JPS60199958A - Bulky nonwoven fabric having elasticity - Google Patents

Bulky nonwoven fabric having elasticity

Info

Publication number
JPS60199958A
JPS60199958A JP59050186A JP5018684A JPS60199958A JP S60199958 A JPS60199958 A JP S60199958A JP 59050186 A JP59050186 A JP 59050186A JP 5018684 A JP5018684 A JP 5018684A JP S60199958 A JPS60199958 A JP S60199958A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
refractive index
fibers
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59050186A
Other languages
Japanese (ja)
Other versions
JPH0147584B2 (en
Inventor
二木 昭
博文 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59050186A priority Critical patent/JPS60199958A/en
Priority to EP19850102788 priority patent/EP0156234B2/en
Priority to DE19853586136 priority patent/DE3586136T3/en
Priority to KR1019850001637A priority patent/KR860001835B1/en
Priority to US06/712,243 priority patent/US4578307A/en
Publication of JPS60199958A publication Critical patent/JPS60199958A/en
Publication of JPH0147584B2 publication Critical patent/JPH0147584B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、ポリエチレンテレフタレート長繊維不織布に
関する。よυ詳しくは、緻密な繊維密度を有し、弾性に
富み、外力に対して、伸びの異方性が改善された嵩高性
不織布に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a polyethylene terephthalate long fiber nonwoven fabric. More specifically, the present invention relates to a bulky nonwoven fabric that has a dense fiber density, is highly elastic, and has improved elongation anisotropy in response to external forces.

〈従来技術〉 一般に、スパンd?ンドのような長繊維不織布において
、嵩高性不織布を得るには、長繊維ウェブをニードルパ
ンチ加工することが知られているが長繊維ウェブの場合
は短繊維の場合と異なって、種々の問題を有する。例え
ば、長繊維のために局nr的な動きが拘束されて上下、
且つランダムに交絡しにくい。このために、繊維密度(
単位体積中の繊維量)を下げて嵩高性不織布を得ようと
しても得られに<<、交絡を強化するために、ニードル
パンチ回数を増加した場合は、繊維が切断されて強力が
低下するという問題が発生する。短繊維のウェブ形成の
場合、各方向に繊維をランダムに配列形成することが容
易であるのに対して、ス・母ンダンド法のような長繊維
ウェブの場合は、製法上これが比較的困難である。ス・
fンはノド法による不織布は、強力ならびに伸度が、方
向によって大きな差を有するのが通常である。一般にタ
テ方向(機械方向)の強力が、ヨコ方向よυ大であり、
その繊維配列の異方性に起因するタテ/ヨコの破@強力
比は通常2〜3である。一方破断伸度は強力の弱いヨコ
方向が高い値を示す傾向にある。かかる現状の不織布に
ニードルパンチを行っても交絡匿が充分にあがらず、交
絡を強化するために・fンチ回数を増加すると前6山改
維破断による強力低下が発生する他、極部的に大きな空
隙を有し且つ異方性の一層拡大したものとなる。すなわ
ち不織布構造として祖な構造のものとなり弾性回復の劣
りんものとなる。
<Prior art> In general, span d? It is known that needle-punching a long fiber web is used to obtain a bulky nonwoven fabric, but unlike short fibers, a long fiber web poses various problems. have For example, local movement is restricted due to the long fibers, causing up and down,
Moreover, it is difficult to be randomly intertwined. For this, the fiber density (
Even if an attempt was made to obtain a bulky nonwoven fabric by lowering the amount of fiber per unit volume, it would not be possible to obtain a bulky nonwoven fabric.However, if the number of needle punches is increased to strengthen entanglement, the fibers will be cut and the strength will decrease. A problem occurs. In the case of short fiber web formation, it is easy to arrange the fibers randomly in each direction, whereas in the case of long fiber webs such as the Su-Mandand method, this is relatively difficult due to the manufacturing method. be. vinegar·
The strength and elongation of nonwoven fabrics produced by the gutter method usually vary greatly depending on the direction. Generally, the strength in the vertical direction (machine direction) is υ larger than in the horizontal direction,
The vertical/horizontal break @ strength ratio due to the anisotropy of the fiber arrangement is usually 2 to 3. On the other hand, the elongation at break tends to show a high value in the horizontal direction, where the strength is weak. Even if needle punching is performed on the current non-woven fabric, the interlacing is not sufficiently improved, and when the number of punches is increased to strengthen the interlacing, strength decreases due to breakage of the front six threads, and in some cases It has large voids and has further expanded anisotropy. In other words, it has a primitive structure as a nonwoven fabric structure and has poor elastic recovery.

不織布では一般にタテ、ヨコ方向共に伸び易いもの、逆
にタテ、ヨコ方向共に伸びにくいもののいずれかが種々
の用途に対応出来で好ましい。一方、タテ、ヨコ方向の
どちらかが伸びて、他方が伸びにくいものは特定用途を
除いて好ましくない。
In general, nonwoven fabrics that are easily stretchable in both the vertical and horizontal directions, or conversely, those that are difficult to stretch in both the vertical and horizontal directions are preferable because they can be used for various purposes. On the other hand, materials that stretch in either the vertical or horizontal direction and are difficult to stretch in the other direction are not preferred except for specific uses.

最近、緻密な構造で且つ、弾性に富んだもので、タテ、
ヨコ方向のどちらも同様に伸び易い不織布が熱望されて
いる。然も使用時における比較的外力が小なる場合は、
タテ、ヨコ方向共に同程度伸びに<<(ヤング率が大)
、成型加工等の大なる外力を付加する場合には、タテ、
ヨコ方向共に同程度に伸びるものが望まれている。匠来
の長繊維不織布でかかる物性を持たせることは、上述の
ごとき理由から極めて困難であった。かかる特性を有す
る不織布を得るために繊維の捲縮又は収縮挙動に着目し
+4!] MC目的のためにこれらの1、颯維が如何な
る利点をもたらすかについて検討した。潜在性倦縮長繊
維としてポリエステル共重合体との貼付せ型複合繊維を
用いた長繊維ウェブをニードル・ぞンチ加工して不織布
を作り熱処理によって捲縮させた。この場合には嵩高性
は増すが外力に対して伸びやすく異方性の改善も充分で
ないものであった。
Recently, materials with a dense structure and high elasticity have been developed, such as vertical and
There is a desire for nonwoven fabrics that are equally stretchable in both the horizontal and horizontal directions. However, if the external force during use is relatively small,
Same elongation in both vertical and horizontal directions (Young's modulus is large)
, when applying large external forces such as molding, vertical,
What is desired is something that stretches to the same extent both in the horizontal direction. It has been extremely difficult to provide such physical properties with long fiber nonwoven fabrics made by artisans for the reasons mentioned above. In order to obtain a nonwoven fabric with such properties, we focused on the crimp or shrinkage behavior of the fibers and received +4! ] We examined the advantages of these first fibers for MC purposes. A long-fiber web using a laminated composite fiber with a polyester copolymer as a latent crimped long fiber was subjected to needle and punch processing to produce a nonwoven fabric, which was then crimped by heat treatment. In this case, the bulkiness increased, but it was easy to stretch against external forces, and the anisotropy was not sufficiently improved.

一方従来から知られている熱収縮率の高い未延伸ポリエ
チレンテレフタレート長繊維からなるウェブを同様に二
−ドルノ9ンチ加工して不織布を作シ熱処理性によ)収
縮させた。この場合収縮により緻密な構造の不織布が得
られたが繊維が硬直化して風合の硬いものとなった。
On the other hand, a conventionally known web made of undrawn polyethylene terephthalate long fibers with a high heat shrinkage rate was similarly processed into a two-dored 9-inch nonwoven fabric, which was then shrunk (due to heat treatability). In this case, a nonwoven fabric with a dense structure was obtained by shrinkage, but the fibers became stiff and had a hard texture.

