JPS60198485A - Multilayer coated nuclear fuel particle - Google Patents

Multilayer coated nuclear fuel particle

Info

Publication number
JPS60198485A
JPS60198485A JP59053460A JP5346084A JPS60198485A JP S60198485 A JPS60198485 A JP S60198485A JP 59053460 A JP59053460 A JP 59053460A JP 5346084 A JP5346084 A JP 5346084A JP S60198485 A JPS60198485 A JP S60198485A
Authority
JP
Japan
Prior art keywords
silicon carbide
layer
density
nuclear fuel
fuel particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59053460A
Other languages
Japanese (ja)
Other versions
JPS646424B2 (en
Inventor
信幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP59053460A priority Critical patent/JPS60198485A/en
Publication of JPS60198485A publication Critical patent/JPS60198485A/en
Publication of JPS646424B2 publication Critical patent/JPS646424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Magnetic Record Carriers (AREA)
  • Glanulating (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は多重被撞核燃記1粒子の改良に関する。[Detailed description of the invention] TECHNICAL FIELD The present invention relates to an improvement in a multiple-enforced nuclear fuel single particle.

高温ガス炉用燃料として、核分裂性物質を核として、そ
の外側に熱分#r炭素や炭化硅素を被覆した粒子が用い
られている。この被覆燃料粒子は。
As a fuel for a high-temperature gas reactor, particles are used in which a fissile material is used as a core and the outside thereof is coated with heat component #r carbon or silicon carbide. This coated fuel particle.

被覆工程やコンパクト成形工程の製造I寺および使用時
に全体として破損率が少ないことが要求される。
It is required that the overall breakage rate be low during manufacturing and use in the coating process and compact molding process.

本発明は、被覆燃料粒子の被覆層の構成を工夫し、低破
損率の被覆燃料粒子を提供するものである。
The present invention provides coated fuel particles with a low breakage rate by devising the structure of the coating layer of coated fuel particles.

’I’RI 5t)(II)ノ1シ扱(夏駅;料ギ■子
は1(ISO櫂シ阪]■燃料石I子に固体核分裂化+、
y、!I2ηの閉じ込めの1S Hrを待たせたもので
、杉の外側に内側からlik升)度熱分J!Pf、炭素
嗜、尚慴jル熱分解炭宰層、炭化硅素1曽、歯そ1w熱
分解炭素を被覆して酌り、炭化硅素l冑の慴1埃は清適
は理論最犬死帳(、3,215,9/atη)の99力
以上である。炭化硅素1曽CIX川体状核分裂生成物の
417.’ iiダ障壁と[7ての役1〜11と、粒子
の寸θ【゛な定住の役割ケ担っている。M者の役削を末
だすためには炭化硅素このような一′M度の炭化硅素1
胃は裸の状態では被覆時の取扱い中に慟をつけ、やがて
破損をひきおこすことがおる。捷だコンパクトl成形工
程では。
'I'RI 5t) (II) no 1 treatment (Natsu Station; Feegi ■ child is 1 (ISO Kaishisaka) ■ Solid nuclear fission + into fuel stone I child,
Y-! It was made to wait for 1S Hr of confinement of I2η, and from the inside to the outside of the cedar lik square) degree heat J! Pf, carbon, pyrolytic carbon layer, silicon carbide 1, teeth 1w pyrolytic carbon coated, silicon carbide 1, 1 dust is theoretically the best dog death book ( , 3,215,9/atη). 417. of silicon carbide Iso CIX river-like fission products. It plays the role of barrier and [7 roles 1 to 11, and the role of particle size θ]. In order to eliminate the role of M people, silicon carbide such as 1' M degree silicon carbide 1
If the stomach is naked, it may get wet during handling during covering, which may eventually cause damage. In the compact molding process.

炭化硅素層に圧縮荷車が付加されることによって破損す
るに至る場合がある。また使用時には、被覆燃料粒子内
の気体状核分裂生成物の蓄積による内圧によって生ずる
炭化硅素1曽の引張力によって破損することがある。
The addition of compression carts to the silicon carbide layer may lead to failure. Additionally, during use, the silicon carbide may be damaged by tensile forces caused by internal pressure due to the accumulation of gaseous fission products within the coated fuel particles.

