JPS60200702A - Brake controller of electric railcar - Google Patents

Brake controller of electric railcar

Info

Publication number
JPS60200702A
JPS60200702A JP5635784A JP5635784A JPS60200702A JP S60200702 A JPS60200702 A JP S60200702A JP 5635784 A JP5635784 A JP 5635784A JP 5635784 A JP5635784 A JP 5635784A JP S60200702 A JPS60200702 A JP S60200702A
Authority
JP
Japan
Prior art keywords
braking force
brake
brake force
armature
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5635784A
Other languages
Japanese (ja)
Inventor
Yoshiharu Tsuchiya
土谷 吉晴
Takashi Emoto
江本 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5635784A priority Critical patent/JPS60200702A/en
Publication of JPS60200702A publication Critical patent/JPS60200702A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To prevent an electric railcar from sliding by decreasing a brake force in a high speed range as compared with that in a low speed range. CONSTITUTION:An armature voltage limiter 21 outputs an armature voltage limiter signal 22 when the armature voltage of a main motor is the prescribed value or higher, a real brake force calculator 15 obtains a regenerative brake force generated from the motor at that time from a main motor current to output a real brake signal 16, and a sliding time conduction rate reducing pattern generator 27 outputs a conduction rate reducing pattern 28 at the sliding time. A chopper controller 4 applies a conduction rate signal 24 in response to a brake force command value 2, a real brake signal 16, an armature voltage limiter signal 21, and a conduction rate reducing pattern 28. A pneumatic brake force controller 3 applies a supplementary brake force command value 17 to a brake force controller 3 in response to the command value 2, and the signals 16 and 22.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は電気車のブレーキ制御装置の改良に関し、特に
電機子チョッパ装置により制御する回生ブレーキ力を補
足する空気ブレーキの制御技術に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an improvement in a brake control device for an electric vehicle, and more particularly to a control technique for an air brake that supplements regenerative braking force controlled by an armature chopper device.

〈発明の技術的背景とその問題点〉 近年の電気車は加減速に際し、レールと車輪との間の摩
擦力、即ち鉄道工学でいう「粘着力」を極限まで利用す
るケースが多くなっている。
<Technical background of the invention and its problems> When accelerating or decelerating electric cars in recent years, there are many cases in which the frictional force between the rail and the wheels, or what is called ``adhesive force'' in railway engineering, is used to the utmost. .

例えば、非常ブレーキの制動距離を一定としたまま最高
速度を同上させる場合、あるいは信号保安方式として機
械優先方式の自動列車停止装置(J2を下ATCと云う
。)が設けられていて、減速の際にATCの動作による
常用最大ブレーキが高い頻度で使用される場合等である
For example, when the maximum speed is increased while the braking distance of the emergency brake remains constant, or when a machine-priority type automatic train stop device (J2 is referred to as ATC) is installed as a signal safety system, when decelerating. This is the case, for example, when the maximum service brake is frequently used by ATC operation.

減速度を高くとる場合、即ち一軸当りのブレーキ力と軸
重の比である粘着係数を高い値で使用すると滑走の頻度
が犬となり、それに伴ない車軸が完全にロックする固着
現象が発生するケースも多くなり、その結果車輪の踏面
かけずられていわゆるフラットが発生し、騒音や振動の
原因となる。
When a high deceleration is used, that is, when a high value is used for the adhesion coefficient, which is the ratio of the braking force per axle to the axle load, the frequency of skidding increases, resulting in the occurrence of a sticking phenomenon in which the axle completely locks. As a result, the tread surface of the wheel slips and a so-called flat occurs, causing noise and vibration.

これを除去するためには、車輪の切削作業が必要となり
多大の年間を要し、また車輪の寿命も短くなる。
In order to remove this, it is necessary to cut the wheels, which takes many years and also shortens the life of the wheels.

電機子チョッパ方式の電気車は、駅間相離の短かい線区
に使用されるケースが多く1、従って高加減速度を要求
される場合が多く、フラットの多発するケースがみられ
る。
Armature chopper type electric cars are often used on line sections with short distances between stations1, and therefore are often required to have high acceleration/deceleration, resulting in frequent flats.