本発明者等は、上記未延伸ポリエチレンテレフタレート
長繊維不織布の欠点、即ち熱収縮の際の繊維の硬直化に
よる風合の硬化並に、高温物体との接触の際の熱劣イビ
を改善させて、本発明の目的とする不織布を得んとする
ため鋭意研究し、その結果、未延伸ポリエチレンテレフ
タレート長繊維不織布を構成する単緘維の断面の外周部
の結晶性と配向性を、その中心部よシ大に成らしめるこ
とで、上記目的を達成出来ることを見出し、本発明に到
達した。
The present inventors have improved the disadvantages of the above-mentioned undrawn polyethylene terephthalate long fiber nonwoven fabric, namely, hardening of the texture due to stiffening of the fibers during heat shrinkage, and heat deterioration when coming into contact with high-temperature objects. In order to obtain the nonwoven fabric that is the object of the present invention, we conducted extensive research, and as a result, we determined that the crystallinity and orientation of the outer periphery of the cross section of the single fibers constituting the undrawn polyethylene terephthalate long fiber nonwoven fabric, and the crystallinity and orientation of the central part. We have discovered that the above object can be achieved by making it larger, and have arrived at the present invention.

〈発明の目的〉 本発明は緻密な繊維密度を有し、弾性に富み、外力に対
して伸びの異方性が改善されたポリエチレンテレフタレ
ート畏繊拗嵩高性不織布を提供することを目的とする。
<Objective of the Invention> An object of the present invention is to provide a polyethylene terephthalate fiber-based, bulky nonwoven fabric that has a dense fiber density, is rich in elasticity, and has improved elongation anisotropy against external forces.

〈発明の構成ン 本発明の目的は繊度0.5デニ一ル以上のフィラメント
からな夛、15μ以上の粒子捕集率か80チ以上である
4R8密度と50%以上の弾性回後率を有する不織布で
あって、その構成繊維断面が、半径Rの円形断面を有し
、その中心部の平均屈折率をnll 中心から0.8R
の距離の部分に於(0)1 ける平均屈折率をn11(。、8)とすると、1.60
≦n11.。、≦1.67で且つ、(nll(o、a)
 n1l(o))≧5×10 を満たすことを特徴とす
るポリエチレンテレフタレート長繊維交絡体からなる不
織布によって達成される。
<Constitution of the Invention> The purpose of the present invention is to use a filament having a fineness of 0.5 denier or more, a particle collection rate of 15 μ or more, a 4R8 density of 80 μ or more, and an elastic return rate of 50% or more. A non-woven fabric whose constituent fiber cross section has a circular cross section with radius R, and the average refractive index at the center is 0.8R from the center.
If the average refractive index at the distance of (0)1 is n11(.,8), then 1.60
≦n11. . , ≦1.67 and (nll(o, a)
This is achieved by a nonwoven fabric made of a polyethylene terephthalate long fiber entangled body, which satisfies n1l(o))≧5×10 .

く構成の具体的説明〉 本発明のポリエチレンテレフタレート長繊維不織布は1
50℃における収縮率が5%以下で破断伸度が70%以
上の部分的な偵維交絡都を有する不織布である。
Specific explanation of the structure> The polyethylene terephthalate long fiber nonwoven fabric of the present invention has 1
It is a nonwoven fabric having a partially interwoven fabric with a shrinkage rate of 5% or less and a breaking elongation of 70% or more at 50°C.

本発明に於けるポリエチレンテレフタレートには、本発
明の目的を損わない範囲内で、少量の他/7−1酵ムシ
σ)北雷を伏あAいd°少−1□1・の仙の4?リマを
含んでもよい。又、ポリエチレンテレフタレートに通常
使用きれる添加剤、例えば艶消し剤、制電剤、難燃剤、
顔料等が含まれていても良い。更にまた本発明で使用す
る未延伸、J? リエステル繊維と、延伸程度の異なる
ポリエステル繊維や、他の繊維(例えば、ポリアミド、
ポリオレフィン等の繊維)を本発明の目的を損わない範
囲で、積層又は混繊して用いてもよい@ 本発明に於ける不織布を構成する繊維は、条件(A31
.60≦n11(。、≦1.67及び、条件の)(nl
l(o、s)”’(0))≧5X10−’を満たすこと
に%徴がある。条件CB)は繊維断面の外層部では高配
向かつ高結晶性とな9、中心部は逆に外層部よりも低配
向かつ低結晶性となっていることを意味している。この
場合、中心部から漸次外層部の方向に結晶性と配向性が
増大して表面の僅か内側に極太値を有する構造であシ、
該繊維構造の形成が、熱による繊維の硬直化を防止して
、且つ熱劣化を小ならしめる改善に寄与しているものと
考えられる。本発明で云う熱劣化とは、熱成型加工に於
ける加熱物体、例えばプレス機、金型等との加圧加熱接
触による熱履歴後に破断強伸度の低下を伴うことを意味
する。本発明の不織布を構成する繊維に於いて、条件C
B)を満たして、n1l(。)が1.60以下の場合は
、きわめて脆い不織布とな)、実用性に乏しい。又、n
11 が1.67以上の場合は本発(0) 明の目的とする弾性に富み外力に対して伸びの異方性が
改善された不織布が得られない。本発明に於いては、更
に条件(4)を満たして、n1l(。、8)が大である
程、即ち外周部の配向性と結晶性が大になる程、熱によ
る繊維の硬直化を防止して、且つ熱劣化がよ)改善され
て好ましい。
In the present invention, polyethylene terephthalate may be used in addition to a small amount of 7-1 yeast insects σ) Hokurai A d ° Sho-1 □ 1. 4? May include Lima. Additionally, additives commonly used for polyethylene terephthalate, such as matting agents, antistatic agents, flame retardants,
A pigment or the like may be included. Furthermore, the unstretched J? Polyester fibers, polyester fibers with different degrees of stretching, and other fibers (e.g. polyamide,
Fibers such as polyolefin) may be used in a laminated or mixed manner within a range that does not impair the purpose of the present invention.
.. 60≦n11 (.,≦1.67 and conditions) (nl
There is a % sign that l(o,s)''(0))≧5X10-' is satisfied.Condition CB) means that the outer layer of the fiber cross section is highly oriented and highly crystalline9, while the center is the opposite. This means that the orientation and crystallinity are lower than that of the outer layer.In this case, the crystallinity and orientation gradually increase from the center toward the outer layer, with extremely thick values slightly inside the surface. The structure has
It is thought that the formation of the fiber structure contributes to improvements in preventing stiffening of the fibers due to heat and reducing thermal deterioration. Thermal deterioration as used in the present invention refers to a decrease in strength and elongation at break after thermal history due to pressurized and heated contact with a heated object such as a press or a mold during thermoforming. In the fibers constituting the nonwoven fabric of the present invention, condition C
If B) is satisfied and n1l(.) is 1.60 or less, the nonwoven fabric is extremely brittle and has poor practicality. Also, n
If 11 is 1.67 or more, it is impossible to obtain a nonwoven fabric which is rich in elasticity and has improved anisotropy of elongation with respect to external force, which is the objective of the present invention (0). In the present invention, the condition (4) is further satisfied, and the larger n1l(., 8) is, that is, the larger the orientation and crystallinity of the outer circumference, the more the fibers become stiff due to heat. This is preferable because it prevents thermal deterioration and improves thermal deterioration.

更に、本発明の不織布中におけるNti維においては局
部的な平均屈折率の分布が、単繊維断面の中中心から0
.8倍の距離の部分に於ける平均屈折率(all(。、
8)又は、”II(−0,8))の間に以下の関係を満
足することである。いわゆる繊維の局部的な平均屈折率
の分布が、繊維の中心に対して対称であると熱劣化を低
下させないために好ましく、且つ強伸度斑が少ない。こ
こで局所的な平均屈折率の分布が繊維の中心に対して対
称であるというのは、平均屈折率の最小値が(n1l(
。、10 x to )以上であり、且つnll(g、
6) (−0,8)の差がとall 10XIO”−’以下、よシ好ましくは5 X 10−
3以下の場合をいう。
Furthermore, in the Nti fibers in the nonwoven fabric of the present invention, the local average refractive index distribution varies from the center of the single fiber cross section to 0.
.. The average refractive index (all(.,
8) or "II (-0, 8)). If the local average refractive index distribution of the fiber is symmetrical with respect to the center of the fiber, the thermal This is preferable in order not to reduce deterioration, and there are few irregularities in strength and elongation.Here, the fact that the local average refractive index distribution is symmetrical with respect to the center of the fiber means that the minimum value of the average refractive index is (n1l(
. , 10 x to ) or more, and nll(g,
6) The difference between (-0,8) and all 10XIO"-' or less, preferably 5 X 10-'
3 or less.