TRl5O(11)型被覆燃料粒子はl、に化硅素層の
内側と外側に高密度の熱分解炭素層があり、主として使
用時において外側の熱分解炭素層は自身の収縮によって
破損する場合があり、それに引き続いて炭化硅素層が内
圧に起因する引張り応力によって破損を引き起こすこと
がある。r、A化硅素層と外側高密度熱分解炭素層の間
に低密IWの炭化硅素層があれば高密)W熱分解炭素層
の照射収縮による応力を緩和でき、破損を誠らすことが
できよう。
TRl5O(11) type coated fuel particles have high-density pyrolytic carbon layers inside and outside the silicon oxide layer, and the outer pyrolytic carbon layer may be damaged by its own shrinkage mainly during use. , subsequently the silicon carbide layer may cause failure due to the tensile stress caused by the internal pressure. If there is a low-density IW silicon carbide layer between the A silicon oxide layer and the outer high-density pyrolytic carbon layer, the stress caused by irradiation shrinkage of the high-density W pyrolytic carbon layer can be alleviated, and damage can be prevented. I can do it.

また炭化硅素層と内側の尚密1現熱分解炭素層の間に低
密な炭化硅素層があれば気体状核分裂生成物の蓄積によ
る内圧上昇によって生ずる炭化硅素層の引張応力を緩和
でき破損を減らすことができよう。
In addition, if there is a low-density silicon carbide layer between the silicon carbide layer and the inner pyrolytic carbon layer, it can alleviate the tensile stress in the silicon carbide layer caused by the increase in internal pressure due to the accumulation of gaseous fission products. It could be reduced.

本発明者等の実験によると、模擬核燃料物質の核に既知
法により低密度熱分呵炭素の層と、面密度熱分解炭素の
層を施した上に、密度3.12.9/ Cn1〜3.1
sg/7の炭化硅素の被覆を施したものは。
According to experiments conducted by the present inventors, a layer of low-density pyrolyzed carbon and a layer of areal-density pyrolyzed carbon were applied to the core of a simulated nuclear fuel material by a known method, and then a layer of pyrolyzed carbon with a density of 3.12.9/Cn1~ 3.1
The one with sg/7 silicon carbide coating.

固体核分裂生成物閉じ込めのために必要な密度3.20
 g/cri1以上の炭化硅素被覆よりも、被慢時の破
損率が2〜3桁低いことが分かった。
Density required for solid fission product confinement: 3.20
It was found that the failure rate during aging was two to three orders of magnitude lower than that of silicon carbide coatings with a g/cri of 1 or more.

本発明者等はこのような知見にたって先に固体状核分裂
生成物閉じ込め層としての炭化硅素被覆層を有する多重
被覆核燃料粒子において、炭化硅素層の内1μ([およ
び/または外11111に該炭化硅素層よりも低密度の
炭化硅素層を少なくとも1層流したことを特徴とする多
市被情核燃滓」粒子を提供した(%願昭58−0174
15号)。しかしながら。
Based on this knowledge, the present inventors previously determined that in multi-coated nuclear fuel particles having a silicon carbide coating layer as a solid fission product confinement layer, the inner 1μ of the silicon carbide layer ([and/or the outer 11111 The present invention provides "multi-city nuclear slag" particles characterized by flowing at least one layer of silicon carbide having a lower density than the silicon layer (%Gan Sho 58-0174).
No. 15). however.

この粒子は参舎慟軍に対してなお不充分な点があった。These particles still had some inadequacies against the Sanshakei army.

本発明者等は炭化硅素層の密度を層の厚さの方向に遷移
させることを試み本発明を児成した。
The present inventors attempted to change the density of the silicon carbide layer in the direction of the thickness of the layer and developed the present invention.

本発明によれば固体状核分裂生成物閉じ込め層としての
炭化硅素被覆層を有する多If被覆核燃料粒子において
、該炭化硅素層が内側から外(lIl+へ向って低密度
から高密度へ、そして高MUから杓び低密度へ遷移する
ことを*mとする多1(被覆燃料粒子が提供される。
According to the present invention, in a multi-If coated nuclear fuel particle having a silicon carbide coating layer as a solid fission product confinement layer, the silicon carbide layer changes from the inside to the outside (from low density to high density from the inside toward the Coated fuel particles are provided with a transition from *m to low density.

