殻の内側の少なく
とも一部に空間部を有することを特徴とする酸素富化器
である。
d1 Constituent of the Invention In an rR atomizer for obtaining oxygen-enriched air from the atmosphere using at least one pump means driven by the power of an electric motor, a rR atomizer is provided on a surface forming an outer shell of the pattern enricher. A chamber structure that houses an air intake inlet and an air outlet, and an electric motor and skeleton pump means built in the enricher, and is provided on a surface forming a weighing structure, and air flows into the chamber structure. at least one pump housing chamber having an opening and an atmospheric outflow opening from the chamber structure; an atmospheric inflow passage restricting the flow of atmospheric air from the atmospheric intake to the atmospheric inflow opening; and an atmospheric outflow opening. an atmosphere exhaust passage that restricts the flow of atmosphere from the atmosphere outlet to the atmosphere exhaust port, and each of the length of the atmosphere inflow passage and the length of the atmosphere exhaust passage is in the plane constituting the outer shell of the enricher. An oxygen enricher characterized in that the length between opposing ends is longer than the minimum value, and the number of bends of each of the atmospheric inflow passage and the atmospheric discharge passage is three or more times; and Furthermore, the oxygen enricher is characterized in that it has a space at least partially inside the outer shell on the front side of the oxygen enricher.

本願発明における酸素富化器は、大気より酸素濃度の高
められたいわゆる酸素富化空気を得るものであり、その
酸素濃度を高める手段としては吸着分離、膜分離手段の
いずれを用いてもよい。また核酸索富化器は、電動機の
動力により駆動されるポンプ手段、すなわち真空ポンプ
、圧縮機等を少なくとも1個内蔵するものである。かか
るポンプ手段は該富化器の1部を構成するポンプ収納室
に収納されるが、該収納室には1個又は2個以上のポン
プ手段を収納することができ、該収納室は通常1個が好
ましいが、2個以上であってもよい。尚該富化器内で用
いられる送風機は大気通路の途中にあってもよいが、発
生する騒音が大きい場合には核状納室に内蔵せしめるこ
とが可能である。
The oxygen enricher according to the present invention obtains so-called oxygen-enriched air having a higher oxygen concentration than the atmosphere, and either adsorption separation or membrane separation may be used as a means for increasing the oxygen concentration. Further, the nucleic acid enrichment device incorporates at least one pump means, such as a vacuum pump or a compressor, driven by the power of an electric motor. Such a pump means is housed in a pump storage chamber forming a part of the enricher, but the storage chamber can accommodate one or more pump means, and the storage chamber usually has one or more pump means. It is preferable that the number is 1, but the number may be 2 or more. The blower used in the enrichment device may be placed in the middle of the atmospheric passage, but if the generated noise is large, it may be built into the nuclear chamber.

本発明の酸素富化器内を流れる大気とは、該ポンプ手段
等に連結されたパイプ内を流れる空気ではなくて、ダク
ト等の比較的大きな通路を流れる空気を意味するもので
ある。
The atmosphere flowing through the oxygen enricher of the present invention does not mean air flowing through a pipe connected to the pump means, but air flowing through a relatively large passage such as a duct.

本発明にか〜る酸素富化器を用いて更に詳しく説明する
が、該図面は本発明の一実施態様に示すにすぎず、本発
明は図面により制限を受けるものではない。
The oxygen enricher according to the present invention will be explained in more detail, but the drawings merely show one embodiment of the present invention, and the present invention is not limited by the drawings.

第1図は本発明を適用した膜分離性酸素富化器(以下脱
型富化器と略す)の概略構造を示す。
FIG. 1 shows a schematic structure of a membrane separable oxygen enricher (hereinafter abbreviated as demolding enricher) to which the present invention is applied.