本発明の不織布は、長繊維ウェブをニードル・臂ンチ加
工した後、熱収縮によって、繊維の交絡度を増大させて
得たものである。熱収縮前の繊維の交絡度の態様は、紡
出してウェブを形成させる時に既に得られている繊維の
二次元的な分散状態を更にニードルミ4ンチ加工で、上
下左右の交絡を強化したものであるが、それだけでは充
分な、繊維密度を有する構造を与えることができない。
The nonwoven fabric of the present invention is obtained by subjecting a long fiber web to needle and arm punch processing, and then heat shrinking it to increase the degree of intertwining of the fibers. The degree of entanglement of the fibers before heat shrinking is such that the two-dimensional dispersion state of the fibers already obtained when spinning to form a web is further processed with 4-inch needle milling to strengthen the entanglement in the vertical and horizontal directions. However, this alone cannot provide a structure with sufficient fiber density.

本発明の不織布は、ニードルパンチ後の不織布を熱収縮
によって構造内の空隙を消失又は減少させて得たもので
あり、繊維密度が向上して緻密な構造の不織布となる。
The nonwoven fabric of the present invention is obtained by heat-shrinking a needle-punched nonwoven fabric to eliminate or reduce voids in the structure, and the fiber density is improved, resulting in a nonwoven fabric with a dense structure.

この結果本発明の不織布は15μ以上の粒子補集率が8
0%以上である繊維密度と50%以上の弾性回復率を有
するものとなった。
As a result, the nonwoven fabric of the present invention has a particle collection rate of 15μ or more of 8
The fiber density was 0% or more and the elastic recovery rate was 50% or more.

本明細書においては不織布の異方性を、不織布の破断強
度の大なる方向tDs とし、それと直角の方向をD2
とし、DlまたはD2の方向での同一伸度でのそれぞれ
の応力をσ 、σ としだ場ID2 合の応力比σD/σ0 で表わすものとする。
In this specification, the anisotropy of the nonwoven fabric is defined as the direction tDs in which the breaking strength of the nonwoven fabric is large, and the direction perpendicular to this direction is D2.
Let the respective stresses at the same elongation in the direction of Dl or D2 be expressed by the stress ratio σD/σ0 where σ and σ are the same and the stress ratio is σD/σ0.

2 本発明の不織布はMfJ 8b異方性が熱収癲によって
少くなることを特徴とし、その値は伸長領域i。
2 The nonwoven fabric of the present invention is characterized in that the MfJ 8b anisotropy decreases due to thermal ablation, and its value is in the elongation region i.

チから30%の範囲で0.8〜3.0であり、よシ好ま
しくは0.8〜2.0である。
It is 0.8 to 3.0 within a range of 30% from H, and preferably 0.8 to 2.0.

次に、本発明不織布の代表的製造例について添付図面を
参照して具体的に説明する。
Next, typical manufacturing examples of the nonwoven fabric of the present invention will be specifically described with reference to the accompanying drawings.

第2図は、紡糸口金11から吐出されたフィラメント群
15をエアーサッカー12によって冒進 ′気流によシ
牽引し、移動するコンベアネット13の上でウェブ16
を形成させる様子を示すものである。即ち、本発明の二
層構造を有する未延伸ポリエチレンテレフタレート繊維
を得るには、紡糸直後の比較的短い距離で革引を終了す
ること、具体的には、紡糸口金11とエアーサッカー1
2の距離を1,000 ma以内、好ましくは800m
以内にすること、並びに紡糸口金直下400瓢以内の位
置に於いて冷ノ虱チャンバー14から20℃以下、好ま
しくは15℃以下の温度の冷風をフィラメント群の両側
から少なくとも0.5 m/sec/上の速度で吹きつ
りることか必要である。
In FIG. 2, a group of filaments 15 discharged from a spinneret 11 are advanced by an air sucker 12 and pulled by an air current, and a web 16 is conveyed on a moving conveyor net 13.
This figure shows how it is formed. That is, in order to obtain the undrawn polyethylene terephthalate fiber having the two-layer structure of the present invention, it is necessary to finish the drawing process in a relatively short distance immediately after spinning.
2 within 1,000 m, preferably 800 m
In addition, at a position within 400 meters directly below the spinneret, cold air at a temperature of 20°C or less, preferably 15°C or less is blown from both sides of the filament group at a rate of at least 0.5 m/sec/ from the cold lice chamber 14. It is necessary to blow at higher speeds.

この除さらに重袂なことは、冷風吹出しゾーンの長さL
は少なくとも50!1111以上であシ、且つ、フィラ
メント群への吹き付角度θが2O2以上50゜以下、好
ましくは30°以上40°以下にすることである。冷風
をフィラメント群の両側から均一に吹き1号けることが
本発明の局部的な平均屈折率分布が繊維の中心に対して
対称となるために必要であり、且つ、フィラメント群を
乱さずに、併も冷風に近い外側のフィラメントと遠くに
位置する中央部のフィラメントを同じ程度に冷却するた
めに前記風速と吹き付は角度が選ばれる。
What is more important than this is the length L of the cold air blowing zone.
is at least 50!1111 or more, and the spray angle θ to the filament group is 2O2 or more and 50° or less, preferably 30° or more and 40° or less. It is necessary to blow cold air uniformly from both sides of the filament group in order for the local average refractive index distribution of the present invention to be symmetrical with respect to the center of the fiber, and without disturbing the filament group. At the same time, the wind speed and blowing angle are selected in order to cool the outer filament near the cold air and the central filament located far away to the same degree.

以上述べたごとく本発明の不織布を構成するフィラメン
トは、紡糸直後の冷却下に於いて急速に延伸することに
よル外層部が急冷され結晶性及び分子配向性が中心よフ
大となって本発明の二層構造となるものと考えられる。
As described above, the filaments constituting the nonwoven fabric of the present invention are rapidly drawn during cooling immediately after spinning, so that the outer layer is rapidly cooled and the crystallinity and molecular orientation become larger than the center. It is considered that the invention has a two-layer structure.

この際、かかる本発明の製造条件においては紡糸速度、
吐出斂、圧気魚、紡口径、紡口ホール数等を相互に調整
する必要がある。さらに冷風吹き付は角度と吹き付は速
度を好ましく調整して各フィラメントの周四を均一に、
しかも同じ程度に冷却させることが重要である。
At this time, under the manufacturing conditions of the present invention, the spinning speed,
It is necessary to mutually adjust the discharge angle, pressure angle, spinneret diameter, number of spindle holes, etc. In addition, the angle and speed of the cold air blowing are adjusted to make the circumference of each filament uniform.
Moreover, it is important to cool them to the same degree.

次いで、かくして得た本発明のポリエチレンテレフタレ
ート長繊維を公知の方法でエンドレスの金網上に取り出
してウェブとする。
Next, the thus obtained polyethylene terephthalate long fibers of the present invention are taken out onto an endless wire gauze to form a web using a known method.

前記製造条件で単繊維断面の中心部の屈折率がnll 
≦1.64、且つ(nll n1l(。))≧(0) 
(0,8) 5 X 10−’ を満たす繊維を紡出し、この繊維を
用いて本発明の不織布を製造する。これを公知の方法で
取)出して得た当該繊維ウェブをニードル・ぐンチ加工
を行なう。ニードル/センチ加工を行う際にウェブの乱
れを防ぐために、表面に凸部を設けたエンrNスロール
によって100°以下の温度で熱圧着すると良い。ただ
しこの熱圧着は省略し又もよい。ニードルパンチ加工は
、公知の方法で行ない得るもので特に限定しないが、突
き回数は50回/鋸2以上、好ましくはioo回/an
2以上、500回7名 である。
Under the above manufacturing conditions, the refractive index at the center of the single fiber cross section is nll
≦1.64, and (nll n1l(.))≧(0)
A fiber satisfying (0,8) 5 x 10-' is spun, and the nonwoven fabric of the present invention is manufactured using this fiber. This fiber web is taken out by a known method and subjected to needle gunch processing. In order to prevent the web from being disturbed during needle/centimeter processing, thermocompression bonding is preferably carried out at a temperature of 100° or less using an enrN throttle having convex portions on the surface. However, this thermocompression bonding may be omitted. Needle punching can be performed by a known method and is not particularly limited, but the number of punches is 50 times/an or more, preferably ioo times/an.
2 or more, 7 people 500 times.