$1図に電機子チョッパ装置により回生ブレーキを制御
し、この回生ブレとキカを空気ブレーキにより補足する
従来の電気車のブレーキ制御装置の回路図を示した。
Figure $1 shows a circuit diagram of a conventional brake control device for electric vehicles that controls regenerative braking using an armature chopper device and supplements this regenerative shaking and shock with an air brake.

運転士がブレーキハンドルを繰作するとブレーキ力指令
装応1がブレーキ力指令値2を発生し、空気ブレーキ制
御装置3およびチョッパ装置制御部4に送る。
When the driver operates the brake handle, the brake force command unit 1 generates a brake force command value 2 and sends it to the air brake control device 3 and the chopper device control unit 4.

電気子チョッパ式電気車の主回路は、主電動機の電機子
5、界磁6、ザイリスタ等によって構成したチョッパ部
7、フライホイールダイオード8、フィルタコンデンサ
9.フィルタリアクトル10、パンタグラフ11、主電
動機電流IAを検出する電流検出装置112、主電動機
の電機子電圧EMを検出する電圧検出装置13等から構
成されている。チョッパ装置制御部4には電流検出装置
12からの主電動機電流IAの検出値14からその時に
主事il1機が発生している回生ブレーキ力をめる実ブ
レーキ力信号部15があり、実ブレーキ力信号16を出
力する。
The main circuit of the armature chopper type electric vehicle includes an armature 5 of the main motor, a field 6, a chopper section 7 composed of a zyristor, etc., a flywheel diode 8, a filter capacitor 9. It is comprised of a filter reactor 10, a pantograph 11, a current detection device 112 that detects the traction motor current IA, a voltage detection device 13 that detects the armature voltage EM of the traction motor, and the like. The chopper device control section 4 has an actual brake force signal section 15 that calculates the regenerative braking force generated by the main motor at that time from the detected value 14 of the main motor current IA from the current detection device 12. A signal 16 is output.

実ブレーキ力信号16は空気ブレーキ力制御袋数3に返
送られ、ブレーキ力指令値2との差の値即ち補足ブレー
キ力指令値17が電空変換弁18に入力され、補足空気
ブレーキのブレーキ圧力19が出力される。このように
して、回生ブレーキ力と補足空気ブレーキ力の総合ブレ
ーキ力がブレーキ力指令値2に一致するように制御が行
なわれる:またチョッパ装置制御部4の中には電圧検出
装置13の出力20を入力して電機子が発生ずる電圧を
架線電圧以下におさえるための電機子電圧リミッタ回路
21があり、主電動機の定格速度以上の高速! 9 域では電機子電圧リミッタ信号22を出力する。
The actual brake force signal 16 is sent back to the air brake force control bag number 3, and the value of the difference from the brake force command value 2, that is, the supplementary brake force command value 17, is input to the electro-pneumatic conversion valve 18, and the brake pressure of the supplementary air brake is inputted to the electro-pneumatic conversion valve 18. 19 is output. In this way, control is performed so that the total braking force of the regenerative braking force and the supplementary air braking force matches the braking force command value 2: Also, in the chopper device control section 4, the output 20 of the voltage detection device 13 is There is an armature voltage limiter circuit 21 to suppress the voltage generated by the armature to below the overhead line voltage. In the 9 range, the armature voltage limiter signal 22 is output.

ブレーキ力指令値2から実ブレーキ力信号16と電機子
電圧リミッタ出力22を差引いた(1号が位相制御回路
器に入力され、この位相制御回路23は通流率信号列を
チョッパ部7に送り、前記電機子電圧リミッタの制限内
で実ブレーキ力信号16とブレーキ力指令値2が一致す
るようにチョッパ部7の制御が行なわれる。
The actual brake force signal 16 and the armature voltage limiter output 22 are subtracted from the brake force command value 2 (No. 1 is input to the phase control circuit, and this phase control circuit 23 sends a conductivity signal train to the chopper section The chopper section 7 is controlled so that the actual brake force signal 16 and the brake force command value 2 match within the limits of the armature voltage limiter.

