JPS60198128A - Blood pressure measuring apparatus - Google Patents

Blood pressure measuring apparatus

Info

Publication number
JPS60198128A
JPS60198128A JP59053743A JP5374384A JPS60198128A JP S60198128 A JPS60198128 A JP S60198128A JP 59053743 A JP59053743 A JP 59053743A JP 5374384 A JP5374384 A JP 5374384A JP S60198128 A JPS60198128 A JP S60198128A
Authority
JP
Japan
Prior art keywords
blood
measurement
blood flow
blood vessel
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59053743A
Other languages
Japanese (ja)
Inventor
横須賀 甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59053743A priority Critical patent/JPS60198128A/en
Publication of JPS60198128A publication Critical patent/JPS60198128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ru IIロ /7)#;irr A @ 1本発明は
、2点間の血液の通過時間を直接的に測定し、血流速度
、血液の臓器通過時間等を高精度に把握し得る血流測定
装置に関するものである。
[Detailed Description of the Invention] ru II Ro / 7) #;irr A @ 1 The present invention directly measures the passage time of blood between two points, and increases blood flow velocity, blood passage time to organs, etc. The present invention relates to a blood flow measuring device that can accurately measure blood flow.

[発明の技術的前It] 一般に、血流の速度あるいはそれに関連した値を計測し
ようとする場合には、ドプラ効果を利用した超音波ドプ
ラ血流計等が用いられている。超音波ドプラ血流計は、
血管に対して90°以外のある角度を持って超音波ビー
ムを入射させその反射ビームまたは透過ビームを検出し
てドプラ効果による周波数変化をめ、この周波数変化よ
り算出した速度と上記角度とより血流の流速をめるもの
であり、いわば無侵襲で血流速度が計測できるため近年
注目されている。しかしながら、この場合、計測しよう
とする血管に対して超音波ビームを正しく入射させなけ
ればならず、その入射角度も正確にめなければ正゛確な
測定はできない。
[Technical Preface to the Invention] Generally, when attempting to measure the velocity of blood flow or a value related thereto, an ultrasonic Doppler blood flow meter or the like that utilizes the Doppler effect is used. Ultrasonic Doppler blood flow meter
An ultrasound beam is incident on a blood vessel at an angle other than 90°, and its reflected or transmitted beam is detected to determine the frequency change due to the Doppler effect. It measures the flow velocity of blood flow, and has attracted attention in recent years because it allows the measurement of blood flow velocity in a non-invasive manner. However, in this case, the ultrasonic beam must be correctly incident on the blood vessel to be measured, and the angle of incidence must also be adjusted to ensure accurate measurement.

このため、通常はいわゆる超音波診断装置を併用し、血
流を測定しようとする部位の近傍の超音波断層像を見な
がら血流速測定ビームの発射位置および角度を設定して
測定を行なうようにしている。
For this reason, a so-called ultrasonic diagnostic device is usually used in conjunction with the measurement, and measurements are made by setting the emission position and angle of the blood flow velocity measurement beam while looking at ultrasound tomographic images near the area where blood flow is to be measured. I have to.

ところが、このようにしても体内の深部に存在する血管
や細い血管の位置に正しく測定ビームを向けたり、屈曲
した血管と測定ビームとの角度を正しくめたりすること
は容易ではない。したがって、この超音波ドプラ血流計
では、上記位置、角度の誤差に基づく測定誤差が大きく
、高精度の測定はほとんど不可能であった。
However, even with this method, it is not easy to correctly direct the measurement beam to the position of blood vessels or small blood vessels that exist deep inside the body, or to correctly set the angle between the curved blood vessel and the measurement beam. Therefore, in this ultrasonic Doppler blood flow meter, measurement errors based on the above-mentioned position and angle errors are large, and highly accurate measurement is almost impossible.

この超音波ドプラ血流計とおおむね同様の原理を用いた
ものにレーザドプラ血流計があるが、原理が類似してい
るため上述とほぼ同様の問題を抱えていた。
A laser Doppler blood flow meter uses a principle similar to that of the ultrasonic Doppler blood flow meter, but because the principle is similar, it has had almost the same problems as described above.

一方、これらドプラ効果を利用した手段の他に、主とし
て動物実験や特殊な手術の際に用いられる手段としてい
わゆる電磁流量計の原理を用いた電磁血Wt聞計がある
。これは、コイル、電極等からなる検出部を血管に直接
取着して電磁誘導により流速を検出測定するものである
が、電11誘導による測定であるため、もともとS/N
比(信号対雑音比)がさほど良好とはいえず、その上、
血管に対する検出部の取着状態が測定感度に大きく影響
するとともに、周辺の′R気的装置の影響によりノイズ
を生じ易いという問題もあった。
On the other hand, in addition to these means using the Doppler effect, there is an electromagnetic blood Wt meter using the principle of a so-called electromagnetic flowmeter, which is mainly used in animal experiments and special surgeries. This method detects and measures the flow velocity using electromagnetic induction by attaching a detection unit consisting of a coil, electrode, etc. directly to the blood vessel, but since it is a measurement using electromagnetic induction, S/N is originally low.
The ratio (signal-to-noise ratio) is not very good, and on top of that,
There is also the problem that the state of attachment of the detection unit to the blood vessel greatly affects the measurement sensitivity, and that noise is likely to be generated due to the influence of surrounding air equipment.