換型富化器に於ては分離膜の片側に多量の大気を掃引さ
せ、他方を低位に保つと分離膜のカスの選択透過性によ
り低圧側に酸素が濃縮(富化)される。この様な分離膜
を多数枚積層し実用的な形としたものをモジュールと言
う。
In the exchange type enricher, by sweeping a large amount of air to one side of the separation membrane and keeping the other side at a low level, oxygen is concentrated (enriched) on the low-pressure side due to the permselectivity of the scum of the separation membrane. A practical configuration in which a large number of such separation membranes are stacked together is called a module.

図に於て、筺体1は多数の壁部材により大気の通路が構
成され、大気取入口2により筐体外から取り入れられた
大気は送風機3.膜モジュール4を含む大気流入通路5
を通って真空ポンプ6が設置された収納室7の大気流大
開口部8を通って収納室内に送りこまれる。
In the figure, a housing 1 has an air passage formed by a large number of wall members, and the air taken in from outside the housing through an air intake port 2 is passed through a blower 3. Atmospheric inflow passage 5 including membrane module 4
The air is fed into the storage chamber through the large opening 8 of the storage chamber 7 in which the vacuum pump 6 is installed.

収納室7の中で、真空ポンプ6のポンプ部及びモータと
熱交換し、温められた大気は大気流出開口部9より収納
室7から排出され、大気流入通路工0を経て大気排出口
11より筐体外へ排出される。
In the storage chamber 7, heat is exchanged with the pump part and motor of the vacuum pump 6, and the warmed atmosphere is discharged from the storage chamber 7 through the atmosphere outflow opening 9, passes through the air inflow passageway 0, and is discharged from the atmosphere exhaust port 11. It is ejected outside the casing.

以上の大気通過経路の中で、最も騒音レベルの高い部位
はポンプの収納室7で、この収納室7より発生する騒音
をいかに抑制しあるいは筐体外へ伝播させないかが技術
上の要点となる。尚送風機からの騒音は小さいので、こ
こでは無視して前記の如く大気流入通路の一部と考える
Among the above atmospheric passages, the part with the highest noise level is the pump storage chamber 7, and the key technical point is how to suppress the noise generated from this storage chamber 7 or prevent it from propagating outside the housing. Since the noise from the blower is small, it will be ignored here and considered as part of the air inflow passage as described above.

収納室7の騒音レベルを低下させるためには、低騒音型
の真空ポンプを使用するとか、収納室7内に吸音材を設
置するとかの手段がとられるが、か〜る手段のみでは現
在要求される医療用酸素富化器の騒音レベルを満足しえ
ず、収納室7からの音の伝播抑制に工夫が必要となる。
In order to reduce the noise level in the storage chamber 7, measures such as using a low-noise vacuum pump or installing sound-absorbing materials in the storage chamber 7 are taken, but these measures alone do not meet the current requirements. The noise level of the medical oxygen enricher cannot be satisfied, and it is necessary to devise ways to suppress the propagation of sound from the storage chamber 7.

この一手段として収納室7内に吸音材に加えて遮音材を
設置する事も考えられ、これKより収納室7がら壁面を
通じての音の伝播はかなり抑制されるが、真空ポンプ冷
却に必要な空気量が多いため大気流入開口部8及び大気
流出開口部90面積を小さくするKも限度がありこの部
分からの音の漏出が相自高レベルとなりこの騒音を如何
に抑制するかが富化器全体の騒音レベルの高低を左右し
てくる。換型富化器に於ては第1図にもみもれるように
膜モジユール4等が大気流入量路に設置され、ヌ経路も
相当屈曲せしめられる構造としうるので、大気流入開口
部8がらの漏出騒音は大気取入口2に達する迄に相当減
衰し、大気流出開口部9からの漏出騒音が支配的となる
One way to do this is to install sound insulating materials in addition to sound absorbing materials inside the storage chamber 7. This will considerably suppress the propagation of sound through the walls of the storage chamber 7, but it will also reduce the amount of noise necessary for cooling the vacuum pump. Since the amount of air is large, there is a limit to reducing the area of the air inflow opening 8 and the air outflow opening 90, and the leakage of sound from these parts is at a relatively high level, and the problem with the enrichment device is how to suppress this noise. This affects the overall noise level. In the exchange type enricher, as shown in FIG. The leaked noise is considerably attenuated until it reaches the atmosphere intake port 2, and the leaked noise from the atmosphere outflow opening 9 becomes dominant.