滑走発生時には、第1図には記していないが、複数の主
電動機(通常は4又は8個)を−組のチョッパ装置で制
御するため、その複数の主電動機の端子電圧のアンバラ
ンスを検出する滑走検知装置25が設けられており、滑
走検知信号26が、チョッパ装置制御部4に入力され、
滑走時通流率絞り込みパターン発生回路27の通流率絞
りこみパターン28により通流率を絞り、電機子電流I
Aを減少させて回生ブレーキ力を減少させる。
Although it is not shown in Figure 1, when a skid occurs, multiple traction motors (usually 4 or 8) are controlled by a pair of chopper devices, so an imbalance in the terminal voltages of the multiple traction motors is detected. A skid detection device 25 is provided, and a skid detection signal 26 is input to the chopper device control section 4.
The conductivity is narrowed down by the conductivity narrowing pattern 28 of the conductivity narrowing pattern generating circuit 27 during sliding, and the armature current I
A is decreased to reduce regenerative braking force.

一方レールと車輪踏面との間の粘着係数μは、第2図に
示した通り速度■との間で の関係で速度が高まるにつれて減少する性質を有してい
る。従って高速運転時は低速運転時に較べ同じ値のブレ
ーキ力で減速した場合でも滑走な発生し易すく、それだ
け車輪踏面にフラットが発生する。高速運転状態からの
減速制御で、車輪の滑走を減少させる方法に第3図に示
した様にブレーキ力指令値を高速運転の場合は第2図に
示した粘着係数μの値に見合う値に低減する制御方法を
従来から使用されている。
On the other hand, as shown in FIG. 2, the adhesion coefficient μ between the rail and the wheel tread has a property of decreasing as the speed increases due to its relationship with the speed ■. Therefore, when driving at high speeds, skidding is more likely to occur even when decelerating with the same brake force than when driving at low speeds, and the wheel treads are more likely to be flat. As shown in Figure 3, the brake force command value is set to a value corresponding to the adhesion coefficient μ shown in Figure 2 when driving at high speed, as shown in Figure 3. Conventionally, control methods have been used to reduce

この制御方法を実現するには、第1図に示したブレーキ
力指令装置】に第4図に示した速度パターン発生装置の
機能を追加する必要があった。即ち第4図で、速度計発
電機29、ルτ変換回路30、速度パターン発生回路3
1等の部品及び回路等を追加することにより実現してい
た。
In order to realize this control method, it was necessary to add the function of the speed pattern generator shown in FIG. 4 to the brake force command device shown in FIG. 1. That is, in FIG. 4, the speedometer generator 29, the τ conversion circuit 30, the speed pattern generation circuit 3
This was achieved by adding first class parts and circuits.

しかし車軸に取り付は車輪の回転数を取り出す速度計発
電機は機械部分があり、また騎変換回路、速度パターン
発生回路等の部品点数が多いので信頼性が低く、また経
済的でない。
However, the speedometer generator attached to the axle for extracting the rotational speed of the wheel has mechanical parts and has a large number of parts such as a vehicle conversion circuit and a speed pattern generation circuit, so it is not reliable and economical.

〈発明の目的〉 本発明は上記の点に鑑みなされたもので、粘着係数の低
い高速域でのブレーキ力を低速域よりも低減して滑走の
発生を防止する信頼性の高い、そして経済的な電気車の
ブレーキ制御装置を提供する。
<Object of the Invention> The present invention has been made in view of the above points, and is a highly reliable and economical method that prevents skidding by reducing the braking force in high speed ranges where the coefficient of adhesion is low than in low speed ranges. We provide brake control devices for electric vehicles.