次いで、このニードル/やンチ加工された不織布の熱収
縮を行なう。この場合、70℃以上、2o。
Next, this needle/pinch processed nonwoven fabric is heat-shrinked. In this case, the temperature is 70°C or higher and 2oC.

C以下の温度、好ましくは100℃以上、180℃以下
の温度で60秒以内で行なう。
The reaction is carried out at a temperature of C or lower, preferably at a temperature of 100°C or higher and 180°C or lower, within 60 seconds.

加工の際の熱収縮の程度は少なくとも5%以上好ましく
は10%から50チ、タテ及びヨコ方向に収縮させる。
The degree of heat shrinkage during processing is at least 5% or more, preferably 10% to 50cm, in the vertical and horizontal directions.

又、熱収縮はテンター又はシリンダー、ループドライヤ
ー尋で行なう。更に、必要に応じて150°C以下の温
度で適宜幅出し加工、表面の平滑化加工を行なう。更に
、又、熱収縮した後で150℃以上の温度で熱エンゲス
加工行って表面に模様付けを行ってもよい。これら幅出
し、平滑化又はエンゴス等の加工は本発明の不織布が熱
収縮が少なく熱劣化が小なるために行なうことが出来る
Heat shrinkage is performed using a tenter, cylinder, or loop dryer. Further, if necessary, tentering processing and surface smoothing processing are performed at a temperature of 150° C. or less. Furthermore, after heat shrinking, heat engessing processing may be performed at a temperature of 150° C. or higher to pattern the surface. These treatments such as tentering, smoothing, and engossing can be carried out because the nonwoven fabric of the present invention has less thermal shrinkage and less thermal deterioration.

尚、本発明に於いては不織布を構成する繊維の繊度は5
0デニール以下、好ましくは0.5から30デニールで
ある。繊維は同−又は異鷹胤の繊維を混用しても良い。
In addition, in the present invention, the fineness of the fibers constituting the nonwoven fabric is 5.
It is less than 0 denier, preferably from 0.5 to 30 denier. The fibers may be a mixture of fibers from the same or different seeds.

又、不織布のb付けはlOから500ν等2のものが好
ましく用いられるが限定するものではない。又、必要に
応じて少量の加工剤、例えば、接着剤、制電剤、離炎剤
、離型剤等を公知の方法で処理しても良い。
Furthermore, the nonwoven fabric with a b value of 10 to 500v2 is preferably used, but is not limited thereto. Further, if necessary, a small amount of a processing agent such as an adhesive, an antistatic agent, a flame release agent, a mold release agent, etc. may be applied by a known method.

以上、かくして得た?リエチレンテレフタレート長繊維
不織布はその構成単繊維が断面に於いて中心部が低結晶
性をMし、その外周部が高配向性、並びに高結晶性を有
する。この為に、本発明の不織布は熱収縮させても硬直
化及び熱劣化が生じにくい。本発明の不織布は、熱収縮
させたために繊維苦瓜の大なる構造となった。その結果
空隙の大ささ、及びその址が小となシ、弾性回仮率が向
上した。且つ、外力下に於いて伸度の等方性の良いもの
が得られた。その結果タテ、及びヨコ方向に於いて、外
力が小さい時は、静方的に伸ひにくく、外力が大なる時
は、等号的に伸ひ易い不織布加得られた。
Is this how you got it? In the polyethylene terephthalate long fiber nonwoven fabric, the constituent single fibers have low crystallinity in the center in cross section, and have high orientation and high crystallinity in the outer periphery. For this reason, the nonwoven fabric of the present invention is less prone to stiffening and thermal deterioration even if it is heat-shrinked. The nonwoven fabric of the present invention had a large fibrous bitter melon structure due to heat shrinkage. As a result, the size of the void and its area became smaller, and the elastic modulus improved. In addition, good elongation isotropy was obtained under external force. As a result, in the vertical and horizontal directions, a nonwoven fabric was obtained that was difficult to stretch statically when the external force was small, but was easy to stretch statically when the external force was large.

本発明の不織布は前述のように構成されているので、フ
ェルト代替品として高品質を有し、インチリヤ用途等に
おいて広く用いることができる。
Since the nonwoven fabric of the present invention is configured as described above, it has high quality as a felt substitute and can be widely used in inch rear applications.

〈発明の効呆〉 本つら明による不織布は前述のように、緻密な繊維密度
を有し、弾性に富み、外力に対して伸びの異方性が改善
されたポリエチレンプレフタレート長繊維嵩高性不織布
である。そのために従来この柚子織布がその性能上用い
ることのできなかった分野に対して用いることができて
優れた性能を発丁曜する。
<Effects and Disadvantages of the Invention> As mentioned above, the nonwoven fabric produced by Hontsuramei is a polyethylene prephthalate long fiber bulky nonwoven fabric that has a dense fiber density, is rich in elasticity, and has improved elongation anisotropy against external forces. It is. Therefore, this yuzu woven fabric can be used in fields where it could not be used conventionally due to its performance and exhibits excellent performance.

く実施例〉 以下本発明を実施例をあげて具体的に説明する。Example The present invention will be specifically described below with reference to Examples.

尚実施例に記載した特性の定義及び測定方法を以下に示
す。
The definitions and measurement methods of the characteristics described in the Examples are shown below.

り平均屈折率(n11・nl)、及び平均複屈折率透過
定量干渉顕微鏡(例えば、東独カールツアイスイエナ社
製干渉顕微鏡インターフアコ)を使用して、干渉縞法に
よって繊維の側面から観察した平均屈折率の分布を測定
することができる。この方法は円形断面を有する繊維に
適用する。
average refractive index (n11・nl), and average birefringence observed from the side of the fiber by the interference fringe method using a transmission quantitative interference microscope (for example, interference microscope Interfaco manufactured by Carl Zeiss Jena, East Germany). The distribution of rates can be measured. This method applies to fibers with a circular cross section.

繊維の屈折率は繊維軸に対して平行な電場ベクトルを持
つ偏光に対する屈折率nllと、繊維軸に対し垂直な電
場ベクトルを持つ偏光に対する屈折率n1によって特徴
づけられる。
The refractive index of a fiber is characterized by a refractive index nll for polarized light with an electric field vector parallel to the fiber axis and a refractive index n1 for polarized light with an electric field vector perpendicular to the fiber axis.

ここで説明する測定は全て緑色光線(波長λ=549m
μ)を使用する。
All measurements explained here are performed using green light (wavelength λ = 549m).
μ).

繊維は光学的にフラットなスライドガラス及びカバーガ
ラスを使用し、02〜2波長の範囲内の干渉縞のずれを
与える屈折率(N)をMし、且つ、繊維に対し不活性な
封入剤中に浸漬される。この封入剤中に数本の繊維を浸
漬し、単糸が互いに接触しないようにする。さらに4J
A維は、その、、a離軸が干渉顕微鏡の光軸及び干渉縞
に対して垂直となるよりにすべきである。この干渉縞の
パターンを写真撮影し、約1500倍に拡大して解析す
る。
For the fibers, an optically flat slide glass and cover glass are used, the refractive index (N) is set to M to provide a shift in interference fringes within the range of 02 to 2 wavelengths, and the fibers are placed in a mounting medium that is inert to the fibers. immersed in. Several fibers are immersed in this encapsulant so that the single threads do not touch each other. 4 more J
The A-fiber should be such that its a-axis is perpendicular to the optical axis of the interference microscope and the interference fringes. This interference fringe pattern is photographed, magnified approximately 1,500 times, and analyzed.