本発明者らは上記漏出騒音を低位に抑えるべく鋭意検討
の結果、収納室7に設けられた開口部8又は9がら筐体
の開口部2ヌはll迄の通路長、即ち2→8の通路長及
び9→卓y動のす 11の通路長の各々を富化器Wiプ最小値よりも大きく
とりかつ通路の屈曲回数を少な(とも3回以上とると漏
出騒音を非常に減衰させうる事が判明し、本発明に到達
したものである。
As a result of intensive studies to suppress the leakage noise, the inventors of the present invention found that the opening 8 or 9 provided in the storage chamber 7 has a passage length of 11, that is, the passage length of 2→8. The passage length and the passage length of 9->Table y movement 11 should each be set larger than the minimum value of the enricher Wip, and the number of bends in the passage should be small (if both are bent 3 times or more, the leakage noise can be greatly attenuated). This has led to the present invention.

大気の通過距離を長くすればするほどその長さに応じて
騒音レベルは一般に低下するが富化器の如く種々の周波
数が混在する騒音では余程注意して通過距離を選定しな
いと逆に共鳴により特定周波数の音が増幅される可能性
がある。ところが大気の通路を適当回屈曲させると通過
距離がある一定長以上であれば共鳴も抑制しうると同時
に種々の周波数の騒好ましくは##81.5倍以上を確
保すればよい。あまりに通過距離が短かいと低周波数の
音が減衰しない。
Generally speaking, the longer the distance through which the atmosphere travels, the lower the noise level will be.However, in the case of noise with a mixture of various frequencies, such as from an enricher, if the distance through which the atmosphere travels is not selected carefully, it will cause resonance. There is a possibility that sound at a specific frequency will be amplified. However, if the atmospheric passage is bent an appropriate number of times, it is possible to suppress resonance if the passage distance is a certain length or more, and at the same time, it is sufficient to ensure that the noise of various frequencies is preferably 81.5 times or more. If the passage distance is too short, low frequency sounds will not be attenuated.

一方大気通路の屈曲部での吸音効果の出現前の反射ある
いは音の共鳴防止があり、騒音低減に大きな効果がみら
れるが、いたずらに屈曲回数を多くすることは富化器の
構造を複雑とし筐体コストを上げることばかりでなく、
大気の圧力損失も大きくなり送風機の騒音レベルを上昇
させることとなり好ましい事ではない。屈曲回数は低周
波数域迄有効に騒音レベルを低減させるためには3回以
上が好ましい。更に屈曲部位に吸音材あるいは吸音材及
び遮音材を設置するとより好ましい。一般の機器に於け
る騒音対策は4000 Hz程度の高周波数の騒音を問
題とするが、酸素富化器に於ては100〜2000Hz
の周波数が支配的であり、500Hz以下の騒音レベル
低下には上記手段が非常に有効である。
On the other hand, there is reflection before the sound absorption effect occurs at the bending part of the atmospheric passage, or prevention of sound resonance, which has a great effect on noise reduction, but unnecessarily increasing the number of bends complicates the structure of the enricher. In addition to increasing the cost of the housing,
The pressure loss of the atmosphere also increases, which increases the noise level of the blower, which is not desirable. The number of bends is preferably three or more in order to effectively reduce the noise level down to the low frequency range. Furthermore, it is more preferable to install a sound absorbing material or a sound absorbing material and a sound insulating material at the bent portion. Noise countermeasures for general equipment deal with high frequency noise of around 4000 Hz, but oxygen enrichers deal with high frequency noise of around 100 to 2000 Hz.
The above-mentioned means are very effective in reducing the noise level below 500 Hz.