本発明において、遷移の語は必ずしも連続的変化である
ことを意味しないが、連続に準する意味を有する。
In the present invention, the word transition does not necessarily mean continuous change, but has a meaning similar to continuous.

熱分解炭素層は炭化水素の熱分解によって形成され、炭
化硅素層はシラン化合物の熱分解によって形成され、熱
分解の条件によって種々の密度のものが生成することは
知られている。
It is known that pyrolytic carbon layers are formed by thermal decomposition of hydrocarbons, and silicon carbide layers are formed by thermal decomposition of silane compounds, and that layers of various densities are formed depending on the conditions of thermal decomposition.

次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.

核燃料物質(UO2、(U Th ) 02 + (U
−、l)++ ) 02 )の核を中心にして、順次低
密度熱分解炭素層、篩密度熱分解炭素層、炭化硅素層、
面密度熱分解炭素層を施した。
Nuclear fuel material (UO2, (U Th ) 02 + (U
-, l)++) 02) centering on the core, a low-density pyrolytic carbon layer, a sieve-density pyrolytic carbon layer, a silicon carbide layer,
An areal density pyrolytic carbon layer was applied.

℃ 直径60 (l μmのUO2燃料核粒子を、1300
+の被覆温度でアセチレンを、原料ガスとして厚さ60
μmの低密度熱分解炭素層を形成し、更にその外側に1
440℃でプロピレンを原料ガスとして。
℃ UO2 fuel nuclear particles with a diameter of 60 (l μm) are
Acetylene is used as a raw material gas at a coating temperature of 60 mm.
A low-density pyrolytic carbon layer with a thickness of μm is formed, and a layer of 1 μm is formed on the outside.
Propylene was used as the raw material gas at 440°C.

厚さ30μmの高密)W熱分解炭素層を施した。A high-density (W) pyrolytic carbon layer with a thickness of 30 μm was applied.

この上に炭化硅素層を施すのであるが、 3.20gん
以上の高密度炭化硅素層は約1600°C以上の被覆温
度で得られ、3.18g/i 程度以下の低密度炭化硅
素層は、約1500℃以下の被覆温度で得られる。被覆
速度は0.3〜0.5μm/minが良好である。
A silicon carbide layer is applied on top of this, and a high-density silicon carbide layer of 3.20 g or more is obtained at a coating temperature of about 1600°C or more, while a low-density silicon carbide layer of about 3.18 g/i or less is obtained. , obtained at a coating temperature of about 1500° C. or less. A good coating speed is 0.3 to 0.5 μm/min.

即ち、水素を流1i1001/minで25℃に保つた
メチルトリクロルシラン中にバブリング気化させ水素流
量2.5d/minで1400℃で10分間流し、約3
.1.2g/Cntの炭化硅素層を3μm程度施し、そ
のまま20℃/m i nの外幅速度で10分間で16
00℃に達せしめ、3.x2y/crdから3.21 
、@/mまでの連続的な密tV勾配を持った炭化硅素層
を3μm施し 1600℃に保つ′#Cままで83分間
で約25μml’4さの3.z1g/〜の炭化硅素層を
施し、更に1400℃まで20℃/minの降温速度で
厚さ約3μmの連続密1fil勾配を持った炭化硅素層
That is, hydrogen was bubbled and vaporized into methyltrichlorosilane kept at 25°C at a flow rate of 1001/min for 10 minutes at 1400°C at a hydrogen flow rate of 2.5 d/min.
.. A silicon carbide layer of 1.2 g/Cnt was applied to a thickness of about 3 μm, and a silicon carbide layer of 16
00°C; 3. x2y/crd to 3.21
A silicon carbide layer of 3 μm with a continuous dense tV gradient of up to 1.5 μm was applied and kept at 1600°C for 83 minutes at about 25 μml. A silicon carbide layer of z1g/~ is applied, and the silicon carbide layer has a continuous dense 1fil gradient of about 3 μm in thickness at a cooling rate of 20°C/min to 1400°C.

続いて1400℃に10分間保って厚さ3μmの低密度
炭素層を施した。
Subsequently, the temperature was maintained at 1400° C. for 10 minutes to form a 3 μm thick low density carbon layer.

最後に1460℃の被覆温度でゾロピレンを原料ガスと
して、40μmの冒密度熱分解炭素層を形成させた。
Finally, a 40 μm dense pyrolytic carbon layer was formed at a coating temperature of 1460° C. using zolopyrene as a raw material gas.

こうして得られた被検燃料粒子は密度が不連続な炭化硅
素層を持った被覆燃料粒子より破壊強度が大きかった。
The test fuel particles obtained in this way had a higher fracture strength than coated fuel particles having a silicon carbide layer with a discontinuous density.

tljFFtB願人 原子燃料工業株式会社代理人弁理
士松井政広
tljFFtB Applicant Masahiro Matsui, patent attorney representing Nuclear Fuel Industries Co., Ltd.

Claims (1)

【特許請求の範囲】 1 固体状核分裂生成物閉じ込め層としての炭化硅素1
胃層を有する多重層8.核燃料粒子において。 該炭化硅素層が内1111から外11111へ向って低
密度から高密度へ、そして1S慴度から[」1び低密度
へ遷移することを%徴とする多重被覆核燃料粒子。
[Claims] 1. Silicon carbide as a solid fission product confinement layer 1
Multilayered with gastric layers8. In nuclear fuel particles. A multi-coated nuclear fuel particle characterized by a transition of the silicon carbide layer from low density to high density from inner 1111 to outer 11111, and from 1S to low density.
JP59053460A 1984-03-22 1984-03-22 Multilayer coated nuclear fuel particle Granted JPS60198485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59053460A JPS60198485A (en) 1984-03-22 1984-03-22 Multilayer coated nuclear fuel particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59053460A JPS60198485A (en) 1984-03-22 1984-03-22 Multilayer coated nuclear fuel particle

Publications (2)

Publication Number Publication Date
JPS60198485A true JPS60198485A (en) 1985-10-07
JPS646424B2 JPS646424B2 (en) 1989-02-03

Family

ID=12943466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59053460A Granted JPS60198485A (en) 1984-03-22 1984-03-22 Multilayer coated nuclear fuel particle

Country Status (1)

Country Link
JP (1) JPS60198485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284489A (en) * 2005-04-04 2006-10-19 Nuclear Fuel Ind Ltd Manufacturing method of coated fuel particle for high-temperature gas-cooled reactors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817415A (en) * 1981-07-24 1983-02-01 Hitachi Ltd Liquid crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817415A (en) * 1981-07-24 1983-02-01 Hitachi Ltd Liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284489A (en) * 2005-04-04 2006-10-19 Nuclear Fuel Ind Ltd Manufacturing method of coated fuel particle for high-temperature gas-cooled reactors

Also Published As

Publication number Publication date
JPS646424B2 (en) 1989-02-03

Similar Documents

Publication Publication Date Title
US3547676A (en) Pyrolytic carbon structures and process for making same
US3122595A (en) Controlled nuclear reactor dispersions and method of making
CN105139898A (en) Novel coated fuel particle and preparation method thereof
US20070263762A1 (en) Nuclear Fuel
JPS62232595A (en) Nuclear fuel sintered body and manufacture thereof
CN109074877A (en) The toughness of the raising of microencapsulation nuclear fuel
JPH02221892A (en) Making of nuclear fuel particle and nuclear fuel compact
JPS60198485A (en) Multilayer coated nuclear fuel particle
US3179723A (en) Method of forming metal carbide spheroids with carbon coat
US3463702A (en) Nuclear reactor fuel elements
JPS6341507B2 (en)
US3886025A (en) Ferrite head
US3736169A (en) Pyrolytic deposition process for applying a multi-layer coating to a nuclear fuel kernel
JP2939470B2 (en) Manufacturing method of nuclear fuel
US3846154A (en) Production of nuclear fuel
JPH01183490A (en) Graphite crucible for pulling single crystal
DE2200742A1 (en) Improved Processes for Making Silicon Carbide Coated Articles
JPS60117178A (en) Graphite structure material for nuclear thermal high-temperature gas reactor
US4022660A (en) Coated particles
US6081574A (en) Void forming pyrolytic carbon coating process
RU2369925C1 (en) Coated fuel particle for nuclear reactor
JPH03221442A (en) Anticorrosive and oxidation-resistant material
JPH0437624Y2 (en)
US3397075A (en) Process of vapor coating nuclear fuel with beryllium oxide and carbon
JPS6066186A (en) Hearth section of gas cooling type reactor