〈発明の概要〉 本発明は、高速回生ブレーキ時に発生する電機子電圧を
制限しながら、電機子電流を検出してこの検出した電機
子電流から実際に発生している回生7−レーキ力を算出
してめ、ブレーキ力の指令値と比較してその差の値に応
じて電機子チョッパ制御による回生ブレーキ力と、この
回生ブレーキ力を補足する蔓気ブレーキ力とを制御する
ものにおいて、前記空気ブレーキ力を制御する前記算出
した回生ブレーキ力に前記発生する電機子電圧を制限す
る制御おを加睨することにより、高速ブレーキ時の空気
ブレーキ力を低減して上記目的を達成する。
<Summary of the Invention> The present invention detects the armature current while limiting the armature voltage generated during high-speed regenerative braking, and calculates the regenerative rake force actually generated from the detected armature current. In this system, the regenerative braking force by armature chopper control and the regenerative braking force supplementing this regenerative braking force are controlled according to the difference value by comparing the command value of the braking force. By adding control to limit the generated armature voltage to the calculated regenerative braking force that controls the braking force, the above object is achieved by reducing the air braking force during high-speed braking.

〈発明の実施例〉 以下本発明の実施例について図面を参照しながら説明す
る。
<Embodiments of the Invention> Examples of the present invention will be described below with reference to the drawings.

第5図は本発明の一実施例を示した図で、第1図11示
した従来の電気車のブレーキ制御装置と同一部分には同
一符号を付して説明を詳略した。
FIG. 5 is a diagram showing an embodiment of the present invention, in which the same parts as those of the conventional brake control device for an electric vehicle shown in FIG.

第5図で30は本発明で新らたにつけ加えたもので、チ
ョッパ装置制御部4の実ブレーキ力演算部15の出力1
6に電機子電圧リミッタ回路21の出力22を加算する
加算器である。
In FIG. 5, 30 is newly added in the present invention, and is the output 1 of the actual brake force calculation unit 15 of the chopper device control unit 4.
This is an adder that adds the output 22 of the armature voltage limiter circuit 21 to 6.

以下第5図に示した本発明の実施例の作用について第6
図を参照しながら説明する。
The operation of the embodiment of the present invention shown in FIG. 5 will be explained in the sixth section below.
This will be explained with reference to the figures.

第6図で、(a)は第1図及び第5図に示したブレーキ
力指令装置1から出力したブレーキ力指令値2、(b)
は電機子チョッパ装置により制御された電動機の電機子
電流工え、(C)は第1図及び第5図に示した実ブレー
キ力演算部15が出力する実ブレーキカ信号、(d)は
同じ第1図及び第5図に示した電機子電圧リミッタ回路
21が出力する電機子電圧リミッタ信号で1以上(a)
乃至(d)は従来と本発明とて変るところはない。<e
)の実線は本発明で新らたにつけ加えた加算器30によ
り、実ブレーキ力演算部15が出力し点線で示しくC)
で前記した実ブレーキカ信号16に電機子電圧リミッタ
回路21の出力する(d)で前記した電機子電圧リミッ
タ信号22を加算した堅気ブレーキ制御用のブレーキ力
信号33で、点線で示しくe)で前記した従来の実ブレ
ーキカ伯号16に対し高速域では値が増加している。従
って空気ブレーキ制御部@3が出力する補足ブレーキ力
指令値17は、上記増加した部分だけ逆に高速域では減
少することになり、空気ブレーキによる補足ブレーキ力
は第6図(f)に実線で示した通り、点線で示した従来
の補足ブレーキ力より高速域では低下することになる。
In FIG. 6, (a) is the brake force command value 2 output from the brake force command device 1 shown in FIGS. 1 and 5, and (b)
(C) is the actual brake force signal output by the actual brake force calculation unit 15 shown in FIGS. 1 and 5, and (d) is the same 1 or more (a) in the armature voltage limiter signal output by the armature voltage limiter circuit 21 shown in FIGS. 1 and 5.
There are no differences between the conventional method and the present invention in (d). <e
) is output by the actual brake force calculation section 15 using the adder 30 newly added in the present invention, and is shown as a dotted line.C)
The brake force signal 33 for firm brake control is obtained by adding the armature voltage limiter signal 22 described in (d) and output from the armature voltage limiter circuit 21 to the actual brake force signal 16 described in (d), and is shown by a dotted line in (e). Compared to the conventional actual brake force No. 16 mentioned above, the value increases in the high speed range. Therefore, the supplementary braking force command value 17 output by the air brake control unit @3 will decrease in the high-speed range by the increased portion, and the supplementary braking force due to the air brake will be indicated by the solid line in Fig. 6(f). As shown, the supplementary braking force in the high speed range is lower than the conventional supplementary braking force shown by the dotted line.