第2図に脱型富化器での大気排出通路の種々の実施例を
示す。第2図に於て、図面の左側が該富化器の前面側(
通常は操作面である)を示し、図中一点鎖線の途中に丸
印を付された部分が本質的な屈曲部位を示す。大気排出
口で屈曲排出される事は大きな騒音低下とはならないの
で無視して考えるのが好ましい。
FIG. 2 shows various embodiments of atmospheric exhaust passages in a demolding enricher. In Figure 2, the left side of the drawing is the front side of the enricher (
In the figure, the part marked with a circle in the middle of the dashed line indicates the essential bending part. It is preferable to ignore the bending and exhaustion at the atmosphere exhaust port, as this does not result in a significant reduction in noise.

第2図(a)は第1図の大気通路を模式的に示したもの
で、屈曲回数は3回であり、 (b) (c) (Φの
側では夫々、4,3.4回である。第2図(c)に見ら
れるように、操作側の筐体壁部材12と収納室壁部材1
3により空間部14を構成すると、収納室70周辺より
発生する面前が直接筐体外へ放出されることな(騒音レ
ベル搾油1]に非常に有効であり、又該空間部14を(
a)あるいは(b)図の様に空気経路の一部として使用
することは、収納室面前防止及び経路長増加、屈曲数増
加の点からも非常に好ましい。
Figure 2 (a) schematically shows the atmospheric passage in Figure 1, where the number of bends is 3, (b) (c) (4 and 3.4 times on the Φ side, respectively). As shown in FIG. 2(c), the operation side housing wall member 12 and the storage chamber wall member 1
3 to form the space 14, it is very effective to prevent the surface noise generated around the storage chamber 70 from being directly emitted outside the housing (noise level oil extraction 1), and also to make the space 14 (
It is very preferable to use it as a part of the air path as shown in Figures a) or (b) from the viewpoint of preventing the front surface of the storage chamber, increasing the path length, and increasing the number of bends.

第2図の一点鎖線で示される空気経路中で屈曲部に吸音
材を設置することが有効な事は前述したが、より吸音効
果を高めるため経路自体にも吸音材を設置することが好
ましく、屈曲部も含めて全長の115以上設置するとよ
り好ましい。
As mentioned above, it is effective to install sound absorbing material at the bend in the air path shown by the dashed line in FIG. It is more preferable that the total length including the bent portion is 115 or more.

吸着型富化器に於ては模型の様に多量の掃引大気は必要
としないがポンプ温度上昇が大きいため結果的には模型
と同程度の冷却空気を必要とする。吸着型ではポンプが
圧縮機のため発生騒音は模型より大きく又富化器自体の
構造が簡単なため本発明を適用し冷却空気経路を工夫す
れば大きな騒音レベルり低下が企れる。第3図に本発明
の実施態様を例示する。
The adsorption enricher does not require a large amount of swept air like the model, but because the pump temperature rises large, it ultimately requires the same amount of cooling air as the model. In the adsorption type, since the pump is a compressor, the generated noise is louder than the model, and the structure of the enricher itself is simple, so if the present invention is applied and the cooling air path is devised, the noise level can be significantly reduced. FIG. 3 illustrates an embodiment of the present invention.

いる部分は紙面垂直方向に流路が2分割された状態を示
し、筐体構造を簡略化しっへ通過長の増大及び屈曲回数
の増加を企ったものである。
The part shown in FIG. 2 shows a state in which the flow path is divided into two in the direction perpendicular to the plane of the paper, and is intended to simplify the housing structure, increase the passage length, and increase the number of bends.

e1発明の効果 木兄BAKよって、酸素富化器からの漏出騒音を減衰せ
しめることができ、極めて静かな運転が可能な酸素富化
器を提供することが可能である。
E1 Effects of the Invention According to BAK, it is possible to attenuate leakage noise from the oxygen enricher and provide an oxygen enricher that can operate extremely quietly.

