JPS601981A - Solid state image pickup device - Google Patents

Solid state image pickup device

Info

Publication number
JPS601981A
JPS601981A JP58109851A JP10985183A JPS601981A JP S601981 A JPS601981 A JP S601981A JP 58109851 A JP58109851 A JP 58109851A JP 10985183 A JP10985183 A JP 10985183A JP S601981 A JPS601981 A JP S601981A
Authority
JP
Japan
Prior art keywords
signal
defective
level
detecting
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58109851A
Other languages
Japanese (ja)
Inventor
Isao Nakamura
功 中村
Seihei Tokuno
徳野 精平
Shoichi Yasuda
保田 省一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58109851A priority Critical patent/JPS601981A/en
Publication of JPS601981A publication Critical patent/JPS601981A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the utilizing factor of a solid-state image pickup device and to attain display without making defect remarkably on a display screen by detecting a defective element and correcting the level to a level closer to a correct signal level so as to form an output signal. CONSTITUTION:Figure shows a circuit block diagram for detecting a defective picture element, a signal photoelectric-converted by a CCD element 1 is amplified by a video amplifier 2 and converted into a TV signal by an encoder 3. The converted signal is inputted to a comparator 4 for detecting white defect level and a comparator 5 for detecting black defect level. If a voltage being very likely a signal from a defective element is inputted in this case, it is detected by the comparator 4 or 5, and a gate signal G1 for correction setting the period of the signal from the defective element is outputted through an OR circuit 6. The video signal is delayed for 4 picture elements' share (6 picture elements' share depanding on the color arrangement of a filter) as the detection of the defective element and each picture element is compared with picture elements at both horizontal sides.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、多数の1!!!i累が形成された固体撮像素
子(CCD )を用いてなる固体]」1÷像装置に関し
、特に固体撮像素子の欠陥+’iii償に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention provides a number of 1! ! ! The present invention relates to a solid-state image pickup device (CCD) using a solid-state image pickup device (CCD) formed with a defective solid-state image pickup device.

〈従来゛技イホテ〉 CCDは次世代のイメージセンサとして、従来の撮像管
にくらべて多くの利点をもつことがら外方mjにおいて
槓扱的に1)11発が進められている。しかしイメージ
センサとして利用されているCCDは]、 Q In1
j角のチップ上に約20万lil!rlの画素がノ1を
成されているため、歩留りが著しく低、<<高コストに
なっている。
<Conventional Techniques> As a next-generation image sensor, CCDs have many advantages over conventional image pickup tubes, so 1) 11 shots are being promoted in the outer mj. However, the CCD used as an image sensor], Q In1
Approximately 200,000 liters on a J-square chip! Since the rl pixels are made up of 1, the yield is extremely low and the cost is high.

〈発明の目的〉 本発明は上記従来装fiVfの欠点を除去し、簡単な回
路411′f成を付加することによって、固体撮像素子
の利用率を高め1表示画面上で欠陥を目立たせないで表
示を行わせることができる固体撮像装置を提供する。
<Object of the Invention> The present invention eliminates the drawbacks of the conventional fiVf and adds a simple circuit 411'f, thereby increasing the utilization rate of the solid-state image sensor and making defects less noticeable on a single display screen. A solid-state imaging device capable of displaying images is provided.

〈実施例〉 本発明はたとえ固体撮像素子に欠陥画素が存在するとし
ても、欠陥画素の信号を回路」二でit(気的に補正す
ることにより、表示画面上で目立たなくする。
<Embodiment> Even if a defective pixel exists in a solid-state image sensor, the present invention makes it less noticeable on the display screen by automatically correcting the signal of the defective pixel using a circuit.

一般にCCDに欠陥画素がある場合には、欠陥画素に対
応するTV画面上に黒点又は白点が現れていた。このよ
うな黒点又は白点の画素を補正し、カラー化するととも
に周辺の色と近くすることによって欠陥素子を救済しよ
うとする。
Generally, when a CCD has a defective pixel, a black dot or a white dot appears on the TV screen corresponding to the defective pixel. An attempt is made to repair the defective element by correcting such a black point or white point pixel, coloring it, and making it similar to the surrounding color.

まず複数配列されたCCDから欠陥素子を検出する回路
について説明する。
First, a circuit for detecting defective elements from a plurality of CCDs arranged will be described.