第1図に示すように、繊維の封入剤の屈折率をN1繊維
の外周上の点キーS“間の屈折率n1l(またnl)、
S/ −B“間の厚みχ、使用光線の波長をλ、パック
グランドの平行縞の間隔(lλに相当)で表わされる。
As shown in FIG. 1, the refractive index of the encapsulant of the fiber is determined by the refractive index n1l (also nl) between the point key S'' on the outer periphery of the N1 fiber,
It is expressed by the thickness χ between S/ and B'', the wavelength of the used light beam by λ, and the interval between the parallel stripes of the back ground (corresponding to lλ).

繊維の半径をRとすると、繊維の中心Roから外周Rま
での各位置での光路差から各位置での繊維の屈折率al
l(又はnl)の分布をめることができる。rを繊維の
中心から各位置までの距離とした時、X=r/R=0、
即ち、繊維の中心における屈折率を平均屈折率(n1l
(o)又はnl(0))という。Xは外周上において1
となシ、その他の部分では0−1の範囲の値となるが、
例えばX=O,Sの点に於ける屈折率をn11.。、8
)(又はnl、。、8))と表わす。繊維の平均屈折率
(nll)の内外層差をn11(。、a)−nll(。
When the radius of the fiber is R, the refractive index al of the fiber at each position is calculated from the optical path difference at each position from the center Ro of the fiber to the outer periphery R.
The distribution of l (or nl) can be determined. When r is the distance from the center of the fiber to each position, X=r/R=0,
That is, the refractive index at the center of the fiber is the average refractive index (n1l
(o) or nl(0)). X is 1 on the outer circumference
In other parts, the value is in the range of 0-1,
For example, the refractive index at the point X=O,S is n11. . , 8
) (or nl, ., 8)). The difference in the average refractive index (nll) of the fiber between the inner and outer layers is n11(., a) - nll(.

、と表わす。また、平均屈折率n11.。、と吐、。、
よシ、平均複屈折率(Δn)はΔn=n1l(。)−吐
(0)で表わされる0◎目付 − 試験片20cy++X20cm を取シ、その重量を測
シ、目付に換算して表わす。
, is expressed as . Moreover, the average refractive index n11. . , exclaimed. ,
The average birefringence index (Δn) is expressed as Δn=n1l(.) - weight (0). Take a test piece of 20 cy++ x 20 cm, measure its weight, and convert it to the basis weight.

◎厚み 荷重1001//m のダイヤルr−ノを用いて少なく
とも3点以上測フ、その平均値で表わす。
◎Measure at least three points using a dial r-no with a thickness load of 1001//m, and express the average value.

■嵩高性 上記の目付と、厚みの値から単位重裁当シの谷状をめて
、嵩高性として表わす。
■Bulkiness The trough of the unit weight is determined from the above basis weight and thickness values and is expressed as bulkiness.

◎引張強伸度 試験片3cm×20 cm’k、タテ、ヨコ各々3点以
上取シ、定速伸長形引張試験機を用いてつかみ間隔10
副、引張速度20 trry’mlnで測定して、強力
、伸度をめる。谷々その平均値で表わす。(150℃雰
囲気中も同様にして測る。) ◎剛軟度 風合の測定として45°カンチレバー法によシ、剛軟度
をめる。(JIS−L−1079A法)◎熱収縮率 試料25cInX25mを取シ、その20tynの位置
にタテ、ヨコ、各々マーキングして、温度150℃で5
分間熱風乾燥機中に入れ、寸法の変化から収縮率をめて
、その平均値で表わす。
◎Tensile strength and elongation test piece 3 cm x 20 cm'k, take at least 3 points each vertically and horizontally, using a constant speed extension type tensile tester, grip interval 10
Measured at a tensile speed of 20 mln to determine strength and elongation. The valleys are expressed as their average values. (Measurement is performed in the same manner in an atmosphere of 150°C.) ◎For the measurement of bending resistance and texture, the bending resistance is measured using the 45° cantilever method. (JIS-L-1079A method) ◎Take a heat shrinkage rate sample of 25cIn
Place it in a hot air dryer for 1 minute, calculate the shrinkage rate from the change in dimensions, and express it as the average value.

◎弾性回復率 試料3cTn×20crIKを、タテ、ヨコ、各々とシ
、定速伸長形引張試験機を用いてつかみ間隔1ocrn
◎Elastic recovery rate sample 3cTn x 20crIK was gripped vertically and horizontally using a constant speed extension type tensile tester at a gripping interval of 1ocrn.
.

引張速度10 cwr/ mI nで2.0 kg73
cm 一定荷重を1分間かけた後、除重後5分間してか
ら試験片の寸法変化から、弾性回復率をめる。つま9、
荷重をかける前の長さをLOs荷重をかけた時tls除
爪後をt2とする。
2.0 kg73 at tensile speed 10 cwr/ml n
cm After applying a constant load for 1 minute, calculate the elastic recovery rate from the dimensional change of the test piece 5 minutes after the load is removed. Toe 9,
The length before applying the load is LOs When the load is applied tls The length after nail removal is t2.

2 弾性回復率=−xioo (イ) t。2 Elastic recovery rate = -xioo (a) t.

◎熱劣化 加熱物体との接触による熱劣化で示す。即ち、一対の平
滑ロールを用いて、上、下温度150℃、線圧20 k
g/cfnで加圧加熱接触を行ない、熱圧着前後の引張
強ツバ破断伸度から、熱劣化をめ、その平均値で表わす
◎Thermal deterioration Indicates thermal deterioration due to contact with a heated object. That is, using a pair of smooth rolls, the upper and lower temperatures were 150°C and the linear pressure was 20k.
Pressure heating contact is carried out at g/cfn, and thermal deterioration is calculated from the tensile strength and flange elongation at break before and after thermocompression bonding, and is expressed as an average value.

◎粉じん捕集率 JIS−C−9615(空気清浄機)の図−3の試験機
を用いて、JIS−Z−8901(試験用ダスト)の2
種粉じん(けい砂)を風j11 m /mlnで100
 m97m’濃度に均一に分散して初期の通気抵抗(Δ
PI)から2倍の通気抵抗(Δpz)まで試験して、粉
じん捕集率を測定する。(使用した粉じん量VI’1%
捕果された粉じん量w2とする。) 粉じん捕集率=−X100(%) W! ◎異方性 3mX2Qcrnの試−鋏片をタテ、ヨコ各々5点とシ
定速伸長型引張試験機を用いてつかみ間隔i。
◎Dust collection rate: 2 of JIS-Z-8901 (Test dust)
Seed dust (silica sand) is blown to 100 m/ml by wind.
The initial ventilation resistance (Δ
PI) to twice the airflow resistance (Δpz) to measure dust collection efficiency. (Amount of dust used VI'1%
Let the amount of collected dust be w2. ) Dust collection rate = -X100 (%) W! ◎ Anisotropic 3m x 2Q crn test - Using a constant speed extension type tensile tester, grip the scissors at 5 points each in the vertical and horizontal directions at a gripping interval i.

国、引張速度20cm/minで測定してそれぞれの方
向の平均破断強力をめその値が大なる方向D1 とし、
それと直角の方向をD2 とする。この際得られた各方
向の応力−歪曲線(各々5点)における10.20.3
0%伸長時の応力の平均値σD1及びσD2をめそれぞ
れの沖長時におけるσD1/σD2 の値を異方性の評
価基準とする。すなわちこの値が大きいほど異方性が大
であることを意味する。
Measured at a tensile speed of 20 cm/min, the average breaking strength in each direction is taken as the direction D1 where the value is larger,
Let the direction perpendicular to that be D2. 10.20.3 in the stress-strain curves (5 points each) in each direction obtained at this time
Based on the average stress values σD1 and σD2 at 0% elongation, the value of σD1/σD2 at each offshore length is used as the evaluation standard for anisotropy. In other words, the larger this value is, the greater the anisotropy is.

以下余白 実施例10.20,30、比較例40 、50 。Margin below Example 10, 20, 30, Comparative Examples 40, 50.