その実施例として、脱型富化器で第4図に示す屈曲回数
2回のもの、第2図(C>の3回のもの、第2図(b)
の4回のものについて騒音低下効果を測定した結果を次
表に示す。
As an example, the demolding enricher is bent twice as shown in Fig. 4, as shown in Fig. 2 (C>), and as shown in Fig. 2 (b).
The following table shows the results of measuring the noise reduction effect four times.

尚、静粛感が出るのは該騒音低下効果が15dB(A)
以上であるとされている。
In addition, the noise reduction effect is 15 dB (A) to give a sense of quietness.
This is said to be the above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した脱型富化器の櫃略構造を、第
2図は流出側流路の実施態様の例を、第3図は吸着型富
化器に本発明を適用した実施態様の例を示し、第4図は
本発明の効果を調べるため屈曲回数を2回とした脱型富
化器の流出側流路を示す。 特許出願人 帝人株式会社 代理人 弁理士 前 1) 純 博
Fig. 1 shows a schematic structure of a demolding enricher to which the present invention is applied, Fig. 2 shows an example of an embodiment of the outlet flow path, and Fig. 3 shows an adsorption type enricher to which the present invention is applied. An example of the embodiment is shown, and FIG. 4 shows an outlet side flow path of a demolding enricher which was bent twice in order to investigate the effects of the present invention. Patent Applicant Teijin Ltd. Agent Patent Attorney Former 1) Hiroshi Jun

Claims (1)