このブレーキ力の低下する量は速度が増加するに従って
大きな値となり、第6図(g)に実線で示した回生ブレ
ーキ力と補足空気ブレーキ力との総合ブレーキ力も点線
で示した従来の総合ブレーキ力よりも小さな値となり、
粘着係数の低い高速域での滑走の発生を防止することが
できる。
The amount by which this braking force decreases increases as the speed increases, and the total braking force of the regenerative braking force and supplementary air braking force shown by the solid line in Fig. 6 (g) also differs from the conventional total braking force shown by the dotted line. will be a smaller value than
It is possible to prevent the occurrence of skidding at high speeds where the adhesive coefficient is low.

尚本実施例では加算器をチョッパ装置制御部とは分けて
設けたが、チョッパ装置制御部内に設けてもよい。
Although the adder is provided separately from the chopper device control section in this embodiment, it may be provided within the chopper device control section.

また上記実施例は電機子チョッパ方式の高速域での補足
空気ブレーキ力の抑制に電機子電圧リミッタ回路の出力
を用いたが、界磁チョッパ方式の場合でも高速域での補
足空気ブレーキ力の抑制に界磁チョッパ制御装置の整流
制限りミッタ回路の出力を用いることにより、同じ効果
な化ることができる。
Furthermore, in the above embodiment, the output of the armature voltage limiter circuit is used to suppress the supplementary air braking force in the high speed range of the armature chopper method, but even in the case of the field chopper method, the supplementary air braking force is suppressed in the high speed range. The same effect can be achieved by using the output of the rectifier limiter circuit of the field chopper controller.