60.70 本発明による不織布の3つの実施例(10゜2心、30
)と4つの比較例(40,50,60゜70)とを中間
製品、すなわち形成されたウェブを部分熱圧着しニード
ルパンチング加工した状態での不織布と、本発明による
不織布、すなわち前記中間製品の不織布を熱収縮させた
不織布との2つの状態で構成繊維および不織布の物性を
比較検討した。
60.70 Three examples of nonwoven fabrics according to the invention (10° 2 cores, 30°
) and four comparative examples (40, 50, 60° 70) are used as an intermediate product, that is, a nonwoven fabric in which the formed web is partially thermocompressed and needle-punched, and a nonwoven fabric according to the present invention, that is, the intermediate product as described above. The physical properties of the constituent fibers and the nonwoven fabric were compared and examined in two states: a nonwoven fabric obtained by heat-shrinking the nonwoven fabric, and a nonwoven fabric obtained by heat-shrinking the nonwoven fabric.

孔径0.25、孔数1000個の矩形紡糸口金を開いて
吐出量85097m1nで固有粘度0.75のポリエチ
レンテレフタレートを溶融温度290℃で紡出し、紡糸
口金から索引用エアーサッカー迄の距離(H−D)と紡
出速度を変えて金網上に捕集して均一なウェブを取シ出
した。それを、熱圧着率12%のエンボスロールと弐m
が平iなロールの二本ロールの温度60℃、線圧20k
17/crnで熱圧Nをしてから、ニードルパンチング
加工を行なった。この条件は繊維量各々目付10017
m”で針40番、突き深さ15m、パンチ回数300回
/ cm”で行ない前記中間製品を得た。
A rectangular spinneret with a pore diameter of 0.25 and 1000 holes was opened, and polyethylene terephthalate with an intrinsic viscosity of 0.75 was spun at a discharge rate of 85,097 m1n at a melting temperature of 290°C, and the distance from the spinneret to the air sucker for indexing (H- A uniform web was collected on a wire mesh by changing the spinning speed as in D). Then, I used an embossing roll with a thermocompression bonding rate of 12%.
The temperature of two flat rolls is 60℃, and the linear pressure is 20k.
After applying hot pressure N at 17/crn, needle punching was performed. This condition is 10017 fibers each.
The intermediate product was obtained using a #40 needle, a punching depth of 15 m, and a number of punches of 300 times/cm.

この場合は紡糸口金直下300ranの位置において第
2図のごとくフィラメント群の両側に配置した冷風チャ
ンバーよシ13℃の冷風を、吹出しゾーン長(t) 7
0 mm、吹出し角度(θ)35°の栄件下で冷風速度
0.8 ml a @cで均一に吹き付けた。
In this case, cold air at a temperature of 13°C is blown through cold air chambers placed on both sides of the filament group as shown in Fig. 2 at a position 300 ran directly below the spinneret, with a blowing zone length (t) of 7.
0 mm and a blowing angle (θ) of 35°, the cold air was blown uniformly at a speed of 0.8 ml a@c.

得られた中間製品としての不織布の物性とその不織布を
構成する繊維の物性を第1表に示す。第1表において実
施例1.2および3は後述の本発明の不織布の実施例1
0.20および30にそれぞれ用いられる中間製品とし
ての不織布であシ、比較例4.5,6.7はそれぞれ比
較例の不織布40.50.60.70に用いられる中間
製品としての不織布である。ただし比較例4.5.7の
不織布を構成するI&維は特に冷風を使用せずにH,D
とエアーサッカ圧着量を適宜変化感ぜて所定の紡糸速度
のウェブを得た場合のki、にでおり、比較例6の不織
布を構成する繊維は冷風チャンバを片側だりに配置する
ことによシjiJ述の非対称の構造を有する繊維である
Table 1 shows the physical properties of the nonwoven fabric as an intermediate product obtained and the physical properties of the fibers constituting the nonwoven fabric. In Table 1, Examples 1.2 and 3 are Example 1 of the nonwoven fabric of the present invention, which will be described later.
Comparative Examples 4.5 and 6.7 are nonwoven fabrics as intermediate products used in Comparative Examples 40, 50, 60, and 70, respectively. . However, I and D fibers constituting the nonwoven fabric of Comparative Example 4.5.7 were prepared without using cold air.
and ki when a web with a predetermined spinning speed is obtained by appropriately changing the amount of air sucker crimping. It is a fiber having an asymmetric structure as described by J.

次いT、iliの二一ドルノやンチ加工をした中間製品
の不織有金熱収縮きせた。加工条件は、タテ方向、ヨコ
方向それぞれ30%熱収縮させるよう中、長さを規制し
て、ピンテンターの温度100℃で30秒間で、熱収縮
を行なった。ただし比較第2表に示すように、本発明の
不織布の実施例10.20.30は緻密な繊維密度を有
し、弾性に富み、剛軟U、粉じん捕集率、又、外力に対
しての伸びの異方性が満足できる嵩高性不繊布が得られ
た。一方、比較例40.50は、いずれも、本発明の目
的を満足するものは得られなかった。
Next, the non-woven metallic heat-shrinkable intermediate product of T, ili, and punched intermediate products was produced. The processing conditions were such that the length was regulated so as to achieve 30% heat shrinkage in each of the vertical and horizontal directions, and the heat shrinkage was carried out at a pin tenter temperature of 100° C. for 30 seconds. However, as shown in Comparison Table 2, the nonwoven fabrics of Examples 10, 20, and 30 of the present invention have a dense fiber density, are rich in elasticity, and have excellent resistance to bending/flexing U, dust collection rate, and external force. A bulky nonwoven fabric with satisfactory elongation anisotropy was obtained. On the other hand, in Comparative Examples 40.50, none were obtained that satisfied the object of the present invention.

ただし比較例60.70は第2表で示す物性に関する限
シは実施例10,20.30に準する性能を示した。
However, Comparative Example 60.70 exhibited performance similar to Examples 10 and 20.30 in terms of physical properties shown in Table 2.

前記実施例10.20および30と比較例40゜50.
60.70のそれぞれに対して熱劣化の試験を行った。
Examples 10, 20 and 30 and Comparative Example 40.50.
A thermal deterioration test was conducted for each of the 60 and 70 samples.

七の結果を第3表に示す。第3表に示すように本発明の
不織布10.20および30では破断伸度の低下の程度
が低く熱劣化の点でも大幅に改善きれている。比較例6
0.70−t’は破断伸度が大幅に低下すると共に引張
強力も但“下し、実施例10.20および3oに比して
熱劣化において著しく劣っている。なお不発Ey4によ
る不織布において熱劣化試験によって引張強力が向上し
たのは平滑ロールによって加熱加圧されることによって
不織布内の11)、mの接合が増加したことに基因する
The results of 7 are shown in Table 3. As shown in Table 3, in the nonwoven fabrics 10.20 and 30 of the present invention, the degree of decrease in elongation at break was low and the thermal deterioration was also significantly improved. Comparative example 6
At 0.70-t', the elongation at break was significantly lowered, and the tensile strength was also lowered. The reason why the tensile strength was improved in the deterioration test is that the bonding of 11) and m in the nonwoven fabric increased by heating and pressing with a smooth roll.