欠陥画素のあるCCUの映像出力を注意して観察すると
、第1図のように黒点Aの場合には同期信号レベ/L’
SL+(ペデスタ)v)よシミ圧入が低くくなっている
場合が多く、白点Bの場合には通常の白しベ/l/SL
2よりもさらに電圧が高くなっているものが多い。従っ
て上記のようなレベルを判定することにより欠陥画素を
検出することができる。
If you carefully observe the video output of a CCU with a defective pixel, as shown in Figure 1, in the case of black point A, the synchronization signal level /L'
SL+ (Pedesta) v) In many cases, the stain press-fit is lower, and in the case of white spot B, the normal white stain/l/SL
Many have higher voltage than 2. Therefore, defective pixels can be detected by determining the levels as described above.

第2図は欠陥画素検出のだめの回路ブロック図で、CC
D素子1で光電変換された信号はビデオアンプ2により
増巾され、エンコーダ3によりTVル検出用のコンパレ
ータ4、黒欠陥レベル検出用コンパレータ5に人力され
る。もしこの時欠陥素子からの信号、と思われるような
電圧(第1図A又はB)が入力されれば、コンパレータ
4、又は5で検出し、OR回路6を通して欠陥素子から
の信号の期間を設定する補正用ゲート信号G1が出力さ
れる。
Figure 2 is a circuit block diagram for detecting defective pixels.
The signal photoelectrically converted by the D element 1 is amplified by a video amplifier 2, and is input by an encoder 3 to a comparator 4 for TV level detection and a comparator 5 for black defect level detection. If a voltage (A or B in Fig. 1) that seems to be a signal from the defective element is input at this time, it is detected by the comparator 4 or 5, and the period of the signal from the defective element is determined through the OR circuit 6. A correction gate signal G1 to be set is output.

欠陥素子検出の他の回路として、第1図A又はBのよう
な顕著なレベル差のない中間調欠陥Cでも容易に検出し
得る回路を第3図に示す。即ち画像相関性を利用するも
のでビデオ信号を4画素分(フィルタの色配列によって
ば61i!!I素分)遅延して各画素を水平方向の両側
の画素と比1陵する。もし中央の画素の値が両側の画素
から予想される値よりも特定量以上はなれていれば欠陥
画素と判定する。
As another circuit for detecting defective elements, FIG. 3 shows a circuit that can easily detect even a halftone defect C without a significant level difference like that shown in FIG. 1A or B. That is, it uses image correlation, and delays the video signal by 4 pixels (61i!!I pixels depending on the color arrangement of the filter) to compare each pixel with the pixels on both sides in the horizontal direction. If the value of the central pixel deviates by a certain amount or more from the values expected from the pixels on both sides, the pixel is determined to be a defective pixel.

第3図の回路ブロック図において、C,CD素子1から
のビデオ信号v1を2b已のタップ付きの4bitシフ
トレジヌク7に入力し、そして入力信号を■1中間タッ
プの伯−吐出力を■2.出力伯号を■3とすると、通常
の出力では なる関係が成立する、しかし欠陥画素の場合は通常 になる場合が多い。そこで上記ビデオ信号v1、。
In the circuit block diagram of FIG. 3, the video signal v1 from the C and CD elements 1 is input to a 4-bit shift resistor 7 with 2b taps, and the input signal is changed to the output power of the intermediate tap (1) to (2). When the output number is 3, the following relationship holds true for normal output, but this is often the case for defective pixels. Therefore, the video signal v1.

遅延ビデオ信号■2.V3が入力されたウィンドコンパ
レーク8を接続し、」−記(2)式のような場合に欠陥
画素と判定できるようコンパレータ8のヌライヌレベル
を予め設定する。ウィンドコンパレーク8は、入力され
た信号から欠陥画素の信号A。
Delayed video signal■2. The window comparator 8 to which V3 is input is connected, and the null level of the comparator 8 is set in advance so that it can be determined as a defective pixel in the case of equation (2). The window comparator 8 outputs the defective pixel signal A from the input signals.

B及びCの期間を設定する補正用り′−ト伯号G2を形
成して出力する。
A correction code G2 for setting the periods of B and C is formed and output.