〈発明の効果〉 以上説明した通り本発明によれば、粘着係数の低い高速
域でのブレーキ力を低速域よりも低減して滑走の発生を
防止するのに、特に機械的な動作をする装置を用いる必
要はなく、また使用する部品も少ないので、信頼性の冒
い、そして経済的な電気車のブレーキ制御装置を得るこ
とができる。
<Effects of the Invention> As explained above, according to the present invention, there is provided a device that performs particularly mechanical operation to reduce the braking force in the high speed range where the adhesion coefficient is low than in the low speed range to prevent the occurrence of skidding. Since there is no need to use a brake control system and fewer parts are used, a reliable and economical brake control system for electric vehicles can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電気車のブレーキ制御装置の回路図、第
2図及び第3図は発明の技術的背景を説明するための図
、第4図は従来の速度パターン発生装置図、第5図は本
発明の電気車のブレーキ制御装置の一実施例を示した回
路図、第6図は第5図の動作を説明するための図である
。 1・・・・・ブレーキカ指令装置 3・・・・・空気ブレーキ制御装置 4・・・ チョッパ装置制御部 5・・・主電動機電機子 7・・・・・チョッパ部 12・・・・電流検出器 13・・・・・・電圧検出器 15・・・・実ブレーキ力演算部 21・・・・電機子電圧リミッタ回路 30・・・ 加算器 (7317)代理人 弁理士 則 近 憲 佑 (ほか
1名)第1図 第2図 第3図 第4図 第5図
Figure 1 is a circuit diagram of a conventional brake control device for an electric vehicle, Figures 2 and 3 are diagrams for explaining the technical background of the invention, Figure 4 is a diagram of a conventional speed pattern generator, and Figure 5 is a diagram of a conventional speed pattern generator. The figure is a circuit diagram showing an embodiment of the brake control device for an electric vehicle according to the present invention, and FIG. 6 is a diagram for explaining the operation of FIG. 5. 1... Brake force command device 3... Air brake control device 4... Chopper device control section 5... Main motor armature 7... Chopper section 12... Current detection Device 13... Voltage detector 15... Actual brake force calculation unit 21... Armature voltage limiter circuit 30... Adder (7317) Agent Patent attorney Kensuke Chika (and others) 1 person) Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 電機子チョッパ装置により制御した直流電動機の回生ブ
レーキ力とこの回生ブレーキ力に空気ブレーキ力を補足
するブレーキ制御で高速回生ブレーキに電機子が発生す
る電圧を抑制し検出した電機子電流から回生ブレーキ力
の実ブレーキ力を演算して指令したブレーキ力との差の
値をめこの差の値に応じて回生ブレーキ力と空気ブレー
キ力とを制御する電気車のブレーキ制御装トにおいて、
前記電機子が発生する電圧を抑制する電機子電比リミッ
タ回路の出力と前記実ブレーキ力を演算する実ブレーキ
演算部の出力とを加算し前記空気ブレーキ力を制御する
信号を出力する加算器を備えたことを特徴とする電気車
のブレーキ制御装置。
The regenerative braking force of the DC motor controlled by the armature chopper device and the brake control that supplements the regenerative braking force with the air braking force suppress the voltage generated by the armature in the high-speed regenerative braking and generate the regenerative braking force from the detected armature current. In a brake control system for an electric vehicle, the regenerative braking force and the air braking force are controlled according to the value of the difference between the actual braking force and the commanded braking force.
an adder that adds the output of the armature electric ratio limiter circuit that suppresses the voltage generated by the armature and the output of the actual brake calculation section that calculates the actual brake force, and outputs a signal that controls the air brake force. A brake control device for an electric vehicle characterized by:
JP5635784A 1984-03-26 1984-03-26 Brake controller of electric railcar Pending JPS60200702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5635784A JPS60200702A (en) 1984-03-26 1984-03-26 Brake controller of electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5635784A JPS60200702A (en) 1984-03-26 1984-03-26 Brake controller of electric railcar

Publications (1)

Publication Number Publication Date
JPS60200702A true JPS60200702A (en) 1985-10-11

Family

ID=13024990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5635784A Pending JPS60200702A (en) 1984-03-26 1984-03-26 Brake controller of electric railcar

Country Status (1)

Country Link
JP (1) JPS60200702A (en)

Similar Documents

Publication Publication Date Title
US5677610A (en) Control apparatus for electric vehicles
EP0078655A2 (en) Wheel slip control system
US3819004A (en) Method and apparatus for preventing wheel slip
GB2105493A (en) Vehicle propulsion control apparatus and method
CA2123952C (en) Method of and an apparatus for providing a safety check of the brake retardation capability of a brake system on a vehicle
JPS63268405A (en) Train driving system
JPS60200702A (en) Brake controller of electric railcar
JP2796475B2 (en) Vehicle control device and electric vehicle control device
Kadowaki et al. Anti-skid re-adhesion control based on disturbance observer considering air brake for electric commuter train
Yasuoka et al. Consideration of wheel slip and readhesion control for induction traction motor electric locomotives with individual traction control
Aihara et al. A Method to Determine the Gain of the Wheel Slip Speed Feedback Controller for Locomotive
JP2003291797A (en) Brake control device of railway vehicle
JP2000224708A (en) Electric rolling stock controller
JP6259321B2 (en) Electric vehicle control device
JP2768543B2 (en) Electric car control device
JPH0274105A (en) Railroad rolling stock controller
JPS61224809A (en) Controller of electric railcar
JP2000041301A (en) Method for controlling jerk on stopping vehicle by means of reverse-phase electric brake
JPS6146101A (en) Controller for electric railcar
JPS6018577B2 (en) Method for preventing wheel skidding and spinning
JPH01255406A (en) Control of re-adhesion
JPH0539019A (en) Brake controller for rolling stock
JPS61236306A (en) Controller of electric railcar
JPS6312831B2 (en)
JPH0576243B2 (en)