【特許請求の範囲】 (1) 電動機の動力により駆動せめるポンプ手段を少
なくとも1個使用して大気より酸素富化空気を得る酸素
富化器において、該富化器の外殻を形成する面に設ゆら
れた大気取入口及び大気排出口と、該富化器に内蔵され
た該電動機及び該ポンプ手段を収納する室構造であって
該室構造を形成する面に設けられた該室構造への大気流
入開口部及び該室構造からの大気流出開口部を有する少
なくとも1個のポンプ収納室と、該大気取入口から該大
気流入開口部への大気の流れを拘束する大気流入通路と
、該大気流出開口部から該大気排出口への大気の流れを
拘束する大気排出通路とを有ける相対する両端間の長さ
の最小値以上であり、該大気流入通路と該大気排出通路
の各々の屈曲回数が3回以上となるように構成されてい
ることを特徴とする酸素富化器。 (2: 該大気流入通路及び/又は該大気排出通路が、
その内面の少なくとも一部に吸音材を設置せしめたもの
である特許請求の範囲第1項記載の酸素富化器。 (3) 該大気流入通路及び/ヌは該大気排出通路が、
その長さの一以上の内面に吸音材を設置せしめたもので
ある特許請求の範囲第2項記載の酸素富化器。 (4) 該大気流入通路及び/又は該大気排出通路が、
少なくとも1ケ所の屈曲部の内面に吸音材を設置せしめ
たものである特1’f 請求の範囲第2項記載の酸素富
化器。 (5) 電動機の動力により駆動せしめるポンプ手段を
少なくとも1個使用して大気より酸素富化空気を得る酸
素富化器において、#富化器の外殻を形成する面に設け
られた大気取入口及び大気排出口と、該富化器に内蔵さ
れた該電動機及び該ポンプ手段を収納する重構造であっ
て該重構造を形成する面に設ゆられた該重構造への大気
流入開口部及び骸室構造からの大気流出開口部を有する
少な(とも1個のポンプ収納室と、該大気取入口から該
大気流入開口部への大気の流れを拘束する大気流入通路
と、皺大気流出開口部から腋大気排出口への大気の流れ
を拘束する大気排出通路とを有し、該大気流入通路の長
さと該大気排出通路の長さの各々が骸富化器外殻を構成
する面における相対する両端間の長さの最小値以上であ
り、該大気流入通路と核大気排出通路の各々の屈曲回数
が3回以上となるように構成され、該富化器の画面側の
外殻の内側の少なくとも一部に空間部を有することを特
徴とする酸素富化器。 (6) 該空間部が、該大気流入通路及び/又は該大気
排出通路の一部である特許請求の範囲第5′94記載の
酸素富化器。 (7)#大気流入通路及び/又は紋大気排出通路が、そ
の内面の少なくとも一部に吸音材を設置せしめたもので
ある特許請求の範囲第5項。 第6.!j[いずれかに記載の酸素富化器。
[Scope of Claims] (1) In an oxygen enricher for obtaining oxygen-enriched air from the atmosphere using at least one pump means driven by the power of an electric motor, a surface forming the outer shell of the enricher A chamber structure for accommodating an air inlet and an air outlet provided therein, the electric motor built in the enricher, and the pump means, the chamber structure being provided on a surface forming the chamber structure. at least one pump housing chamber having an atmospheric inflow opening and an atmospheric outflow opening from the chamber structure; and an atmosphere exhaust passage that restricts the flow of atmosphere from the atmosphere outflow opening to the atmosphere exhaust port, and the length between the opposite ends of each of the atmosphere inflow passage and the atmosphere exhaust passage is greater than or equal to the minimum value. An oxygen enricher characterized in that it is configured to be bent three times or more. (2: The atmospheric inflow passage and/or the atmospheric discharge passage are
The oxygen enricher according to claim 1, wherein a sound absorbing material is provided on at least a portion of the inner surface of the oxygen enricher. (3) The atmospheric inflow passage and/or the atmospheric discharge passage are
The oxygen enricher according to claim 2, wherein a sound absorbing material is installed on one or more inner surfaces of the oxygen enricher. (4) The atmospheric inflow passage and/or the atmospheric discharge passage are
The oxygen enricher according to claim 2, wherein a sound absorbing material is installed on the inner surface of at least one bent portion. (5) In an oxygen enricher that obtains oxygen-enriched air from the atmosphere using at least one pump means driven by the power of an electric motor, an air intake port provided on the surface forming the outer shell of the enricher. and an atmospheric air outlet, and an atmospheric inflow opening into the heavy structure provided on a surface forming the heavy structure, the heavy structure accommodating the electric motor and the pump means built into the enricher; a pump storage chamber having an air outflow opening from the skeleton structure; an air inflow passageway that restricts the flow of air from the air intake to the air inflow opening; and a wrinkled air outflow opening. and an atmospheric exhaust passage that restricts the flow of atmospheric air from the axillary atmospheric outlet to the axillary atmospheric exhaust port, and the length of the atmospheric inflow passage and the length of the atmospheric exhaust passage are each relative to each other in the plane constituting the shell of the carcass enricher. The length between both ends of the atmosphere inflow passage and the nuclear atmosphere exhaust passage are each bent three times or more, and the inner side of the outer shell on the screen side of the enricher is (6) Claim 5', wherein the space is a part of the atmosphere inflow passage and/or the atmosphere discharge passage. The oxygen enricher according to Item 94. (7) #Claim 5, wherein the atmosphere inflow passage and/or the atmosphere exhaust passage have a sound absorbing material installed on at least a part of the inner surface thereof. .!j [Oxygen enricher according to any of the above.
JP59054405A 1984-03-23 1984-03-23 SANSOFUKAKI Expired - Lifetime JPH0229601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59054405A JPH0229601B2 (en) 1984-03-23 1984-03-23 SANSOFUKAKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59054405A JPH0229601B2 (en) 1984-03-23 1984-03-23 SANSOFUKAKI

Publications (2)

Publication Number Publication Date
JPS60200804A true JPS60200804A (en) 1985-10-11
JPH0229601B2 JPH0229601B2 (en) 1990-07-02

Family

ID=12969783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59054405A Expired - Lifetime JPH0229601B2 (en) 1984-03-23 1984-03-23 SANSOFUKAKI

Country Status (1)

Country Link
JP (1) JPH0229601B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155204A (en) * 1984-12-28 1986-07-14 Teijin Ltd Oxygen enriching apparatus
JPS62140619A (en) * 1985-12-12 1987-06-24 Teijin Ltd Oxygen enricher
US4789388A (en) * 1984-12-27 1988-12-06 Teijin Limited Oxygen enriching apparatus
JPH04246366A (en) * 1991-01-31 1992-09-02 Teijin Ltd Oxygen concentrating device
WO2003074113A1 (en) 2002-03-05 2003-09-12 Teijin Limited Oxygen enricher
EP1663433A2 (en) * 2003-09-02 2006-06-07 Airsep Corporation Sound enclosure for portable oxygen concentrators

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5221301B2 (en) * 2008-11-21 2013-06-26 フクダ電子株式会社 Air supply device and oxygen concentrator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789388A (en) * 1984-12-27 1988-12-06 Teijin Limited Oxygen enriching apparatus
JPS61155204A (en) * 1984-12-28 1986-07-14 Teijin Ltd Oxygen enriching apparatus
JPH03324B2 (en) * 1984-12-28 1991-01-07 Teijin Ltd
JPS62140619A (en) * 1985-12-12 1987-06-24 Teijin Ltd Oxygen enricher
JPH044007B2 (en) * 1985-12-12 1992-01-27
JPH04246366A (en) * 1991-01-31 1992-09-02 Teijin Ltd Oxygen concentrating device
WO2003074113A1 (en) 2002-03-05 2003-09-12 Teijin Limited Oxygen enricher
US7179326B2 (en) 2002-03-05 2007-02-20 Teijin Limited Oxygen concentration apparatus
EP1663433A2 (en) * 2003-09-02 2006-06-07 Airsep Corporation Sound enclosure for portable oxygen concentrators
JP2007503950A (en) * 2003-09-02 2007-03-01 エアーセップ・コーポレーション Sound container for portable oxygen concentrator
EP1663433A4 (en) * 2003-09-02 2008-05-21 Airsep Corp Sound enclosure for portable oxygen concentrators
JP4796492B2 (en) * 2003-09-02 2011-10-19 エアーセップ・コーポレーション Sound container for portable oxygen concentrator

Also Published As

Publication number Publication date
JPH0229601B2 (en) 1990-07-02

Similar Documents

Publication Publication Date Title
JP4398736B2 (en) Low noise oxygen concentrator
US20090025564A1 (en) Silencer and oxygen concentrator having silencer
JPS60200804A (en) Oxygen enriching device
KR102087455B1 (en) Sound damper and oxygen concentration device comprising same
JPH044007B2 (en)
JPH08141087A (en) Oxygen concentrator for medical purpose
JP5275677B2 (en) Oxygen concentrator
JPS61155204A (en) Oxygen enriching apparatus
JP4064971B2 (en) Oxygen concentrator
JPS63218502A (en) Oxygen concentrator
JP3577763B2 (en) Pressure fluctuation adsorption type oxygen concentrator
JP5221301B2 (en) Air supply device and oxygen concentrator
JP2528176B2 (en) Oxygen concentrator
JP5500819B2 (en) Sound absorbing member
JP5907705B2 (en) Compressor for medical equipment
JPH07275632A (en) Oxygen concentrating apparatus
JPS6148406A (en) Cabinet for oxygen condenser and oxygen condensing device
JP5413880B2 (en) Oxygen concentrator
JP2006166996A (en) Oxygen concentrator
JP2008200112A (en) Oxygen concentrator
JP5483866B2 (en) Ventilation structure
JP4579665B2 (en) Oxygen concentrator
JP2010102192A (en) Plate structure for sound absorbing, and oxygen concentration device
JP2001000552A (en) Oxygen thickening device
JPH09146557A (en) Low noise device casing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term