1:J、 T−余白1: J, T-margin

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は繊維の断面半径方向屈折率(n11又はn±)
分布の測定に用いた干渉縞の74ターンの一例である。 第2図は本発明の不織シートを得るための代表的な製造
装置を模式的に示す略示正面図である。 1・・・繊維、2・・・剣人剤による干渉縞、3・・・
粋維による干渉縞、11・・・紡糸口金、12・・・エ
アーサ、カー、13・・・コンベアネット、14・・・
冷風チヤンバt 15・・・フィラメント群、16・・
・ウェブ、L・・吹出し幅、A・・・吹田し角度。 特許出願人 旭化成工業株式会社 特許出願代理人 弁理士青水 朗 弁理士西舘和之 弁理士 山 口 昭 之 弁百十 百 山 齋 (b 第1回 (a) (b) 第2図 手続補正書(自発) 昭和60年6り/!日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第50186号 2、発明の名称 弾性を有する嵩高性不織布 3、補正をする者 事件との関係 特許出願人 名称 (003)旭化成工業株式会社 4、代理人 住所 〒105東京都港区虎ノ門−丁目8番10号靜光
虎ノ門ビル電話(504)07215、補正の対象 (1) 明細書の「特許請求の範囲」の桐(2)明細書
の「発明の詳細な説明」の欄(3) 明細書の「図面の
簡単な説明」の欄6、補正の内容 (1) 特許請求の範囲を別紙のとおシ補正する。 (2)「発明の詳細な説明」の欄について■ 明細書第
3頁第13行の「極部的」を「局部的」と補正する。 ■ 明細書第5頁第2行の「熱処理性により」を「熱処
理により」と補正する。 ■ 明細書第6頁第9行、および第7頁第10行のrl
、60≦n11(。)≦1.67Jをrl、600≦n
11.。、≦1.670Jとそれぞれ補正する。 ■ 明細書第8頁第4行の「条件(B)を満たして」の
前に「150℃における収縮率が5−以下r1.600
以下」と、第6行のrl、67以上」を「1.670以
上」と補正する。 ■ 明細書の第9頁第4行の「平均屈折率の」を「平均
屈折率nllの」と補正します。 ■ 明細書第11頁第7行から第11行進に舊己載の[
この際さらに・・・40’以下にすることである。」を
「ことで、冷風吹出しゾーンの長さLは、例えば70簡
であシ、且つ、フィラメント群への吹き付は角度θは1
例えば35’である。」と補正する。 ■ 明細書第12頁第13行の「≦1.64Jを「≦1
.640jと、第14行のr5X10 Jをr5.5X
10−’Jと、第16行の「ウェブを」を「ウェブに」
と補正する。 ■ 明細書第13頁第4行の「500回/6n2である
。」を「500回/(:m”以下である。」と補正する
。 O明細書第13頁第8行の「60秒以内で行なう@」を
「熱処理を行なう。」と補正する。 ■ 明細書第13頁第11行の「又、熱収縮」行っテ」
ヲ「エンゴス加工を行なって」と補正する。 O明細書第14頁第3行の「10から」を「50から」
と、第6行の「難炎剤」を「11【燃剤」と補正する。 ■ 明細@第15頁第5行の「緻密な」を1均一な、旬
と補正する。 O明細書第19頁第13行の「加圧加熱接触屈折率n 
If (。、の欄のrl、565Jとrl、528Jを
rl、592Jとrl、583Jにそれぞれ補正し、構
成繊維物性の欄のrXlo−3Jをr (X−10−3
)Jと補正する。 O明細書第26頁第2表の実施例10と比較例40の平
均屈折率nl+、、、、)の欄のrl、591Jとrl
、551Jをrl、606Jとf’t、s9o、1にそ
れぞれ補正し、構成繊維物性の桶のrXlo−3Jをr
(xlO)Jと補正する。 (3)「図面の簡単な説明」の欄について明細書第28
頁第5行の「略示正面図」を「概略図」と補正する。 7、添附書類の目録 補正特許請求の範囲 1通 2、特許請求の範囲 1、繊度0.5デニ一ル以上のフィラメントがらなシ、
15μ以上の粒子捕集率が80%以上である繊維密度と
50%以上の弾性回復率を有する不織布であって、その
構成繊維断面が半径Rの円形断面を有し、その中心部の
平均屈折率をn11.。2. ・中心から0.8Rの距
離の部分に於ける平均屈折率をn11 とすると、υを
夕≦n1lrot≦1.670(O,a ) で且つ(”’(0,8) ”’(0) )≧5 X 1
0−3を満だすことを特徴とするポリエチレンテレフタ
レート長繊維不織布。 2、破断強度の大なる方向をり、とじ、それと直角の方
向をD2とし、該D!またはD2の方向での同一伸度で
のそれぞれの応力をσi)t lσ9□として応力比σ
D1/σ0.を不織布のその伸度における異方性とした
場合に、肢異方性が伸長領域1゜チル30チの範囲で0
.8〜3.0である特許請求の範囲第1項記載の不織布
Figure 1 shows the fiber cross-sectional radial refractive index (n11 or n±)
This is an example of 74 turns of interference fringes used for measuring distribution. FIG. 2 is a schematic front view schematically showing a typical manufacturing apparatus for obtaining the nonwoven sheet of the present invention. 1...Fiber, 2...Interference fringes due to swordsman agent, 3...
Interference fringes due to fibers, 11... Spinneret, 12... Air server, car, 13... Conveyor net, 14...
Cold air chamber t 15...Filament group, 16...
・Web, L...Blowout width, A...Suita angle. Patent Applicant Asahi Kasei Kogyo Co., Ltd. Patent Application Agent Patent Attorney Akira Aomi Patent Attorney Kazuyuki Nishidate Patent Attorney Akira Yamaguchi Hyakuten Yamasai (b 1st (a) (b) Figure 2 Procedural Amendment ( Voluntary) June 1985/!Manabu Shiga, Commissioner of the Japanese Patent Office1, Indication of the case, Patent Application No. 50186 filed in 19882, Name of the invention, Bulky non-woven fabric with elasticity3, Person making the amendment. Related Patent applicant name (003) Asahi Kasei Kogyo Co., Ltd. 4, Agent address: Seikou Toranomon Building, 8-10 Toranomon-chome, Minato-ku, Tokyo 105 Telephone: (504) 07215, Subject of amendment (1) Statement of " Kiri (2) “Detailed description of the invention” column (3) “Brief description of the drawings” column 6 of the specification (1) Contents of the amendment (1) “Scope of claims” Amend the attached sheet. (2) Regarding the "Detailed Description of the Invention" column: ■ Amend "extremely" to "locally" on page 3, line 13 of the specification. ■ Page 5 of the specification. Correct “due to heat treatability” in the second line to “due to heat treatment”. ■ rl on page 6, line 9 of the specification, and page 7, line 10
, 60≦n11(.)≦1.67J, 600≦n
11. . , ≦1.670J. ■ On page 8, line 4 of the specification, before “meeting condition (B)”, it says “the shrinkage rate at 150°C is 5- or less r1.600”.
” and rl in the 6th line, “67 or more” is corrected to “1.670 or more”. ■ Correct "average refractive index" on page 9, line 4 of the specification to "average refractive index nll". ■ From page 11, line 7 to line 11 of the specification, [
At this time, the distance should also be set to 40' or less. "Then, the length L of the cold air blowing zone is, for example, 70 cm, and the angle θ of the blowing onto the filament group is 1.
For example, it is 35'. ” he corrected. ■ “≦1.64J” on page 12, line 13 of the specification
.. 640j and r5X10 J on the 14th line to r5.5X
10-'J and "web" in line 16 to "web"
and correct it. ■ Correct "500 times/6n2" on page 13, line 4 of the specification to "500 times/(:m" or less.) O "60 seconds," on page 13, line 8 of the specification ``Conduct heat treatment within the following @'' is corrected to ``Conduct heat treatment.'' ■ ``Also perform heat shrinkage'' on page 13, line 11 of the specification.
ヲ Correct it by saying, ``Perform the Engoss process.'' Change "from 10" to "from 50" on page 14, line 3 of O specification.
Then, "Flame retardant" in line 6 is corrected to "11 [Flame retardant"]. ■ In the details @ page 15, line 5, ``elaborate'' is corrected to ``uniform'' and ``seasonal''. O Specification page 19 line 13 “Pressure heating contact refractive index n
Correct rl, 565J, rl, and 528J in the If (.) column to rl, 592J, rl, and 583J, respectively, and correct rXlo-3J in the column of constituent fiber physical properties to r (X-10-3
) Correct as J. rl, 591J and rl in the column of average refractive index nl+,,,,) of Example 10 and Comparative Example 40 in Table 2, page 26 of the specification
, 551J to rl, 606J and f't, s9o, 1, respectively, and rXlo-3J of the tub of constituent fiber physical properties to r
Correct it as (xlO)J. (3) Regarding the “Brief explanation of drawings” column, Section 28 of the specification
"Schematic front view" in the fifth line of the page is corrected to "schematic diagram." 7. Amended list of attached documents Claims 1 copy 2. Claim 1: A filament with a fineness of 0.5 denier or more;
A nonwoven fabric having a fiber density with a particle collection rate of 15μ or more of 80% or more and an elastic recovery rate of 50% or more, the constituent fiber cross section of which has a circular cross section with a radius R, and the average refraction at the center of the nonwoven fabric. rate n11. . 2.・If the average refractive index at a distance of 0.8R from the center is n11, then υ is ≦n1lrot≦1.670 (O, a ) and (''(0,8) ''(0) )≧5×1
A polyethylene terephthalate long fiber nonwoven fabric that satisfies 0-3. 2. The direction of maximum breaking strength is taken as the binding direction, and the direction perpendicular to it is taken as D2, and the D! Or each stress at the same elongation in the direction of D2 is σi)t lσ9□, and the stress ratio σ
D1/σ0. is the anisotropy of the nonwoven fabric in its elongation, and the limb anisotropy is 0 in the elongation region of 1° chill and 30°.
.. The nonwoven fabric according to claim 1, which has a molecular weight of 8 to 3.0.