さらに、これらいずれの手段においても、測定点の血流
に起因するドプラ効果あるいは電磁誘導といった現象を
利用して、間接的に血流速度をめているため、ある程度
以上の精度は望めない。
Furthermore, in any of these means, the blood flow velocity is determined indirectly by utilizing phenomena such as the Doppler effect or electromagnetic induction caused by the blood flow at the measurement point, and therefore accuracy beyond a certain level cannot be expected.

一方、血液の臓器通過時間を知ることは、臓器特に肝臓
の機能および障害状況を診断する場合などに極めて有効
であるが、この臓器通過時間を上述の各手段でめること
は不可能であった。
On the other hand, knowing the organ transit time of blood is extremely effective in diagnosing the functions and disorders of organs, especially the liver, but it is impossible to determine this organ transit time using each of the above-mentioned methods. Ta.

[発明の【]的] 本発明の目的とするところは、簡単な構成で直接的な血
流測定を可能とし、高精度に血流を測定し得る血流測定
装置を提供することにある。
[Objective of the Invention] An object of the present invention is to provide a blood flow measuring device that enables direct blood flow measurement with a simple configuration and can measure blood flow with high precision.

[発明の概要] 本発明においては、各一対の光源および光検出部を有し
、被検者の血管部に互いに離間して装着されて各々直接
または光学系を介して上記血管部を介在させた反射また
は透過光路を形成して、上記血管部の周囲11織、血液
および血液中に投与された特定色素の吸光に応じた値を
検出し電気信号として出力する第1および第2の検出部
と、これら第1および第2の検出部の各出力を受け上記
特定色素による各検出値の変動開始タイミングをそれぞ
れ判定する手段と、この手段による上記両判定タイミン
グ間の時間差を計測し上記雨検出部間の通過時間を締定
する手段と、この手段により得られた締定結果を表示ま
たは記録する出力装置とを具備したことを特徴としてい
る。
[Summary of the Invention] The present invention includes a pair of light sources and a light detection unit, which are attached to the blood vessel of a subject at a distance from each other, and are connected to the blood vessel directly or via an optical system. first and second detection sections that form a reflected or transmitted optical path to detect a value corresponding to the light absorption of the tissue surrounding the blood vessel, the blood, and a specific dye administered into the blood, and output it as an electrical signal; and a means for receiving the respective outputs of the first and second detection sections and determining the start timing of fluctuation of each detected value by the specific dye, and measuring the time difference between the two determination timings by this means to detect the rain. The present invention is characterized by comprising means for determining the passage time between sections, and an output device for displaying or recording the results of the tightening obtained by this means.

[発明の実施例] 第1図に本発明の一実施例の構成を示す。[Embodiments of the invention] FIG. 1 shows the configuration of an embodiment of the present invention.

第1図において、1および2はそれぞれ基本的に全く同
様の構成を有する第1および第2の検出器である。第1
の検出器1は、例えば各々特定色素の吸光波長域に対応
する発光波長域を有する半導体レーザ、発光ダイオード
等の狭帯域半導体光[1a、同様に検出波長域に上記特
定色素の吸光波長域を含む例えばシリコンフ第1・セル
等の′光検を用いた投光光学系1Cおよび光検出器1b
からの光を導く光ファイバ等を用いた受光光学系1dで
構成されており、血管部に装着した状態で透光光学系1
Cの投光端と受光光学系1dの受光端との間に血IBを
介在した透過光路を形成するようにする。
In FIG. 1, 1 and 2 are first and second detectors, respectively, which have basically exactly the same configuration. 1st
The detector 1 uses a narrow band semiconductor light such as a semiconductor laser or a light emitting diode, for example, each having an emission wavelength range corresponding to the absorption wavelength range of the specific dye [1a; For example, a light projection optical system 1C using a photodetector such as a first silicon cell, and a photodetector 1b.
It consists of a light-receiving optical system 1d using an optical fiber etc. that guides light from the blood vessel.
A transmission optical path is formed between the light emitting end of C and the light receiving end of the light receiving optical system 1d with blood IB interposed therebetween.

この第1の検出器1は、具体的には例えば第2図に示す
ように、受光光学系1dの受光端にに受光光束の方向を
180°偏向させるための偏向プリズムPPを設け、光
源1a、光検出器1b、投光光学系1Cおよび受光光学
系1dを図示のようなコ字溝状の凹部1eを先端側部に
形成した容器1f内に収容し、凹部1eに投光光学系1
Cの投光面と受光光学系1dの偏向プリズムPPの受光
面を互いに対峙するように臨ませて構成することができ
る。この場合、容器1fの先端凹部1eに血管Bを係合
させるだけで、容易に透過光路内に血管8を位置させる
ことができる。
Specifically, as shown in FIG. 2, the first detector 1 is provided with a deflection prism PP for deflecting the direction of the received light beam by 180 degrees at the light receiving end of the light receiving optical system 1d, and a light source 1a. , the photodetector 1b, the light emitting optical system 1C, and the light receiving optical system 1d are housed in a container 1f having a U-shaped groove-shaped recess 1e formed at the tip side as shown in the figure, and the light emitting optical system 1 is housed in the recess 1e.
The light projecting surface of C and the light receiving surface of the deflection prism PP of the light receiving optical system 1d may be configured to face each other. In this case, the blood vessel 8 can be easily positioned within the transmitted optical path simply by engaging the blood vessel B with the distal end recess 1e of the container 1f.

そして、第2の検出器2は、光源2a、光検出上記第1
の検出部1の場合と全く同様に構成されており、血管部
に装着した状態で透光光学系2Gの投光端と受光光学系
2dの受光端との間に血管Bを介在した透過光路を形成
する。
The second detector 2 includes a light source 2a, a light detector 2a, and the first detector 2a.
The structure is exactly the same as that of the detection unit 1, and when it is attached to a blood vessel, a transmitted light path is formed with a blood vessel B interposed between the light emitting end of the light transmitting optical system 2G and the light receiving end of the light receiving optical system 2d. form.

これら第1および第2の検出器1,2の出力すなわち光
検出器1b、2bの出力はこの場合光電流と呼ばれる電
流信号でありそれぞれ第1および第2のI/V変換(電
流−電圧変換)器3,4で電圧信号に変換される。なお
、多くの場合光検出器1b、2bの光電流出力は、光が
透過した部分の吸光度に対して指数関数的な関係などの
ごとく該吸光度に比例的でない関係にあり、このような
場合にはこのI/V変換器3.4部分に対数変換機能を
付加するなどして、上記吸光度に比例的な関係にある出
力を得るようにする。例えば上述の場合、r/V変換器
3.4として電流人カニ電圧出力型の対数増幅器を用い
れば簡単に実現できる。
The outputs of these first and second detectors 1 and 2, that is, the outputs of photodetectors 1b and 2b, are current signals called photocurrents, and are used for first and second I/V conversion (current-voltage conversion), respectively. ) converters 3 and 4 into voltage signals. In addition, in many cases, the photocurrent output of the photodetectors 1b and 2b has a relationship that is not proportional to the absorbance of the portion through which the light passes, such as an exponential relationship. By adding a logarithmic conversion function to the I/V converter 3 and 4, an output proportional to the absorbance is obtained. For example, the above case can be easily realized by using a current/voltage output type logarithmic amplifier as the r/V converter 3.4.

このようにして得られた上記吸光度に比例的な関係にあ
るI/V変換器3,4出力はそれぞれ第1および第2の
直流分除去回路5.6に導かれて検出信号の直流分すな
わち非変動分が除去される。
The outputs of the I/V converters 3 and 4, which have a proportional relationship to the absorbance thus obtained, are respectively guided to first and second DC component removal circuits 5.6, and the DC component of the detection signal, i.e. Non-variable components are removed.

これら直流分除去回路5.6は、例えばサンプルホール
ド回路で、ある時点のレベルをホールドしこのホールド
レベルと以後の入、力レベルとの差をとることにより変
動分をとりだす回路、あるいはローカットフィルタく低
減除去フィルタ)等を用いて構成する。さらに、第1お
よび第2の直流分除去回路5.6の出力はそれぞれ例え
ばアクティブフィルタを用いたバンドエリミネートフィ
ルタ(帯域除去フィルタ)などからなる第1および第2
の脈波除去回路7,8で脈波に相当する周波数成分が除
去されて第1および第2のA/D変換(アナログ−ディ
ジタル変換)器9,10に与えられ、ディジタル信号に
変換されて演算処理装置11に与えられる。
These DC component removal circuits 5 and 6 are, for example, sample-and-hold circuits that hold the level at a certain point in time and extract the fluctuation component by taking the difference between this hold level and subsequent input and output levels, or low-cut filters. (reduction removal filter) etc. Further, the outputs of the first and second direct current component removal circuits 5.6 are respectively connected to the first and second DC component removal circuits 5.6 each consisting of a band elimination filter (band elimination filter) using an active filter, for example.
A frequency component corresponding to the pulse wave is removed by the pulse wave removal circuits 7 and 8, and is supplied to first and second A/D converters (analog-to-digital converters) 9 and 10, where it is converted into a digital signal. It is given to the arithmetic processing unit 11.

演算処理装置11は、第1および第2のA/D変換器9
.10の出力を受け1両出力の変動開始点tl、t2す
なわち負方向への変化の場合には立下り点、正方向への
変化の場合には立上り点を検出し、両者間の時間差つま
り経過時間Tpをめるとともに、予め別途に操作入力部
12により入力設定しておいた測定点間隔りと上記時間
差Tpより血流速度Vを算出する。そして演算処理装置
1111は痺定した血流速度Vの値および必要に応じて
上記測定点間隔り1時間Tp等の演算過程で用いた値を
表示器またはプリンタからなる出力装置13に出力し表
示またはプリントアウトさせる。
The arithmetic processing device 11 includes first and second A/D converters 9
.. In response to the output of 10, the fluctuation start point tl and t2 of the output of both cars is detected, that is, the falling point in the case of a change in the negative direction, and the rising point in the case of a change in the positive direction, and the time difference between the two, that is, the elapsed time, is detected. The time Tp is determined, and the blood flow velocity V is calculated from the measurement point interval input and set separately in advance using the operation input unit 12 and the time difference Tp. Then, the arithmetic processing unit 1111 outputs the value of the paralyzed blood flow velocity V and, if necessary, the values used in the calculation process, such as the measurement point interval 1 hour Tp, to the output device 13 consisting of a display or printer for display. Or print it out.

なお、出力装置13にデータを記録するためのデータレ
コーダ等を内蔵させたり、外部に接続したりしてもよい
Note that the output device 13 may have a built-in data recorder or the like for recording data, or may be connected to the outside.

なお、この場合上記特定色素としては肝臓の検査診断の
ための血類消失率(肝血流指数)測定や循環機能検査等
に用いられるインドサイアニングリーン(1ndocy
anine green 〜以下rICGJと略称する
)を用いるものとする。このICGは生体に対する副作
用かはどんとなく、しかも血液中における吸光測定の容
易な色素であり本測定に最適である。ICGを用いた場
合、血液のように蛋白を含む溶液中での最大吸収波長が
805nmで肌h 輪H曵興19の晃個1393誹・1
.Tけ発光波長が800nmの半導体レーザあるいは8
oonm近傍の狭い波長域で発光する発光ダイオードが
最適である。もちろん、このとき光検出器1b、2bは
同波長域に対して充分な感度を有し、また光学系IC,
Id、2c、2dも同波長域についての減衰が少なくな
るように構成する。
In this case, the specific dye mentioned above is indocyanine green (1ndocyanine green), which is used for blood loss rate (hepatic blood flow index) measurement and circulatory function tests for liver examination diagnosis.
anine green (hereinafter abbreviated as rICGJ). This ICG has no side effects on living organisms, and is a dye that can be easily measured for absorbance in blood, making it ideal for this measurement. When ICG is used, the maximum absorption wavelength in a protein-containing solution such as blood is 805 nm, and the maximum absorption wavelength in a solution containing proteins such as blood is 805 nm.
.. A semiconductor laser with an emission wavelength of 800 nm or 8
A light emitting diode that emits light in a narrow wavelength range near oom is optimal. Of course, at this time, the photodetectors 1b and 2b have sufficient sensitivity to the same wavelength range, and the optical system IC,
Id, 2c, and 2d are also configured to reduce attenuation in the same wavelength range.

次に、このような構成を用いた血流測定の具体的な操作
、作用について説明する。
Next, specific operations and effects of blood flow measurement using such a configuration will be explained.

ここでは、動物実験あるいは手術中における人体の血流
測定を行なう場合の例を考えている。
Here, we are considering an example in which blood flow is measured in an animal experiment or in a human body during surgery.

まず、被検体の血管Bの測定しようとする部分の2箇所
に第1および第2の検出器1.2をそれぞれ装着する。
First, the first and second detectors 1.2 are respectively attached to two locations on the portion of the blood vessel B of the subject to be measured.

このとき第1図に示したように第1の検出器1を上流側
に、第2の検出器2を下流側に配置する。そして、両検
出器1−2間の距離を測り操作入力部12より演算処理
装置11に測定点間11iDとして入り設定しておいて
測定を開始する。この状態で一被検体に上記特定色素で
あるICGを例えば静注(静脈注入)により投与する。
At this time, as shown in FIG. 1, the first detector 1 is placed on the upstream side, and the second detector 2 is placed on the downstream side. Then, the distance between both detectors 1-2 is measured, and the distance between the measurement points 11iD is entered into the arithmetic processing unit 11 from the operation input section 12 and set, and measurement is started. In this state, ICG, which is the above-mentioned specific dye, is administered to one subject by, for example, intravenous injection.

この静往後両検出器1,2の位置における最初の、IC
Gの到達タイミングをそれぞれ検出し、これらの時間差
と上記2点間の距離とに基づいて血流速度を測定するの
である。
After this static movement, the first IC at the position of both detectors 1 and 2
The arrival timing of G is detected, and the blood flow velocity is measured based on the time difference between these two points and the distance between the two points.

この処理の中心となる演算処理装置11は、例えばマイ
クロコンピュータ等を用いた構成によるソフトウェア処
理にて実現でき、第3図に示すフローチャートを参照し
てこの演算処理装置11における処理の詳細を説明する
The arithmetic processing unit 11, which is the central part of this processing, can be realized by software processing using a configuration such as a microcomputer, and the details of the processing in this arithmetic processing unit 11 will be explained with reference to the flowchart shown in FIG. .

まず、第1および第2の検出器1.2の出力に基づく第
1および第2のA/D変換器9,10の出力をそれぞれ
予め定めた一定時間間隔で取込み、メモリに各別に格納
する(Pl)。メモリに格納された第1の検出器1側の
一連のデータを読み出して時間の経過に伴う変動量すな
わち信号波形における傾斜の大きさを微分処理(具体的
には例えば一連のデータの時間的に隣接する各データ毎
あるいは適宜定めた一定データ数おきのデータ毎の差分
を逐次求めるなどすればよい)等によりめ、これを予め
設定した基準値と比較して入力信号の変動開始点t1を
検出する(P2)。同様にして、メモリに格納された第
2の検出器2側の一連の入力データを読み出して時間の
経過に伴う変動量をやはり微分処理等によりめ、上記基
準値と比較して入力信号の変動開始点t2を検出する〈
P3)。これら2つの変動開始点t1.t2より例えば
Tp =t2−tl として両者間の経過時MTpをめる(P4)。
First, the outputs of the first and second A/D converters 9 and 10 based on the outputs of the first and second detectors 1.2 are respectively captured at predetermined time intervals and stored separately in memory. (Pl). A series of data stored in the memory on the first detector 1 side is read out and the amount of variation over time, that is, the magnitude of the slope in the signal waveform is differentiated (specifically, for example, the series of data is The difference between each adjacent piece of data or every set of data at intervals of a certain number of pieces of data may be sequentially calculated, etc.), and this is compared with a preset reference value to detect the starting point t1 of fluctuation in the input signal. (P2). Similarly, a series of input data stored in the memory on the second detector 2 side is read out, the amount of variation over time is determined by differential processing, etc., and compared with the above reference value, the variation in the input signal is determined. Detect starting point t2〈
P3). These two fluctuation starting points t1. From t2, for example, the elapsed time MTp between the two is calculated by setting Tp = t2 - tl (P4).

この経過時間Tpと予め別途に入力設定された測定点間
隔りとに基づいて血流速度 v=D/Tp を算定する(P5)。以上により得られた血流速度Vお
よび必要ならば測定点゛間隔D、経過時間Tpを出力装
置13より出力させる(P6)。
The blood flow velocity v=D/Tp is calculated based on this elapsed time Tp and the measurement point interval input and set separately in advance (P5). The blood flow velocity V obtained above and, if necessary, the measurement point interval D and the elapsed time Tp are outputted from the output device 13 (P6).

このようにして、被検体の血流速度Vが容易にしかも極
めて正確に測定できる。
In this way, the blood flow velocity V of the subject can be easily and extremely accurately measured.

また、血液の臓器通過時間を測定する場合は、第1およ
び第2の検出器1,2をそれぞれ対象臓器へ流入する血
管および該対象臓器から流出する血管に装着して測定を
行なう。このような場合には、測定点間隔りは一般に不
明であり、また血流速度Vをめる必要もないから測定点
間隔りは入力しない。そして、上述と同様な測定処理に
より測定点間の経過時間T+1を出力させればよい。
Further, when measuring the organ transit time of blood, the measurement is performed by attaching the first and second detectors 1 and 2 to a blood vessel flowing into the target organ and a blood vessel flowing out from the target organ, respectively. In such a case, the measurement point interval is generally unknown and there is no need to calculate the blood flow velocity V, so the measurement point interval is not input. Then, the elapsed time T+1 between measurement points may be output by the same measurement process as described above.

このように、血液の臓器通過118間も容易に測定する
ことができる。
In this way, the passage 118 of blood through the organ can also be easily measured.

そして、この場合検出器1.2の光源1a、2a、光検
出器1b、2bに上述したような半導体素子を用い、光
学系1c、ld、2c、2dに光ファイバを用いること
によって、検出器1.2を小形・軽量化および高精度化
でき、その結果、血管に対する装着が容易に行なえ生体
に対する負担も比較的少なくできるので、動物実験のみ
ならず手術中等における測定も容易となる。
In this case, by using semiconductor elements as described above for the light sources 1a, 2a and photodetectors 1b, 2b of the detector 1.2, and using optical fibers for the optical systems 1c, ld, 2c, 2d, the detector 1.2 can be made smaller, lighter, and more accurate, and as a result, it can be easily attached to blood vessels and the burden on living organisms can be relatively reduced, making it easier to perform measurements not only in animal experiments but also in surgeries.

なお、本発明は上述し且つ図面に示す実施例にのみ限定
されることな(、その要旨を変更しない範囲内で種々変
形して実施することができる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings (and can be implemented with various modifications without changing the gist thereof.

例えば、上述した実施例においては、演算処理装置11
として、マイクロコンピュータ等を用いソフトウェアに
より処理する構成を用いるものと1.7−パ リn種5
禽篩hII呑^1a il m−r−た1、%山不 八
−ドウエアによっても容易に実現できる。
For example, in the embodiment described above, the arithmetic processing unit 11
1.7-Paris n type 5
It can also be easily realized by using a bird sieve hII ware.

ずなわち、A/D変換器9,10からの入力をそれぞれ
微分器に与えて微分をとり、微分された信号をそれぞれ
比較器により基準値と比較して変動開始点を検出し、第
1の検出器1側の変動開始点検出信号により計時装置を
起動し、第2の検出器2側の変動開始点検出信号により
計時装置の計時を終了させ、血液の臓器通過時間をめる
場合には計時結果をそのまま出力装置13に与え、血流
速度をめる場合には上記計時結果を除算器に与え別途に
入力設定した測定点間隔りで除算して出力装置13に与
えるようにすればよい。これをアナログ処理で行なう場
合には、もちろんA/D変換器9.10は不要となる。
That is, the inputs from the A/D converters 9 and 10 are respectively given to a differentiator to take the differentiation, and the differentiated signals are each compared with a reference value by a comparator to detect the fluctuation start point. When the timing device is started by the fluctuation start point detection signal from the second detector 1 side, and the time measurement by the clock device is stopped by the fluctuation start point detection signal from the second detector 2 side, and the time taken for blood to pass through the organ is determined. If you want to measure the blood flow velocity, give the time measurement result to the output device 13 as it is, and if you want to measure the blood flow velocity, give the above time measurement result to a divider, divide it by the measurement point interval that is input and set separately, and then give it to the output device 13. good. If this is done by analog processing, the A/D converters 9 and 10 are of course unnecessary.

また、同実施例に示した直流分除去回路5,6、脈波除
去回路7.8等は変動開始点の検出を容易に且つ確実に
行なうために設けたもので、例えば上記特定色素として
IcG等のように吸光変化の顕著な色素を用いたときに
は(被検体への投与による検出器1.2の検出信号変動
が大きいので)上記各部を適宜省略しても多くの場合実
用上問題な〈実施することができる。さらに、上記吸光
変化の大きな色素を用いた場合には吸光度に対する検出
信号の直線性はあまり重要でないので1./V変換器3
.4等における対数補正等も不要になる。
Further, the DC component removal circuits 5, 6, pulse wave removal circuits 7, 8, etc. shown in the same embodiment are provided to easily and reliably detect the fluctuation starting point. When using a dye that exhibits a significant change in absorbance, such as (because the detection signal of detectors 1 and 2 varies greatly due to administration to the subject), there are often practical problems even if the above parts are omitted as appropriate. It can be implemented. Furthermore, when using a dye with a large change in absorbance, the linearity of the detection signal with respect to absorbance is not very important, so 1. /V converter 3
.. Logarithmic correction, etc. at 4th magnification becomes unnecessary.

もちろん、検出器1,2における光源1a、2aに半導
体レーザや発光帯域の狭い発光ダイオード等を用いない
場合には、光源と血管の間および血管と光検出器の間の
少なくとも一方に通過帯域の狭いフィルタを介挿すれば
よい。もちろん、上記第1図に示した実施例において血
管Bと光検出器1bの間に上述同様のフィルタを設ける
ようにしてもよい。
Of course, if a semiconductor laser or a light emitting diode with a narrow emission band is not used as the light sources 1a and 2a in the detectors 1 and 2, a passband with a narrow band is used between the light source and the blood vessel or between the blood vessel and the photodetector. Just insert a narrow filter. Of course, in the embodiment shown in FIG. 1, a filter similar to that described above may be provided between the blood vessel B and the photodetector 1b.

さらに、検出器として第4図に示すように検出光路を反
射光路により形成するものを用いてもよい。
Furthermore, as shown in FIG. 4, a detector in which the detection optical path is formed by a reflected optical path may be used.

すなわち、第4図に示す検出器21.22はそれぞれ、
検出器1.2の光111a、2aおよび光検出器1b、
2bと同様の光源218.22aおよび光検出器21b
、22bならびに光ファイバ等を用いた投光光学系21
c、22c、同様に光ファイバ等を用いた受光光学系2
1d、22dで構成され、血管Bにおける反射による吸
光特性を検出して特定色素の流入を検知し得るようにす
る。
That is, the detectors 21 and 22 shown in FIG.
light 111a, 2a of detector 1.2 and photodetector 1b,
Light source 218.22a and photodetector 21b similar to 2b
, 22b and a light projection optical system 21 using an optical fiber or the like.
c, 22c, light receiving optical system 2 similarly using optical fiber etc.
1d and 22d, and allows the inflow of a specific dye to be detected by detecting light absorption characteristics due to reflection in the blood vessel B.

この場合は反射光路で検出を行なうので、検出器21.
22は、必ずしも血管Bに直接当接する必要はなく、例
えば手首近傍や肘間接部近傍等の血管Bが体表近くに位
置している部位の通管部に体表面より当接して測定する
ことが可能である。したがって、この方式では手術中や
動物実験ばかりでなく、通常の臨床検査にも容易に利用
できる。
In this case, since detection is performed on the reflected optical path, the detector 21.
22 does not necessarily have to be in direct contact with the blood vessel B, but can be measured by contacting from the body surface with the tube passing portion of a region where the blood vessel B is located near the body surface, such as near the wrist or near the joint between the elbows. is possible. Therefore, this method can be easily used not only during surgery and animal experiments, but also for regular clinical tests.

また、上述した各実施例のいずれにおいても投光および
受光光学系は必要に応じて設ければよく、光源および光
検出器として体温等により特性に影響を受けやすいもの
や大型のものを用いた場合には熱による影響を低減する
ためや検出器全体を小形化するために設けることが望ま
しいが、光源および光検出器として充分に小さなものを
用いた場合あるいは測定のため検出器を取付けるべき部
位が狭小でない場合(検出器全体の大型化が多少許容さ
れる場合)には投光および受光光学系は設けなくとも済
むことが多い。もちろん、投光および受光光学系を光フ
ァイバ、プリズム等の他、集光レンズや反射鏡を用いて
構成してもよい。
In addition, in any of the above-mentioned embodiments, the light emitting and light receiving optical systems may be provided as necessary, and the light source and photodetector may be of a large size or whose characteristics are easily affected by body temperature, etc. In some cases, it is desirable to provide this to reduce the effects of heat or to downsize the entire detector, but if a sufficiently small light source and photodetector are used, or where the detector should be installed for measurement. If the detector is not narrow (if the overall size of the detector can be increased to some extent), it is often unnecessary to provide a light emitting and receiving optical system. Of course, the light projecting and light receiving optical system may be configured using not only optical fibers, prisms, etc., but also condensing lenses and reflecting mirrors.

さらにまた、測定点間隔りの測定が必要な場合には、そ
れを容易にするために、いわゆる自在室3!1等のよう
に可撓性を有するスケールの一端に一方の検出器を固定
し、他方の検出器をこのスケールに移動自在に取着する
ようにしたり、一方の検出器に可撓性を有する巻尺状の
計測具を取着しこの計測具の計測部先端(引き出し端)
に他方の検出器を取着するようにしたりしてもよい。
Furthermore, if it is necessary to measure the distance between measurement points, one detector may be fixed to one end of a flexible scale such as a so-called flexible chamber 3!1, etc., in order to facilitate measurement. , the other detector may be movably attached to this scale, or a flexible tape measure-shaped measuring instrument may be attached to one detector and the tip of the measuring section (pull-out end) of this measuring instrument may be attached.
Alternatively, the other detector may be attached to the other detector.

なお、動脈のように脈流弁が大きい場合には、特定個所
の血流速度が時々刻々変動しているため、単純な2点間
の計測では充分な精度が得られないことがある。この傾
向は測定2点間の距離が類い場合に著しい。このような
場合に対処するには、簡単には、測定点間の距離を充分
に長くとって誤差の影響を小さくすればよい。また測定
点間の距離を充分に長くとれない場合、あるいはさらに
高精度を得たい場合には、測定区間の始点と終点の近傍
にそれぞれ微小間隔で多数(少なくとも数個)の検出部
を配設し、それぞれ多点計測を行なって各短区間の速度
分布をめ、その速度分布より両区間において速度状態(
位相)の等しい個所相互間の速度を得るようにすればよ
い。この第2の方式のためには多点計測用の複数組の検
出部を備えた検出器を特別に製作して用意することが望
ましい。 ゛ また、出力の表示やプリン1−アラ]・の必要がなく単
に記録すればよい場合には出力装置としてデータレコー
ダのみを用いればよいことはいうまでもない。
Note that in cases where the pulsating flow valve is large, such as in an artery, the blood flow velocity at a specific location changes from time to time, so a simple measurement between two points may not provide sufficient accuracy. This tendency is remarkable when the distances between two measurement points are similar. To deal with such a case, simply make the distance between the measurement points sufficiently long to reduce the influence of the error. In addition, if the distance between the measurement points cannot be long enough, or if you want to obtain even higher accuracy, a large number (at least several) of detection units are arranged at minute intervals near the start and end points of the measurement section. Then, the speed distribution in each short section is determined by multi-point measurement, and the speed state (
What is necessary is to obtain the velocities between the points having the same phase). For this second method, it is desirable to specially manufacture and prepare a detector equipped with a plurality of sets of detection sections for multi-point measurement. [Also, it goes without saying that if there is no need to display output or print data and it is sufficient to simply record, it is sufficient to use only a data recorder as the output device.

血流速度がめられれば、それと血管径より血流量を簡単
に算定できる。この計算を演算処理装置11等において
処理させるようにしてもよい。
Once the blood flow velocity is known, the blood flow volume can be easily calculated from that and the vessel diameter. This calculation may be processed by the arithmetic processing unit 11 or the like.

[発明の効果] 本発明によれば、簡単な構成で直接的な血流測定を可能
とし、高精度に血流を測定しくηる血流測定装置を提供
することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a blood flow measuring device that enables direct blood flow measurement with a simple configuration and can measure blood flow with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は同実施例における検出器の具体的な構成の一例の
概略を示す模式図、第3図は同実施例における滴綽処理
装置の具体的な処理の一例を説明するためのフローチャ
ート、第4図は本発明の他の実施例における要部の構成
を模式的に示ず図である。 1.2.21.22・・・検出器、3.4・・・I/″
V(電流−電圧)変換器、5.6・・・直流分除去回路
、7.8・・・脈波除去回路、9,10・・・A、/D
<アナ[]グーディジタル)変換器、11・・・演算処
理装置、12・・・操作入力部、13・・・出力装H0
出願人代理人 弁理士 鈴江武彦 第3Fj!JI 第4図 工
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a schematic diagram showing an example of a specific configuration of a detector in the same embodiment, and FIG. 3 is a block diagram showing the configuration of a detector in the same embodiment. FIG. 4 is a flowchart for explaining an example of a specific process of the thread processing apparatus, and is a diagram that does not schematically show the configuration of the main part in another embodiment of the present invention. 1.2.21.22...Detector, 3.4...I/''
V (current-voltage) converter, 5.6... DC component removal circuit, 7.8... Pulse wave removal circuit, 9, 10... A, /D
<ana [] good digital) converter, 11... arithmetic processing unit, 12... operation input section, 13... output device H0
Applicant's agent Patent attorney Takehiko Suzue 3rd Fj! JI 4th drawing

Claims (1)

【特許請求の範囲】[Claims] 各一対の光源および光検出部を有し、被検者の血管部に
互いに離間して装着されて各々直接または光学系を介し
て上記血管部を介在させた反射または透過光路を形成し
て、上記血管部の周囲組織、血液および血液中に投与さ
れた特定色素の吸光に応じた値を検出し電気信号として
出力する第1および第2の検出部と、これら第1および
第2の検出部の各出力を受け上記特定色素による各検出
値の変動開始タイミングをそれぞれ判定する手段と、こ
の手段による上記両判定タイミング間の時間差を計測し
上記雨検出部間の通過時間を算定する手段と、この手段
により得られた算定結果を表示または記録する出力装置
とを具備したことを特徴とする血流測定装置。
each having a pair of light sources and a light detection unit, each of which is attached to a blood vessel of a subject at a distance from each other to form a reflected or transmitted optical path through the blood vessel directly or via an optical system; first and second detection sections that detect a value corresponding to the absorption of the tissue surrounding the blood vessel, blood, and a specific dye administered into the blood and output it as an electrical signal, and the first and second detection sections means for receiving each output and determining the start timing of fluctuation of each detection value by the specific dye, and means for measuring the time difference between the two determination timings by this means to calculate the transit time between the rain detection parts; A blood flow measuring device characterized by comprising an output device for displaying or recording calculation results obtained by this means.
JP59053743A 1984-03-21 1984-03-21 Blood pressure measuring apparatus Pending JPS60198128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59053743A JPS60198128A (en) 1984-03-21 1984-03-21 Blood pressure measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59053743A JPS60198128A (en) 1984-03-21 1984-03-21 Blood pressure measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60198128A true JPS60198128A (en) 1985-10-07

Family

ID=12951293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59053743A Pending JPS60198128A (en) 1984-03-21 1984-03-21 Blood pressure measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60198128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378257U (en) * 1986-11-10 1988-05-24
JPH04250135A (en) * 1990-07-18 1992-09-07 Rudolf A Hatschek Blood pressure measuring apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110884A (en) * 1975-03-25 1976-09-30 Toyoda Machine Works Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110884A (en) * 1975-03-25 1976-09-30 Toyoda Machine Works Ltd

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378257U (en) * 1986-11-10 1988-05-24
JPH0533126Y2 (en) * 1986-11-10 1993-08-24
JPH04250135A (en) * 1990-07-18 1992-09-07 Rudolf A Hatschek Blood pressure measuring apparatus and method

Similar Documents

Publication Publication Date Title
Hokanson et al. A phase-locked echo tracking system for recording arterial diameter changes in vivo.
US4936679A (en) Optical fiber transducer driving and measuring circuit and method for using same
Borders et al. An optical Doppler intravital velocimeter
EP0781161B1 (en) Blood flow measurement method in hemodialysis shunts
EP0498281B1 (en) Measurement of transmission velocity of pulse wave
Fagrell et al. A microscope-television system for studying flow velocity in human skin capillaries
Hudson et al. Reproducibility of measurements of cardiac output in newborn infants by Doppler ultrasound.
EP0707823A1 (en) Short coherence length doppler velocimetry system
US4249540A (en) Optical somato-measuring apparatus
EP0224571A1 (en) Method and apparatus for determining oxygen saturation in vivo.
Norgia et al. Low-cost optical flowmeter with analog front-end electronics for blood extracorporeal circulators
JP2004154231A (en) Blood pressure measuring device and blood pressure measuring method
Roberts Photoplethysmography-fundamental aspects of the optical properties of blood in motion
Valdes-Cruz et al. Studies in vitro of the relationship between ultrasound and laser Doppler velocimetry and applicability to the simplified Bernoulli relationship.
CN113367660A (en) Photoacoustic Doppler flow velocity measuring device and method
US5774223A (en) Optical measuring method and an optical measuring apparatus for determining the internal structure of an object
Reagan et al. Transcutaneous measurement of femoral artery flow
JPH02309929A (en) Hepatic function inspecting apparatus
JPS60198128A (en) Blood pressure measuring apparatus
US5074307A (en) Ophthalmological diagnosis apparatus
CN111134614A (en) Method and system for measuring absolute velocity of blood flow in eyeball blood vessel based on OCT
Kilpatrick et al. Measurement of coronary sinus blood flow by fiber-optic laser Doppler anemometry
Houston et al. Doppler flow characteristics in the assessment of pulmonary artery pressure in ductus arteriosus.
US5406948A (en) Flowmeters
Sangurmath et al. Application of photoplethysmography in blood flow measurement