第3図の回路例は、カラーフィルりの配列として、水平
方向に第4図(a)ベイヤ配列、第4図(b)完全緑市
松配列及び第4図(c)緑市松フィールド順次配列のよ
うにいずれも2画素とびに同じ色を配列したカラーCC
D素子に画用される。カラーCCD素子には、水平方向
に3色配列をとるものも第5図のJ:うに提案されてい
るが、この場合は6bitシフトレジヌ・夕の3bi’
tタップ付きのものを利用して回路を(’f()成すれ
ば同様に検出できる。
The circuit example in Fig. 3 has a color fill arrangement in the horizontal direction of Fig. 4 (a) Bayer arrangement, Fig. 4 (b) complete green checkered arrangement, and Fig. 4 (c) green checkered field sequential arrangement. Both are color CCs in which the same color is arranged every two pixels.
The image is used for the D element. A color CCD element with a three-color arrangement in the horizontal direction has been proposed as shown in J in Figure 5;
Detection can be made in the same way by constructing a circuit ('f() using one with a t-tap.

次に上述のように検出された欠陥画素について補正する
回路を説明する。
Next, a circuit for correcting defective pixels detected as described above will be described.

処で、単板カラー用CCD素子は少ない画素で出来るだ
け分解能を上けるために上記第4図のように神々のカラ
ー配列が試みられて腔る。例えば第4図(a)のベイヤ
ー配列はGフィルレターを市松状に配置しているため輝
度信号の解像JITが高く、隣接水平列間でG信号の1
1jHi素間袖間を施すと、水平解像度は白黒の場合と
同程度捷で高められる。さらに画素の有効利用を行うた
め第4図(1))の完全緑市松配列、第4図(c)の緑
市松フィールド順次配列等が提案されている。これらの
配列全1周べてみると3棟類とも水平方向には一つおき
に同じフィルり色になっていることがわかる。そこで前
記検出回路で得た欠陥補正用デー1−信 欠陥を補正する、 第6図において、入力端子9に与えられたビデオ信号v
。は、直ちにスイッチング回路11に与えられると共に
2 bit遅延素子10にも与えられ、ビデオ信号に2
bitの遅延を施こして上記スイッチング回路11に出
力する。スイッチング回路11は通常は端子9のビデオ
信号voを出力端子12に導出するように接続されてお
り、遅延素子を通らない信号が出力されている。上記ス
イッチング回路11はは上述の欠陥画素検出回路で形成
された補正用ゲート信号Gl(G2)が与えられて、該
ゲート信号Gl、(G2)によって接続の状態が切換え
られる。即ちゲート信号G r 、(G 2)が入力す
れば、遅延素子10側が選択されて出力端子12に2b
it前の信号が出力され、欠陥画素の信号が1 bit
前のビデ、オ信号に置き換えられて補正された信号が形
成される。第4図(a)!l))<c)に示したカラー
フィルり配列はすべて水平方向には2 bit置きに同
色フィルりが配置されているため、前記補正回路は画面
のどの位置に素子欠陥があっても有効に働く。
However, in order to increase the resolution as much as possible with a small number of pixels in a single-plate color CCD element, attempts have been made to create a divine color arrangement as shown in FIG. 4 above. For example, in the Bayer array shown in Fig. 4(a), the G filter letters are arranged in a checkered pattern, so the resolution JIT of the luminance signal is high, and the G signal is divided between adjacent horizontal rows.
When 1jHi Soma Somama is applied, the horizontal resolution is increased to the same extent as in the case of black and white. Furthermore, in order to make effective use of pixels, a complete green checkered arrangement as shown in FIG. 4(1), a green checkered field sequential arrangement as shown in FIG. 4(c), etc. have been proposed. If you look around the entire array, you will see that every other building in the three buildings has the same fill color in the horizontal direction. Therefore, the defect correction data 1 obtained by the detection circuit is used to correct the signal defects. In FIG.
. is immediately applied to the switching circuit 11 and also applied to the 2-bit delay element 10, adding 2 bits to the video signal.
The signal is delayed by bits and output to the switching circuit 11. The switching circuit 11 is normally connected to lead out the video signal vo at the terminal 9 to the output terminal 12, and outputs a signal that does not pass through the delay element. The switching circuit 11 is supplied with a correction gate signal Gl (G2) generated by the defective pixel detection circuit described above, and the connection state is switched by the gate signal Gl, (G2). That is, when the gate signal G r , (G 2) is input, the delay element 10 side is selected and the output terminal 12 receives 2b.
The signal before it is output, and the signal of the defective pixel is 1 bit
A corrected signal is formed by replacing the previous video signal. Figure 4 (a)! In the color fill array shown in l))<c), fills of the same color are arranged every 2 bits in the horizontal direction, so the correction circuit is effective no matter where on the screen there is an element defect. work.

さらに第7図のように中間タップ13付きの4bitの
遅延素子140,142を用いて構成すれば両側の画素
の算術平均をした信号レベルを欠陥画素の・1H号に置
きかえることができ、より自然に近い画質にすることが
できる。上記実施例に示した補正回路は、第5図のよう
な3色配列の場合にも遅延素子を3 bit又は6 b
itのものに変更にするだけで適用可能である。
Furthermore, if it is constructed using 4-bit delay elements 140 and 142 with an intermediate tap 13 as shown in FIG. 7, the signal level obtained by the arithmetic mean of the pixels on both sides can be replaced with the defective pixel No. 1H, which is more natural. It is possible to achieve image quality close to that of The correction circuit shown in the above embodiment also uses a delay element of 3 bits or 6 bits even in the case of a three-color arrangement as shown in FIG.
It can be applied by simply changing it to that of it.

く効 果〉 以上本発明によれば、固体]最伸装置において、固体撮
像素子に欠陥がある場合でも、欠陥素子を検出してよシ
正しい信号に近いレベルに補正して出力信号を形成する
だめ、固体撮像素子の欠陥を回路的に補うことができ、
固体撮像素子の利用率を高めることができ、応用機器の
経済性を改善することができる。
Effects> According to the present invention, even if a solid-state imaging device has a defect in a solid-state imaging device, the defective device can be detected and corrected to a level close to a correct signal to form an output signal. No, it is possible to compensate for defects in the solid-state image sensor using a circuit.
The utilization rate of the solid-state image sensor can be increased, and the economical efficiency of applied equipment can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はビデオ信づ−とその欠陥を示す図、@2図は本
発明による一実施例の欠陥検出回路を示すグロン・−り
図、第3図は他の実施例の欠陥検出回路を示すブロック
図、第4図(a)、 (b)、 (c)及び第5図はカ
ラーフィルりの配列例を示す図、第6図は本発明による
一実施例の補正信号形成回路を示すブロック図、第7図
は他の実施例の補正信号形成回路を示すブロック図であ
る。 1 : CCD、 4.5 :コンパレータ、7:遅延
素子、8:ウインドコンパレータ、10:2bit遅延
素子、11ニスイツチング回路、G、、G2:欠陥補正
用ゲート信号。 代理人 弁理士 描 士 愛 彦(他2名)j前喝 カ
、l[、よ。 り 第2ビJ 第3111 (o〕 (b) (C) 第4ン1 1 第6図
Fig. 1 is a diagram showing a video transmission and its defects, Fig. 2 is a grommet diagram showing a defect detection circuit of one embodiment according to the present invention, and Fig. 3 is a diagram showing a defect detection circuit of another embodiment. FIG. 4(a), (b), (c) and FIG. 5 are diagrams showing examples of color fill arrangement, and FIG. 6 is a block diagram showing an example of a correction signal forming circuit according to the present invention. Block Diagram FIG. 7 is a block diagram showing a correction signal forming circuit of another embodiment. 1: CCD, 4.5: Comparator, 7: Delay element, 8: Window comparator, 10: 2-bit delay element, 11 Niswitching circuit, G, , G2: Gate signal for defect correction. Agent: Patent Attorney, Attorney: Aihiko (and 2 others) 2nd BiJ 3111 (o) (b) (C) 4th N1 1 Fig.6

Claims (1)

【特許請求の範囲】 1 段数の画素か形成きれてなる固k(撮像素子勿備え
た固体撮像装置〆tにおいて、配列された画素から欠陥
画素を検出する手段と、該検出手段の出力が与えられて
、表示装Uイに」−8欠陥凹1素の信号か出力されるの
を抑えて代替信号を供給する手段とを備えてなる固体撮
像装置。 2 前記欠陥画素検出手段は、予め設定された信号レベ
ルとの比較によって検出されることを特徴とする特許請
求の11Φ4囲第1項記俄の固体撮像装置。 3 前記欠陥1凹索検出手段は、遅延手段を含み、周辺
内素の出力レベルとの比較によ−)で検出されることを
特徴とする特許請求の範囲第1項記載の同体撮像装置。
[Claims] In a solid-state imaging device including a solid-state image sensor (not to mention an image sensor) consisting of one stage of pixels, there is a means for detecting a defective pixel from the arranged pixels, and an output of the detecting means is given. 2. A solid-state imaging device comprising means for supplying an alternative signal while suppressing the output of a signal of one defective pixel to a display device U.2. The solid-state imaging device according to claim 1, characterized in that the defect is detected by comparing the signal level with the signal level of the surrounding element. 2. The same-body imaging device according to claim 1, wherein the detection is performed by comparing with an output level.
JP58109851A 1983-06-17 1983-06-17 Solid state image pickup device Pending JPS601981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58109851A JPS601981A (en) 1983-06-17 1983-06-17 Solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58109851A JPS601981A (en) 1983-06-17 1983-06-17 Solid state image pickup device

Publications (1)

Publication Number Publication Date
JPS601981A true JPS601981A (en) 1985-01-08

Family

ID=14520794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58109851A Pending JPS601981A (en) 1983-06-17 1983-06-17 Solid state image pickup device

Country Status (1)

Country Link
JP (1) JPS601981A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260773A (en) * 1985-05-14 1986-11-18 Mitsubishi Electric Corp Picture defect compensation device
JPS628666A (en) * 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd Device for correcting defective picture element
JPS63500977A (en) * 1985-09-13 1988-04-07 ヒュ−ズ・エアクラフト・カンパニ− Non-invasive malignant channel detection and correction device and detection and correction method
US5113246A (en) * 1985-10-11 1992-05-12 Canon Kabushiki Kaisha Image sensing apparatus for correcting a defect in color signals generated by a CCD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260773A (en) * 1985-05-14 1986-11-18 Mitsubishi Electric Corp Picture defect compensation device
JPH0521392B2 (en) * 1985-05-14 1993-03-24 Mitsubishi Electric Corp
JPS628666A (en) * 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd Device for correcting defective picture element
JPS63500977A (en) * 1985-09-13 1988-04-07 ヒュ−ズ・エアクラフト・カンパニ− Non-invasive malignant channel detection and correction device and detection and correction method
JPH0466431B2 (en) * 1985-09-13 1992-10-23 Hughes Aircraft Co
US5113246A (en) * 1985-10-11 1992-05-12 Canon Kabushiki Kaisha Image sensing apparatus for correcting a defect in color signals generated by a CCD

Similar Documents

Publication Publication Date Title
US8023018B2 (en) Drive method for solid-state imaging device, solid-state imaging device, and imaging apparatus
JP3156503B2 (en) Driving method of solid-state imaging device and signal processing circuit of solid-state imaging device
US6999119B1 (en) Image-capturing element, image-capturing circuit for processing signal from image-capturing element, image-capturing device, driving method of image-capturing element
KR20020082734A (en) Cmos image sensor for suppressing degradation of spatial resolution and generating compressed image signals
JP2000341700A (en) Color image pickup device
JPH0628450B2 (en) Solid-state imaging device
JP3991011B2 (en) Image signal processing device
CA1215169A (en) Color television camera with two or more solid-state imaging devices arranged in phase difference fashion
US6900838B1 (en) Method of processing image signal from solid-state imaging device, image signal processing apparatus, image signal generating apparatus and computer program product for image signal processing method
JP3982987B2 (en) Imaging device
JPS601981A (en) Solid state image pickup device
JP2002165226A (en) Element and device for imaging
JPH10189930A (en) Solid-state image sensor
US6677998B1 (en) Solid-state electronic image sensing device and method of controlling operation of same
US7250967B2 (en) Apparatus for modifying reproduction frequency band of video signal
JP4557540B2 (en) Solid-state imaging device, driving method thereof, and camera
JPS62190993A (en) Solid-state image pickup device
JP2004350319A (en) Image signal processing method, image signal processing apparatus using the method, and recording medium with program code representing procedures of the method recorded thereon
JPS6058786A (en) Ccd area image sensor and color image processing method
US6667470B2 (en) Solid-state electronic image sensing device and method of controlling operation of same
JPH01103375A (en) Picture defect correction device for solid-state image pickup device
JPS6149564A (en) Solid-state image pickup device
JP2692486B2 (en) Solid-state imaging device
JP3094230B2 (en) Video signal processing device
JPH08149374A (en) Drive method for solid-state image pickup element