Claims (1)

【特許請求の範囲】 1、ff1度0.5デニ一ル以上のフィラメントからな
シ、15μ以上の粒子捕集率が80%以上である繊維音
度と50%以上の弾性回復率を有する不織布であって、
その構成繊維断面が半径Rの円形断面を有し、その中心
部の平均屈折率をn1l(。2、中心から0.8Rの距
離の部分に於ける平均屈折率をn+1(0,8)とする
と、1.60≦n1l(o)≦1.67で且つ(n1l
(o、6) nll(g) )≧5×10 を満たすこ
とを特徴とするポリエチレンテレフタレート長繊維不織
布。 2、破断強度の大なる方向をD! とじ、それと直角の
方向をD=とし、該DI−1:たはD2の方向での同一
伸度でのそれぞれの応力をσ(111σD2 として応
力比σ。□/σD2 を不織布のその伸度における異方
性とした場合に、該異方性が伸長領域10チ〜30チの
範囲で0.8〜3.0である特許請求の範囲第1項記載
の不織布。
[Claims] 1. A nonwoven fabric consisting of a filament with a ff1 degree of 0.5 denier or more, a fiber acousticity with a particle collection rate of 15μ or more of 80% or more, and an elastic recovery rate of 50% or more. And,
The constituent fiber cross section has a circular cross section with radius R, and the average refractive index at the center is n1l(.2, and the average refractive index at a distance of 0.8R from the center is n+1(0,8). Then, 1.60≦n1l(o)≦1.67 and (n1l
A polyethylene terephthalate long fiber nonwoven fabric that satisfies (o, 6)nll(g))≧5×10. 2. D is the direction of greater breaking strength! Binding, the direction perpendicular to it is set as D=, and each stress at the same elongation in the direction of DI-1: or D2 is σ(111σD2), and the stress ratio σ.□/σD2 is the stress ratio at the same elongation of the nonwoven fabric. The nonwoven fabric according to claim 1, wherein the anisotropy is 0.8 to 3.0 in the range of 10 to 30 inches in the elongated region.
JP59050186A 1984-03-17 1984-03-17 Bulky nonwoven fabric having elasticity Granted JPS60199958A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59050186A JPS60199958A (en) 1984-03-17 1984-03-17 Bulky nonwoven fabric having elasticity
EP19850102788 EP0156234B2 (en) 1984-03-17 1985-03-12 Heat-resistant non-woven fabric having a high elongation at break
DE19853586136 DE3586136T3 (en) 1984-03-17 1985-03-12 Heat-resistant, high-tensile, non-woven fabric.
KR1019850001637A KR860001835B1 (en) 1984-03-17 1985-03-14 Nonwoven sheet
US06/712,243 US4578307A (en) 1984-03-17 1985-03-15 Nonwoven sheet having improved heat deterioration resistance and high elongation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59050186A JPS60199958A (en) 1984-03-17 1984-03-17 Bulky nonwoven fabric having elasticity

Publications (2)

Publication Number Publication Date
JPS60199958A true JPS60199958A (en) 1985-10-09
JPH0147584B2 JPH0147584B2 (en) 1989-10-16

Family

ID=12852146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59050186A Granted JPS60199958A (en) 1984-03-17 1984-03-17 Bulky nonwoven fabric having elasticity

Country Status (1)

Country Link
JP (1) JPS60199958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199961A (en) * 1984-03-17 1985-10-09 旭化成株式会社 Nonwoven fabric having high elongation degree without heat shrinkage
JPS60199957A (en) * 1984-03-17 1985-10-09 旭化成株式会社 Nonwoven sheet having high elogation degree improved in thermal deterioration
JPS62144723A (en) * 1985-12-20 1987-06-27 Asahi Chem Ind Co Ltd Vessel-like filter and producing process thereof
KR102615088B1 (en) * 2022-12-02 2023-12-19 (주) 수향방수 Waterproof process of roof surface bend parts using uncompressed glass fiber nonwoven web

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147683A (en) * 1975-06-13 1976-12-18 Asahi Chemical Ind Bonding method for web
JPS5831422A (en) * 1981-08-20 1983-02-24 Toshiba Corp Transistor circuit
JPS60199961A (en) * 1984-03-17 1985-10-09 旭化成株式会社 Nonwoven fabric having high elongation degree without heat shrinkage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147683A (en) * 1975-06-13 1976-12-18 Asahi Chemical Ind Bonding method for web
JPS5831422A (en) * 1981-08-20 1983-02-24 Toshiba Corp Transistor circuit
JPS60199961A (en) * 1984-03-17 1985-10-09 旭化成株式会社 Nonwoven fabric having high elongation degree without heat shrinkage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199961A (en) * 1984-03-17 1985-10-09 旭化成株式会社 Nonwoven fabric having high elongation degree without heat shrinkage
JPS60199957A (en) * 1984-03-17 1985-10-09 旭化成株式会社 Nonwoven sheet having high elogation degree improved in thermal deterioration
JPH0147589B2 (en) * 1984-03-17 1989-10-16 Asahi Chemical Ind
JPH0147581B2 (en) * 1984-03-17 1989-10-16 Asahi Chemical Ind
JPS62144723A (en) * 1985-12-20 1987-06-27 Asahi Chem Ind Co Ltd Vessel-like filter and producing process thereof
KR102615088B1 (en) * 2022-12-02 2023-12-19 (주) 수향방수 Waterproof process of roof surface bend parts using uncompressed glass fiber nonwoven web

Also Published As

Publication number Publication date
JPH0147584B2 (en) 1989-10-16

Similar Documents

Publication Publication Date Title
JP2610408B2 (en) Moldable nonwoven sheet and method for producing the same
EP0156234B2 (en) Heat-resistant non-woven fabric having a high elongation at break
US8652977B2 (en) Heat-resistant nonwoven fabric
JPS61655A (en) Perforated nonwoven fabric and its production
KR20000010588A (en) Bonded polyolefin sheet
SE449377B (en) PROCEDURE FOR THE PREPARATION OF AN AUTOGENTALLY BONDED FIBER FLOOR
JPS5823951A (en) Production of bulky nonwoven fabric
KR101745975B1 (en) Method for producing long fiber nonwoven fabric
JPH02127553A (en) Stretchable non-woven fabric and production thereof
US20140187115A1 (en) Polyphenylene sulfide fiber and nonwoven fabric
JP5725426B2 (en) Polyphenylene sulfide composite fiber and non-woven fabric
KR100273483B1 (en) Post-treatment of nonwoven webs
EP0154973B1 (en) Nonwoven sheet having smooth filmy surface layer
JPS60199958A (en) Bulky nonwoven fabric having elasticity
JPS60199961A (en) Nonwoven fabric having high elongation degree without heat shrinkage
KR101483368B1 (en) Needle punching non-woven fabric having an improved property and manufacturing method thereof
JPH0147581B2 (en)
JPH06146113A (en) Thermally fusible conjugate yarn, its production and nonwoven fabric using the same yarn
JPS60194159A (en) Polyester long fiber nonwoven fabric and its production
JPH02216295A (en) Production of highly strong polyester fiber paper
JPS6269874A (en) Nonwoven sheet for molding process and its production
JPS60259664A (en) Fiber sheet like article
JPS61252354A (en) Smooth dull like nonwoven sheet
JPH03137260A (en) Production of heat resistant nonwoven fabric
CN114103341A (en) Multilayer spunbonded nonwoven for hygiene materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees