JPS60197828A - Treatment of pyrite cinder - Google Patents

Treatment of pyrite cinder

Info

Publication number
JPS60197828A
JPS60197828A JP59051579A JP5157984A JPS60197828A JP S60197828 A JPS60197828 A JP S60197828A JP 59051579 A JP59051579 A JP 59051579A JP 5157984 A JP5157984 A JP 5157984A JP S60197828 A JPS60197828 A JP S60197828A
Authority
JP
Japan
Prior art keywords
ore
arsenic
liquid
leachate
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59051579A
Other languages
Japanese (ja)
Inventor
Takeshi Ishizuka
武 石塚
Kenichi Yaginuma
柳沼 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP59051579A priority Critical patent/JPS60197828A/en
Publication of JPS60197828A publication Critical patent/JPS60197828A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To make pyrite cinder contg. Cu, Zn, Pb, As, etc. reusable as an iron source by treating said pyrite cinder with an aq. mineral acid soln. contg. iron salt and dissolving and extracting the above-mentioned impurities and to reutilize the residual liquid for treating the pyrite cinder by precipitating the impurities in the extracting liquid. CONSTITUTION:The pyrite cinder after SO2 of raw material for sulfuric acid is drawn by combustion of sulfide iron ore contains Cu, Zn, Pb, As, etc. as impurities and are not usable as a raw material for iron making. The impurities such as Cu, etc. are consequently dissolved and extracted by adding an aq. soln. of HCl and H2SO4 contg. iron salt such as FeCl2, FeSO4, etc. at 20-100g/l in terms of Fe and having <=1pH to said pyrite cinder at 5-10m<3> for each one ton of the pyrite cinder and treating the same for <=60min. The treated pyrite cinder is subjected to a solid-liquid sepn. and the cinder from which Cu, etc. are removed is used as the raw material for iron making. The liquid is treated by H2S, etc. to settle Cu, As as sulfide. The remaining liquid is reutilized for treating the pyrite cinder. Part thereof is fed to a stage for removing Zn, Pb, etc. failing to settle and is thus regenerated.

Description

【発明の詳細な説明】 この発明は、銅、亜鉛、鉛等の非鉄金属および砒素の諸
元素を含有する硫酸焼鉱からこれら諸元素含有量の少な
い硫酸焼鉱を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing sulfuric acid sintered ore having a low content of non-ferrous metals such as copper, zinc, lead, etc. and arsenic from sulfuric acid sintered ore containing various elements such as arsenic.

硫酸焼鉱(以下中に焼鉱という)は、通當銅、亜鉛、鉛
等の非鉄金属および砒素を含有する理由により、前処理
することなく製鉄用原料として使用出来ない。焼鉱から
上記諸元素を除去する為の前処哩法とし−C1下記の如
き諸り法が周知となっている。
Sulfuric acid sintered ore (hereinafter referred to as sintered ore) cannot be used as a raw material for iron manufacturing without pretreatment because it contains nonferrous metals such as copper, zinc, and lead, and arsenic. As a pre-treatment method for removing the above-mentioned elements from burnt ore, the following methods are well known.

その第1は、焼鉱に塩化カルシウムの溶液を添加して団
塊化し、この団塊を高温C塩化揮発焼成することにより
上記諸元素を焼成用ガス中に除去する方法である。この
方法は特公昭44−7827に記載されている実用的に
も優れた方法であるが、焼鉱中に砒素が含まれている場
合にはこれを除去することが出来ず、又焼鉱中に砒素が
含まれていない場合にあっても、前記非鉄金属の含有量
の多い場合にはこれらの除去が不充分であって、この様
なこの方法の問題点が特開昭51−89809に記載さ
れている。従っC1焼鉱に砒素が含まれる場合および多
量の非鉄金属が含まれる場合において、この方法を実I
Mする為には、更に前処理が必要となる。
The first method is to add a solution of calcium chloride to burnt ore to form agglomerates, and to burn the agglomerates at a high temperature to volatilize C chloride, thereby removing the above-mentioned elements in the burning gas. Although this method is described in Japanese Patent Publication No. 44-7827 and is excellent in practical terms, it is not possible to remove arsenic if it is contained in the burned ore. Even if arsenic is not included in the non-ferrous metals, removal of these metals is insufficient if the content of the non-ferrous metals is large. Are listed. Therefore, this method is not practical when C1 burnt ore contains arsenic or a large amount of non-ferrous metals.
In order to perform M, further preprocessing is required.

周知方法の第2は焼鉱を流動床あるいはロータリーキル
ン中において高温の還元性ガスにより処即し、砒素をガ
ス中に除去°りる方法である。この方法は、特公昭41
−18802、同49−12807、同49−3760
3等に記載されている方法であるが、何れも1000℃
程度の高温を必要とし、砒素以外の非鉄金属の除去が出
来ず又砒素を含有りる高温のガスからの充分な熱回収が
回動な為経済的に不利な方法である。
A second known method is to treat the burned ore in a fluidized bed or rotary kiln with a high temperature reducing gas to remove arsenic in the gas. This method is
-18802, 49-12807, 49-3760
This is the method described in No. 3, etc., but in both cases the temperature is 1000°C.
This method is economically disadvantageous because it requires relatively high temperatures, cannot remove non-ferrous metals other than arsenic, and requires sufficient heat recovery from the high-temperature gas containing arsenic.

周知方法の第3は、焼鉱に炭素質燃料を混合し、流動床
内においてこの混合物を炭素質燃料の燃焼による高温に
保持しつつ塩素ガスを吹込んで非鉄金属および砒素を同
時にガス中に除去覆る方法である。この方法は、特公昭
50−25414に記載されている方法であるが、前記
方法と同様の高温を必要とりる外、ガス中に塩素が含ま
れる為、塩素および砒素を含むガスから塩素および熱を
充分に回収り−ることか困難であり、前記方法同様に経
済的に不利な方法である。
The third well-known method is to mix burnt ore with carbonaceous fuel, and while maintaining this mixture at a high temperature due to combustion of the carbonaceous fuel in a fluidized bed, chlorine gas is blown into the mixture to simultaneously remove nonferrous metals and arsenic from the gas. This is a method of covering it. This method is described in Japanese Patent Publication No. 50-25414, but in addition to requiring high temperatures similar to the above method, since the gas contains chlorine, chlorine and arsenic are removed from the gas containing chlorine and arsenic. It is difficult to recover a sufficient amount of carbon dioxide, and like the above method, this method is economically disadvantageous.

この発明方法は、上記の従来法が何れも高温を使用する
乾式法であったのに対し、焼鉱を次に記@する強酸性浸
出液に浸漬して非鉄金属および砒素を浸出液中に抽出す
る新規な湿式焼鉱処理法である。この発明による焼鉱処
理法は、Pl−1値1以下であって金属を塩化物あるい
は硫酸塩として含有する強酸性鉱酸液中に焼鉱が浸漬さ
れ、この浸漬に゛より焼鉱が浸出されて焼鉱中の非鉄金
属および砒素が液中に抽出される第1]−程、抽出済焼
鉱と浸出液が分離される第2工程、抽出済焼鉱が分離さ
れた後の浸出液に硫化剤が添加される第3工程、硫化剤
の添加された浸出液から液中に存在りる固形物が除去さ
れ、この液の大部分が第1工程に再循環される第4工程
からなる焼鉱の処理法である。
Unlike the conventional methods described above, which are all dry methods that use high temperatures, this invention method involves immersing burnt ore in a strongly acidic leachate described below to extract nonferrous metals and arsenic into the leachate. This is a new wet sintering method. In the burning ore treatment method according to the present invention, the burning ore is immersed in a strongly acidic mineral acid solution having a Pl-1 value of 1 or less and containing metals as chlorides or sulfates, and the burning ore is leached out during this immersion. The non-ferrous metals and arsenic in the burnt ore are extracted into the liquid.The second step is to separate the extracted burnt ore and the leachate.After the extracted burnt ore has been separated, the leachate contains sulfur. A third step in which a sulfiding agent is added, and a fourth step in which solids present in the leachate to which the sulfurizing agent has been added are removed, and most of this liquid is recycled to the first step. This is a processing method.

この発明につき以下に詳しく説明する。上記の第1工程
において焼鉱の浸出に使用される浸出液は水が溶媒とし
て使用され、この水中にI) l−1値が1以下となる
量の塩酸、硫酸等の鉱酸および数種の金属の塩化物ある
いは硫酸塩が含有される水性液である。これらの浸出液
中に含有されるべき物質のうちの鉱酸は、塩酸、硫酸お
よび両者の混酸が良い。一般的に塩酸のみを使用する場
合には焼鉱中の鉄の溶解率が高く、また硫酸のみを使用
Jる場合には焼鉱中の鉛の抽出率が低く、何れの場合に
もこの発明の効果を若干減少せしめることとなる。従っ
て塩酸と硫酸とを混合使用づる場合に最も良い抽出効果
が得られる。これらの酸の濃度は、j加酸のみを使用す
る場合であれば遊離塩化水素として50〜IL’)OQ
r/Jの範囲内が良い。またIA酸あるいは混酸を使用
−りる場合にあっては、F記の1温酸淵度のl) l−
1餡に相当りる様硫酸を配合りれば良い。酸の濃1良が
上記範III[より低い場合には、非鉄金属の抽出率が
低下し、酸の8力度が上記範囲より高い場合には鉄の溶
M率が高くなると共に浸出液の発りる酸性ガスの熱気圧
が商くなる故避りた万が右利となる。又浸出液に共存さ
せるべき金属の塩化物あるいは硫酸塩は、塩化第1鉄、
硫酸第1鉄おJ、び両者のtfi合物を主体とする数種
の金属の塩化物あるいは硫酸塩であって、何れの金属塩
も焼鉱から浸出液への非鉄金属および砒素の抽出を促進
Mる効果、即ちいわゆる塩類効果を発揮させる為のbの
く・ある。これらの金属塩類のうら第1銭塩が最も重要
であっ−C1第1鉄塩を鉄としく20〜100gr/1
含右Jる浸出液は、非鉄金属および砒素の抽出に優れた
効果をイi tする。
This invention will be explained in detail below. Water is used as a solvent for the leachate used for leaching the burnt ore in the first step, and in this water I) mineral acids such as hydrochloric acid and sulfuric acid in an amount such that the l-1 value is 1 or less, and several types of It is an aqueous liquid containing metal chlorides or sulfates. Among the substances to be contained in these leachates, the mineral acids are preferably hydrochloric acid, sulfuric acid, or a mixed acid of both. Generally, when only hydrochloric acid is used, the dissolution rate of iron in the burnt ore is high, and when only sulfuric acid is used, the extraction rate of lead in the burnt ore is low. This will slightly reduce the effect of Therefore, the best extraction effect can be obtained when a mixture of hydrochloric acid and sulfuric acid is used. The concentration of these acids is 50 to IL') OQ as free hydrogen chloride if only acid is used.
It is good to be within the range of r/J. In addition, when using IA acid or mixed acid, the 1 temperature acid depth l) l-
It is sufficient to mix sulfuric acid in an amount equivalent to 1 bean paste. If the acid concentration is lower than the above range III, the extraction rate of non-ferrous metals will decrease, and if the acid concentration is higher than the above range, the dissolved M rate of iron will increase and leachate will be generated. The thermal pressure of the acidic gas increases, so it is to your advantage to avoid it. The metal chlorides or sulfates that should be present in the leachate include ferrous chloride,
Chlorides or sulfates of several metals, mainly ferrous sulfate and TFI compounds of both, all of which promote the extraction of nonferrous metals and arsenic from burnt ore into leachate. There is a b in order to exert the M effect, that is, the so-called salt effect. Among these metal salts, ferrous salt is the most important.
The leachate containing J has an excellent effect on the extraction of non-ferrous metals and arsenic.

第1鉄塩の濃度が上記の範囲以下である場合には、この
浸出における第1鉄塩等の塩類効果が不足して非鉄金属
および砒素の抽出率か低下し、逆に上記の範囲以上の第
1鉄塩濃度の使用は抽出率を向上せしめず無駄となる。
If the concentration of ferrous salt is below the above range, the effect of salts such as ferrous salt in this leaching will be insufficient and the extraction rate of nonferrous metals and arsenic will decrease; The use of ferrous salt concentrations does not improve the extraction rate and is wasteful.

またこれらの金属塩の内、鉄以外のものは、モの温度が
tfU要で無く、焼鉱から抽出された9度において溶解
状態あるいは懸回状態において浸出液中に存在J−る状
態C良い。しかしこれらの金属塩のうちの鉄塩について
は、通常焼鉱から浸出抽出されるもので上記の温度の保
持が出来るが、この鉄塩の温度が上記範囲を逸1j;(
した場合には、鉄塩の補給あるいは除去により濃度の調
整を実施することが良い。また浸出の際の温度は50〜
80℃好ましくは60〜70℃が良く、又圧力を高める
必要は無い。又この浸出り稈における焼鉱と浸出液との
M的な比は、焼鉱の粒径分布および浸出の際に使用りる
装置の種(1によって異なるが、焼鉱1.トン当りの浸
出液の必要量が大略5〜10耀の範囲Cあつ(、この比
が上記範囲より小な場合には非鉄金mおよび砒素の抽出
が充分でなく、また焼鉱と浸出液からなるスラリーのt
J Ifltが高くなりポンプ等によるスラリーの取り
扱いが困i11となり、逆にこの比が上記範囲より人ぐ
C)る場合は無駄が多くなる。浸出に要づる時間は通’
?’j; 60分以内、多くの場合15〜30分C充分
である1、シかし上記に従って使用りる酸の種類、その
濃度J5よび共存させるべき金属塩類の種類ど温度、浸
出温度、浸出時間、焼鉱11〜ン当りに使用覆る浸出液
の量等の決定は、焼鉱の原料鉱石である硫化鉱の種類J
3よびこの硫化鉱を焙焼覆る際の溶焼条件により異なる
故、実際に使用する焼鉱についての試験を実施した上で
決定覆るのが良い。又この発明方法に使用する焼鉱の粒
1宴分布は、この焼鉱の原料である粉砕された硫化鉱を
通常の条件で焙焼した際に1qられる焼鉱の粒度分布で
良く、更に粉砕りる必要が無い。
Among these metal salts, those other than iron do not require a temperature of tfU, and exist in the leachate in a dissolved or suspended state at 9 degrees Celsius when extracted from the burnt ore. However, iron salts among these metal salts are usually leached and extracted from burnt ore and can maintain the above temperature, but the temperature of this iron salt is outside the above range.
In this case, it is recommended to adjust the concentration by supplementing or removing iron salts. Also, the temperature during leaching is 50~
The temperature is preferably 80°C, preferably 60 to 70°C, and there is no need to increase the pressure. In addition, the M ratio of burnt ore to leachate in this leaching culm varies depending on the particle size distribution of the burnt ore and the type of equipment used for leaching, but it depends on the amount of leachate per ton of burnt ore. If the required amount is in the range of approximately 5 to 10% (C), if this ratio is smaller than the above range, the extraction of non-ferrous gold and arsenic will not be sufficient, and the
If J Iflt becomes high, it becomes difficult to handle the slurry with a pump, etc., and conversely, if this ratio is higher than the above range, there will be a lot of waste. The time required for leaching is
? 'j; Within 60 minutes, in most cases 15 to 30 minutes C is sufficient. The time, amount of leachate used per burnt ore, etc. are determined by the type of sulfide ore that is the raw material ore for the burnt ore.
3 and the firing conditions when roasting the sulfide ore, so it is best to make a decision after conducting tests on the burnt ore that will actually be used. Furthermore, the particle size distribution of the burned ore used in the method of this invention may be the particle size distribution of the burned ore obtained by roasting 1q of crushed sulfide ore, which is the raw material for this burned ore, under normal conditions; There is no need to go.

上記の第1工程を実施する為の具体的方法としては、内
面に耐酸性被覆を右Jるコンクリート製、炭素鋼製ある
いはその他の金属製の容器内に焼鉱と浸出液との混合ス
ラリーを流通せしめるのが良い。その際焼鉱が浸出液か
ら沈降分離することを防止する為、液相の深部には少な
くとも1個の撹拌機を設置し、またこの容器内における
混合液の流路を規制づる為の少なくとも2個の壁を設直
し、容器内においては混合スラリーが比較的に早い速度
で流動Jる様に設備Jるのが良い。
A specific method for carrying out the first step above is to distribute a mixed slurry of burnt ore and leachate in a concrete, carbon steel, or other metal container with an acid-resistant coating on the inner surface. It's better to force it. At this time, in order to prevent the burning ore from settling and separating from the leachate, at least one stirrer is installed deep in the liquid phase, and at least two stirrers are installed to regulate the flow path of the mixed liquid in this container. It is recommended that the walls of the vessel be re-installed and that equipment be installed so that the mixed slurry flows at a relatively high speed within the vessel.

第2工程は、上記第1工程により非鉄金属および砒素の
抽出が完了した焼鉱と浸出液との共存物を抽出済焼鉱と
浸出液とに分離する工程である。
The second step is a step of separating the coexistence of the burnt ore and the leachate from which nonferrous metals and arsenic have been extracted in the first step into the extracted burnt ore and the leachate.

この工程にJ5いては温度を浸出の際の温度から変更す
る必要がなく、固体と液体との分離を実施すれば良い。
In this step, there is no need to change the temperature from the temperature during leaching, and it is only necessary to separate the solid and liquid.

その際一旦浸出液の分離された焼鉱を少毎の水により1
回あるいは2回洗滌し、焼鉱中の酸分を充分に除去して
おくのが良い。この水洗に使用する水の総量は、通常乾
燥した状態で原料として供給される焼鉱がその粒子間に
包含出来る程瓜の水量に制御されるのが良い。この様な
洗滌水mの制御により、分離された焼鉱が水洗されるに
も拘わらず、この水が浸出液に移行ηる為に起る、浸出
液の濃度の低下が防止出来る。この分lには周知の固液
分M装置が使用できるが、通常焼鉱a3よび浸出液の量
が何れも大母である故、いわゆるドラムフィルター、ベ
ルトフィルター等の装置が好適C゛ある。
At that time, once the leachate has been separated, the burnt ore is poured with a small amount of water.
It is best to wash the burnt ore once or twice to sufficiently remove the acid content in the burnt ore. The total amount of water used for this washing is preferably controlled to a level that allows the burned ore, which is usually supplied as a raw material in a dry state, to be contained between the particles. By controlling the washing water m in this manner, it is possible to prevent the concentration of the leachate from decreasing, which would otherwise occur due to the transfer of this water to the leachate, even though the separated burned ore is washed with water. A well-known solid-liquid separation M device can be used for this fraction, but since the amounts of burnt ore A3 and leachate are both large, devices such as so-called drum filters and belt filters are preferred.

以上の第1および第2工程により、原料焼鉱中に含有さ
れ−Cいた非鉄金属および砒素の少なくとも2/3が浸
出液中に抽出される。浸出時間を延長することによりこ
の抽出率を更に向上せしめること゛b出来るが、装置が
大きくなる割に抽出率の向上が小であり、経済的に有利
とならない場合が多い。以上までの処理により第2工程
からυ1出される含水焼鉱は、多くの場合直接に製鉄用
原料鉱石として使用可能であるが、原お1焼鉱の非鉄金
属および砒素の含有量が多い場合には、上記により分離
した含水焼鉱を、前記の第1従来法即ち塩化揮発法より
再処理づることも出来る。この塩化揮発法による再処理
については後記する。
Through the first and second steps described above, at least two-thirds of the -C nonferrous metals and arsenic contained in the raw material burnt ore are extracted into the leachate. Although it is possible to further improve the extraction rate by extending the leaching time, the improvement in the extraction rate is small as the equipment becomes larger, and this is often not economically advantageous. The hydrous sintered ore produced from the second step through the above treatment can be used directly as raw material ore for iron manufacturing in many cases, but if the sintered ore contains a large amount of non-ferrous metals and arsenic, Alternatively, the hydrous sintered ore separated as described above can be reprocessed by the first conventional method, that is, the chloride volatilization method. The reprocessing by this chloride volatilization method will be described later.

第3および第4の1程は、第3工程において分離された
浸出液を処理して第1工程に再循環する為の処理工程で
ある。即ちこの工程は、浸出液を繰り返し使用すること
により、液中の非鉄金属および砒素の温度が必要以上に
高まることを防止する為の工程である。この第3工程に
おいでは、第2工程において分離された浸出液に硫化剤
を添加して、浸出液中に含有される銅および砒素を硫化
物として沈澱せしめる。この工程において使用される硫
化剤としては、硫化水素、磁硫鉄鉱等が良い。この工程
にお【プる硫化剤とし−C,riI!i化ソーダおよび
水硫化ソーダの使用は循環浸出液中にナトリウムが蓄積
することになる故好ましくない。これら硫化剤の添加量
は、この浸出液中に存在する銅および砒素の全mを硫化
物として沈澱せしめるのに必要な量と第1工程において
焼鉱から浸出液中に抽出された鉄のうちの3価の鉄とし
て存在するものを2価の鉄に還元するのに必要な量との
合11fflである。硫化剤として硫化水素を使用−す
る場合のこの液への硫化水素の添加方法には、周知の気
液接触装置が使用出来、また硫化剤としC磁硫鉄鉱を使
用する場合には、粉砕した磁硫鉄鉱をこの液中に投入し
て撹拌することにより、何れの場合−もきわめて短時間
の間に硫化反応を完了せしめることが出来る。この硫化
反応においては、液の温度を第1工程の温度から変更す
る必要が無い。
The third and fourth steps are processing steps for treating the leachate separated in the third step and recycling it to the first step. That is, this step is a step to prevent the temperature of the nonferrous metal and arsenic in the liquid from increasing more than necessary due to repeated use of the leachate. In this third step, a sulfiding agent is added to the leachate separated in the second step to precipitate copper and arsenic contained in the leachate as sulfides. As the sulfurizing agent used in this step, hydrogen sulfide, pyrrhotite, etc. are preferable. As a sulfurizing agent in this process - C,riI! The use of sodium chloride and sodium bisulfide is undesirable because it results in the accumulation of sodium in the circulating leachate. The amount of these sulfiding agents added is the amount necessary to precipitate all m of copper and arsenic present in this leachate as sulfide, and the amount necessary to precipitate all m of copper and arsenic present in this leachate as sulfide, and 3 m of the iron extracted from the burnt ore into the leachate in the first step. The sum of the amount necessary to reduce what exists as valent iron to divalent iron is 11 ffl. When hydrogen sulfide is used as the sulfurizing agent, a well-known gas-liquid contacting device can be used to add hydrogen sulfide to the liquid, and when C pyrrhotite is used as the sulfurizing agent, crushed pyrrhotite can be used. By introducing iron ore into this liquid and stirring it, the sulfidation reaction can be completed in a very short time in either case. In this sulfurization reaction, there is no need to change the temperature of the liquid from the temperature in the first step.

第41程は、第3工程の硫化反応ににり生成した銅およ
び砒素の硫化物の沈澱および液中に存在7る他の固形物
を周知の固液分離装置により液から分離し、これら固形
物が分離された後の液の大部分を前記の第1工程に浸出
用の液として再循環し、残部を第3工程において沈澱し
なかった亜鉛、鉛、鉄等の金属を除去回収Jる為に浸出
液の循環系統から(々き出す−1稈C・ある。この抜き
出し量は、焼鉱中に含有される亜鉛、鉛等の第3■程に
おいC沈澱しない金属の含有量および焼鉱の秤類と浸出
条件により定まるタスの溶解…により大幅に異なるが、
多くの場合焼鉱1トン当り150〜250)の程度であ
る。この工程は簡単であって、熟練者に容易に理解出来
る故、詳細な説明を省略する。
In the 41st step, the precipitates of copper and arsenic sulfides produced in the sulfurization reaction in the third step and other solids present in the liquid are separated from the liquid by a well-known solid-liquid separator. After the substances have been separated, most of the liquid is recycled to the first step as a leaching liquid, and the remainder is used to remove and recover metals such as zinc, lead, and iron that have not precipitated in the third step. Therefore, from the leachate circulation system, there is -1 culm of C. It varies greatly depending on the scale and the dissolution of the tass determined by the leaching conditions.
In most cases, it is on the order of 150 to 250) per ton of burnt ore. This process is simple and can be easily understood by those skilled in the art, so a detailed explanation will be omitted.

以上がこの発明の主要工程であるが、上記により浸出液
の循環系統から抜き出される循環浸出液の一部は、この
液中に含有されている金属を回収する為に、通常炭酸カ
ルシウム、酸化カルシウム等のアルカリで中和し、中和
の初期段階において石膏を沈澱ゼしめてこれを分離回収
し、更に中和を進めて金属の水酸化物を沈澱uしめてこ
れらを分離回収したtli液を放流するか、あるいは苛
性ソーダ、RWソーダ等のアルカリにより中和し、この
中和に際して生ずる金属の水酸化物の沈澱を回収した後
残液を放流する等の如き方法で処理される。尚゛浸出液
の一部をその循環系統から抜き出した為に生ずる循環浸
出液の不犀分は、金属塩を含有しない所望f1度の酸を
循環浸出液に補給して110記のf[12濃度に調!!
!すれば良い。又第3工程において得られる硫化銅およ
び硫化砒素からなる沈澱物と抜き出された浸出液から得
られる亜鉛、鉛、鉄等の金属からなり、銅および砒素を
含まない水酸化物の沈澱物からは、従来周知の方法によ
りこれらの金属および砒素を回収することが出来る。
The above is the main process of this invention. A part of the circulating leachate extracted from the leachate circulation system as described above is usually made of calcium carbonate, calcium oxide, etc. in order to recover the metals contained in this liquid. In the initial stage of neutralization, the gypsum is precipitated and collected, and the gypsum is separated and recovered. Neutralization is further advanced to precipitate the metal hydroxides, and these are separated and recovered. The TLI solution is then discharged. Alternatively, it can be treated by neutralizing with an alkali such as caustic soda or RW soda, collecting the metal hydroxide precipitate produced during the neutralization, and then discharging the remaining liquid. In addition, to remove the waste in the circulating leachate that occurs when a part of the leachate is withdrawn from the circulation system, the circulating leachate is adjusted to the f [12 concentration of ! !
! Just do it. In addition, from the precipitate made of copper sulfide and arsenic sulfide obtained in the third step and the precipitate of hydroxide, which is made of metals such as zinc, lead, iron, etc. and does not contain copper and arsenic, obtained from the extracted leachate, These metals and arsenic can be recovered by conventionally known methods.

この発明の利点の第1は、前記従来法の如く高温を使用
することが無いので熱エネルギーの消費量が極めて少な
く、廃ガスの発生も無く、設備も簡単であり全体として
の処理費用が安く済むことである。この点は、上記まで
の説明により極めて明瞭であって特別な説明を要しない
。この発明の利点の第2は、砒素化合物が単離し易い状
態で得られることぐある。砒素は周知の如く他の物質に
混入すると、その物質の性質を悪化さV、又多くの生物
に対して強い毒性を示すので自然環境中に放出づること
も不可能である。この発明方法においては、前記の通り
第3工程におい゛C硫化銅および硫化砒素のみからなる
沈澱を分Fil−Slることが出来る。従って例えば特
公昭58−24378に記載の如き、分離されたこの沈
澱を水中に懸濁させ、この懸濁液に硫酸銅を添加し硫化
砒素を酸化砒素に転換し゛C水中に溶解せしめて砒素を
銅から単離する方法、あるいは分離されたこの沈澱を比
較的低温において酸化し、酸化銅および亜砒酸に転換し
た後、両者を高温昇華操作に付す方法等により銅と砒素
を容易且つ略完全に分1m−することが出来る。この発
明の利点の第3は、焼鉱中に非鉄金属および砒素の両者
が含有される場合に、前記第1および第2の従来法を実
[る為の予備処理法として、この発明方法を使用し得る
ことである。即ち第1の従来法にあっては、焼鉱から砒
素が除去出来ず、文箱2の従来法にあっては砒素以外の
非鉄金属を除去出来ない。これら両従来法を実施する為
の前処理としてこの発明方法を使用すれば、これら両従
来法の欠点を安価に解消出来る。即ち第3の従来法の如
き処理費用の高価な方法を使用する必要がなくなる。又
上記の如く、この発明方法を従来法の前処理法として使
用する場合にあっても、第1の従来法の為の前処理法と
して使用する場合が特に有利となるので、実施態様の一
例として以下に説明する。
The first advantage of this invention is that unlike the conventional method described above, high temperatures are not used, so thermal energy consumption is extremely low, no waste gas is generated, and the equipment is simple, making the overall treatment cost low. It's a matter of course. This point is quite clear from the above explanation and does not require any special explanation. The second advantage of this invention is that the arsenic compound can be obtained in a state that is easy to isolate. As is well known, when arsenic is mixed with other substances, it deteriorates the properties of the substance, and it also exhibits strong toxicity to many living organisms, so it is impossible to release it into the natural environment. In the method of this invention, the precipitate consisting only of copper sulfide and arsenic sulfide can be separated in the third step as described above. Therefore, for example, as described in Japanese Patent Publication No. 58-24378, the separated precipitate is suspended in water, copper sulfate is added to this suspension to convert arsenic sulfide to arsenic oxide, and the arsenic is dissolved in C water. Copper and arsenic can be easily and almost completely separated by isolation from copper, or by oxidizing the separated precipitate at a relatively low temperature to convert it into copper oxide and arsenous acid, and then subjecting both to a high-temperature sublimation operation. It is possible to do 1m. The third advantage of the present invention is that when burnt ore contains both nonferrous metals and arsenic, the method of the present invention can be used as a pretreatment method for carrying out the first and second conventional methods. It is possible to use it. That is, in the first conventional method, arsenic cannot be removed from burnt ore, and in the conventional method of text box 2, non-ferrous metals other than arsenic cannot be removed. If the method of the present invention is used as a pretreatment for implementing both of these conventional methods, the drawbacks of these two conventional methods can be overcome at low cost. That is, there is no need to use an expensive method such as the third conventional method. Furthermore, as described above, even when the method of the present invention is used as a pretreatment method for the conventional method, it is particularly advantageous when used as a pretreatment method for the first conventional method. This will be explained below.

この発明には多くの実施態様がある。これらの実施態様
の多くは、焼鉱の処理に関する周知法とこの発明方法の
組み合せ使用であるが、その−例として前記第1の従来
法即ち塩化揮発法の為の前処理法としてこの発明方法を
使用する場合につき説明する。この従来法は、前記の文
献に記載ある通り、焼鉱に塩化カルシウム溶液を混合し
て団塊化し、この団塊を燃料の燃焼による酸化性高温雰
囲気において加熱し、焼鉱中の非鉄金属を塩化物として
燃焼ガス′中に除去する方法である。従って、この方法
による燃焼ガス中には非鉄金属の塩化物、二酸化硫黄お
よび三酸化硫黄が含有されている。
There are many embodiments of this invention. Many of these embodiments use a combination of known methods for treating burnt ore and the method of the invention, for example, as a pretreatment method for the first conventional method, ie, the chloride volatilization method. We will explain when to use it. As described in the above-mentioned literature, this conventional method involves mixing calcined ore with a calcium chloride solution to form agglomerates, heating the agglomerates in an oxidizing high-temperature atmosphere caused by combustion of fuel, and converting non-ferrous metals in the ore into chlorides. This method removes it from the combustion gas. Therefore, the combustion gas produced by this method contains chlorides of nonferrous metals, sulfur dioxide, and sulfur trioxide.

この様な価格の非常に安い焼鉱の処理においては、経済
的な理由によりm硫済の価格の高い燃料を使用出来ない
ので、上記燃焼ガスの硫黄酸化物の含有量が多く、この
ガスから非鉄金属のみを回収し、硫黄酸化物の多い燃焼
ガスを大気中に放出することは好ましくない。従っ−C
1この燃焼ガスから非鉄金属および酸化硫黄を除去回収
する必要が生ずる。この発明方法を塩化揮発法の前処理
として使用した場合の利点は、前記の如く塩化揮発法に
より除去出来ない砒素が焼鉱中に含有されていてもこの
発明り法により除去出来ることおよび前記の通り第4工
程において浸出液の一部が循環系統から抜ぎ出され、こ
の抜き出された液がカルシウム化合物により中和され、
硫酸イオンが石膏として、非鉄金属が水酸化物として回
収された後の、塩化カルシウム含有放流液を、上記の塩
化揮発法における焼鉱団塊化の為の塩化カルシウム溶液
として利用出来る点にある。即ちこの塩化カルシウム溶
液の再利用により塩素イオンの損失が防止出来ることと
なる。
In the processing of such extremely cheap burned ore, it is not possible to use high-priced m-sulfurized fuel for economic reasons. It is not preferable to collect only non-ferrous metals and release combustion gas containing a lot of sulfur oxides into the atmosphere. Follow-C
1. It becomes necessary to remove and recover non-ferrous metals and sulfur oxides from this combustion gas. The advantage of using the method of this invention as a pretreatment for the chloride volatilization method is that even if arsenic, which cannot be removed by the chloride volatilization method, is contained in burnt ore, it can be removed by the method of the present invention, and as described above. In the fourth step, a part of the leachate is extracted from the circulation system, and this extracted liquid is neutralized with a calcium compound,
The calcium chloride-containing effluent after sulfate ions are recovered as gypsum and nonferrous metals as hydroxides can be used as a calcium chloride solution for agglomerating burned ore in the chloride volatilization method. That is, by reusing this calcium chloride solution, loss of chloride ions can be prevented.

即ち、上記の放流液を焼鉱の団塊化用塩化カルシウム溶
液として使用し、この塩化カルシウムを含む団塊を前記
の通り燃料の燃焼によって加熱覆れば、塩化カルシウム
は、焼鉱中の二酸化珪素の存在下に分解して、塩素とな
り、この塩素の大部分は非鉄金属と結合し非鉄金属塩化
物の蒸気として何れも燃焼ガス中に含まれることとなる
。又同時に塩素の一部は、燃料の燃焼に伴って発生ずる
水蒸気と反応して塩化水素ガスとなる。この燃焼ガスを
水で洗滌すれば、塩化水素、非鉄金属の塩化物、三酸化
硫黄および二酸化硫黄の一部の何れもが洗滌水中に移行
する。従って、洗滌液中における塩化水素および硫酸の
淵痕が前記浸出液の濃度まで高められた状態で燃焼ガス
を洗滌しつつ、この洗滌液の一部を抜、き出して、前記
の浸出液の循環系統に補給液として供給すれば、前記の
如く新規に塩酸および硫酸を調合し−(補給液を製造す
る必要が全く無くなる。又この補給液として抜き出され
た洗滌液中に含有される非鉄金属は、前記のこの発明の
第1工程において抽出された非鉄金属と共に、この発明
の第3工程かあるいは第4工程において抜ぎ出された浸
出液の処理工程において回収されることとなる。この様
な理由によりこの発明方法を塩化揮発法の前処理法とし
て利用することは、物質の循環利用の点で非常に優れ、
経済的にも優れた方法となる。
That is, if the above-mentioned effluent is used as a calcium chloride solution for agglomeration of burned ore, and the agglomerates containing calcium chloride are heated and covered by burning fuel as described above, the calcium chloride will be absorbed into the silicon dioxide in the burnt ore. In the presence of metal, it decomposes into chlorine, and most of this chlorine combines with non-ferrous metals and is contained in the combustion gas as non-ferrous metal chloride vapor. At the same time, a portion of the chlorine reacts with water vapor generated as the fuel burns to form hydrogen chloride gas. When this combustion gas is washed with water, hydrogen chloride, chlorides of nonferrous metals, sulfur trioxide, and a portion of sulfur dioxide all migrate into the washing water. Therefore, while cleaning the combustion gas in a state in which the traces of hydrogen chloride and sulfuric acid in the cleaning solution are increased to the concentration of the above-mentioned leachate, a part of this washing solution is extracted and pumped out, and the above-mentioned leachate circulation system is If the cleaning solution is supplied as a replenishment solution, there will be no need to newly prepare hydrochloric acid and sulfuric acid as described above and produce a replenishment solution.Also, the non-ferrous metals contained in the cleaning solution extracted as this replenishment solution will be , together with the non-ferrous metal extracted in the first step of this invention, it will be recovered in the treatment step of the leachate extracted in the third or fourth step of this invention. Therefore, the use of this invention method as a pretreatment method for the chloride volatilization method is very advantageous in terms of cyclical use of materials.
This is also an economically superior method.

上記の通り、この発明は砒素および非鉄金属を共に含有
ケる焼鉱から砒素および非鉄金属を除去する為の方法と
して優れ、特に砒素および非鉄金属を多量に含有する焼
鉱の処理法として好適である。
As mentioned above, the present invention is excellent as a method for removing arsenic and nonferrous metals from burnt ore containing both arsenic and nonferrous metals, and is particularly suitable as a method for treating burnt ore containing large amounts of arsenic and nonferrous metals. be.

実施例 1 500ν!のセパラブルフラスコに、銅0.18、亜鉛
37.9、鉛1.7、二価の鉄54.8、塩化水素54
.7および100%硫酸49各9「/Jを含有する強酸
性浸出液200 xiと銅0.36、亜鉛0.80、鉛
0.105、砒素0.154、鉄48.9および二酸化
珪素14.9各重量%を含有する粒度において44ミク
ロン以下のもの45%であるソ連産硫酸焼鉱30grを
入れ、75℃において30分間攪拌しつつ浸出処理を行
った。
Example 1 500ν! In a separable flask, copper 0.18, zinc 37.9, lead 1.7, divalent iron 54.8, hydrogen chloride 54
.. Strongly acidic leachate containing 7 and 100% sulfuric acid 499"/J 200 xi and 0.36 xi of copper, 0.80 of zinc, 0.105 of lead, 0.154 of arsenic, 48.9 of iron and 14.9 of silicon dioxide 30 gr of sulfuric acid burnt ore from the Soviet Union, 45% of which had a particle size of 44 microns or less in each weight percent, was added and leached at 75° C. with stirring for 30 minutes.

浸出終了後フラスコの内容物を取り出し、焼鉱と浸出液
とに固液分離し、それぞれについて分析を実施した結果
、浸出液は銅0.63、亜鉛38゜8、鉛1.8、砒素
0.18および鉄64.9各gr/Jを含有し、焼鉱は
銅0.07上、亜鉛0゜201、鉛0.067、砒素0
.043および鉄50.8各重母%を含有していた。
After leaching, the contents of the flask were taken out and separated into solid and liquid into burnt ore and leachate, and each was analyzed. As a result, the leachate contained 0.63 copper, 38°8 zinc, 1.8 lead, and 0.18 arsenic. and iron 64.9 gr/J each, the burnt ore contains 0.07 copper, 0.201 zinc, 0.067 lead, and 0 arsenic.
.. It contained 0.043% and 50.8% iron.

次に上記浸出処理後の浸出液から銅および砒素を分離す
る為に、この液の100yfをビーカーに採取し、更に
純度75重量%以上の硫化第一鉄の粉末1.6C1rを
添加し、60℃において30分間攪拌しつつ反応させた
ところ黒褐色の沈澱を生じた。この黒褐色沈澱を分離除
去した後の濾液中の銅および砒素の分析を実施したとこ
ろ、銅および砒素共にlTl1g/J以下の極めて少量
であった。
Next, in order to separate copper and arsenic from the leachate after the above-mentioned leaching treatment, 100yf of this liquid was collected in a beaker, and 1.6C1r of ferrous sulfide powder with a purity of 75% by weight or more was added, and the mixture was heated at 60°C. When the mixture was reacted with stirring for 30 minutes, a blackish brown precipitate was produced. Analysis of copper and arsenic in the filtrate after separating and removing this blackish brown precipitate revealed that both copper and arsenic were in very small amounts, less than 1 Tl 1 g/J.

一方弁離された沈澱物は水洗乾燥して秤すしたところ5
62 mgあり、銅11.2および砒素3.2各重量%
を含イjしていた。
On the other hand, the separated precipitate was washed with water, dried, and weighed.
62 mg, 11.2% copper and 3.2% arsenic by weight
It included.

更に上記により浸出された焼断、から塩化揮発法による
脱非鉄金属の試験をする為、浸出済焼鉱を粒度において
44ミクロン以下のものが80重量%になるまで粉砕し
たのち、この粉末の聞に対し粉末水酸化カルシウム2重
量%と0.59r/ifの塩化カルシウム溶液4重量%
とを添加混練し、更に粒径約15+mnの球状に造粒し
た。この造粒品を150℃において乾燥した後、横型管
状電気炉内において、乾燥カス1 kQ当り609rの
水蒸気を含有する酸素5および窒素95各モル%よりな
る混合ガスを流通せしめつつ焼成した。焼成は600℃
から1200℃まで80分の間に4温し、1200℃に
おいて15分間保持する方法で実施された。次に焼成済
の造粒品を取り出し、冷却後粉砕して分析に供した。分
析の結果、上記の塩化揮発処理後の焼鉱は銅0.02、
亜鉛0.013、鉛o、oi、砒素0.04および鉄5
1.0各重量%を含有し、原料焼鉱から非鉄金属および
砒素を除去する目的は達成された。
Furthermore, in order to test the removal of non-ferrous metals from the leached sintered ore by the chloride volatilization method, the leached sintered ore was pulverized until the particle size of 44 microns or less was 80% by weight, and then the powder was crushed. 2% by weight of powdered calcium hydroxide and 4% by weight of calcium chloride solution at 0.59r/if
were added and kneaded, and further granulated into spheres with a particle size of about 15+mm. After drying this granulated product at 150° C., it was fired in a horizontal tubular electric furnace while flowing a mixed gas consisting of 5 mol % of oxygen and 95 mol % of nitrogen containing 609 r of water vapor per 1 kQ of dry residue. Firing at 600℃
The test was carried out by heating the temperature from 1,200°C to 1,200°C for 4 times in 80 minutes, and then holding the temperature at 1,200°C for 15 minutes. Next, the fired granulated product was taken out, cooled, and pulverized for analysis. As a result of the analysis, the burnt ore after the above chloride volatilization treatment contained 0.02 copper,
Zinc 0.013, lead o, oi, arsenic 0.04 and iron 5
The purpose of removing non-ferrous metals and arsenic from raw sintered ore was achieved.

実施例2 500 xlのセパラブルフラスコに、銅0.18、亜
鉛37.9、鉛1.7、二価の鉄27.4および塩化水
素73.0各gr/ノを含有する強酸性浸出液200厭
と実施例1において使用した硫酸焼鉱28.6grを入
れ、60℃において30分間攪拌しつつ浸出処理を行っ
た。
Example 2 In a 500 xl separable flask, 200 g of a strong acidic leachate containing 0.18 gr/g of copper, 37.9 g of zinc, 1.7 g of lead, 27.4 g/g of divalent iron, and 73.0 g/g of hydrogen chloride. 28.6 gr of the sulfuric acid burnt ore used in Example 1 were added to the flask, and the leaching treatment was carried out at 60° C. while stirring for 30 minutes.

浸出終了後フラスコの内容物を取り出し、焼鉱と浸出液
とに固液分離し、それぞれについて分析を実施した結果
、浸出液は銅0.55、亜鉛38゜7、鉛1.77、砒
素0.15および鉄31.6各gr/、iを含有し、焼
鉱は銅0.113、亜鉛0゜266、鉛0.065、砒
素0.056および鉄51.87各rmEU%を含有し
ていた。
After leaching, the contents of the flask were taken out and separated into solid and liquid into burnt ore and leachate, and each was analyzed. As a result, the leachate contained 0.55 copper, 38°7 zinc, 1.77 lead, and 0.15 arsenic. The burnt ore contained 0.113% copper, 0.266% zinc, 0.065% lead, 0.056% arsenic and 51.87% iron each rmEU.

次に上記浸出処理後の浸出液から銅および砒素を分離す
る為に、この液の100 xlをビーカーに採取し、6
0℃の撹拌上液中に硫化水素ガスを16厭/分の速1t
−10分間通気しつつ反応させ、引き続ぎ20分間1j
l拌のみを継続したところ褐色の沈澱を生じた。この褐
色沈澱を分離除去した後の濾液中の銅および砒素の分析
を実施したところ、銅および砒素共に1111111/
J以下の極めて少量C゛あった。一方弁−18れた沈澱
物は水洗乾燥しC秤量したところ370TIl(]あり
、銅14.9および砒素4.1各車量%を含有していた
Next, in order to separate copper and arsenic from the leachate after the above leaching treatment, 100 xl of this liquid was collected in a beaker and 6
Hydrogen sulfide gas is added to the stirred supernatant liquid at 0°C at a rate of 1 ton per minute.
- React with ventilation for 10 minutes, then 1j for 20 minutes.
When only stirring was continued, a brown precipitate was formed. Analysis of copper and arsenic in the filtrate after separating and removing this brown precipitate revealed that both copper and arsenic were 1111111/
There was a very small amount of C below J. On the other hand, the precipitate was washed with water and dried, and when weighed, it was found to be 370 TIl, containing 14.9% of copper and 4.1% of arsenic.

更に上記により浸出された焼鉱から塩化揮発法による脱
非鉄金属の試験をする為、実施例1と同一条件で造粒お
よび焼成を実施した。次に焼成済の造粒品を取り出し、
冷却後粉砕して分析に供した。分析の結果、上記の塩化
揮発処理後の焼鉱は銅0.025、亜鉛0.02、鉛0
.01、砒素0.053および鉄51.9各重量%を含
有し、原料焼鉱から非鉄金属および砒素を除去する目的
は達成された。
Furthermore, in order to test the removal of non-ferrous metals from the burnt ore leached above by the chloride volatilization method, granulation and calcination were carried out under the same conditions as in Example 1. Next, take out the fired granulated product,
After cooling, it was crushed and subjected to analysis. As a result of the analysis, the burnt ore after the above chloride volatilization treatment contained 0.025 copper, 0.02 zinc, and 0 lead.
.. 01, arsenic 0.053 and iron 51.9% by weight, and the purpose of removing non-ferrous metals and arsenic from raw sintered ore was achieved.

Claims (1)

【特許請求の範囲】[Claims] P l−1値1以下であつ−C金属を塩化物あるいは硫
酸塩として含有する強酸性鉱酸液により硫酸焼鉱が浸出
され−C該硫酸焼鉱中の非鉄金属および砒素が該液中に
抽出され、該抽出済硫酸焼鉱と該液が分離され、該分離
後の該液に硫化剤が添加され、該添加後に該液中に存在
り−る固形物が除去され、該固形物除去後の該液の大部
分が該浸出に再循環されることを特徴とする硫酸焼鉱の
処理法。
The sulfuric acid burnt ore is leached with a strongly acidic mineral acid solution that has a P l-1 value of 1 or less and contains -C metals as chlorides or sulfates, and the nonferrous metals and arsenic in the -C sulfuric acid burnt ore are leached into the liquid. The extracted sulfuric acid burnt ore and the liquid are separated, a sulfiding agent is added to the separated liquid, and after the addition, the solids present in the liquid are removed, and the solids are removed. A method for treating sulfuric acid burnt ore, characterized in that a large part of the subsequent liquid is recycled to the leaching.
JP59051579A 1984-03-16 1984-03-16 Treatment of pyrite cinder Pending JPS60197828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051579A JPS60197828A (en) 1984-03-16 1984-03-16 Treatment of pyrite cinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051579A JPS60197828A (en) 1984-03-16 1984-03-16 Treatment of pyrite cinder

Publications (1)

Publication Number Publication Date
JPS60197828A true JPS60197828A (en) 1985-10-07

Family

ID=12890851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051579A Pending JPS60197828A (en) 1984-03-16 1984-03-16 Treatment of pyrite cinder

Country Status (1)

Country Link
JP (1) JPS60197828A (en)

Similar Documents

Publication Publication Date Title
KR101735425B1 (en) System and method for aluminium black dross recycling
RU2079562C1 (en) Method to process polymetallic ores and concentrates bearing noble metals, arsenic, carbon and sulfur
US4619814A (en) Process for the recovery of non-ferrous metals from sulphide ores and concentrates
KR20150114383A (en) System and method for rare earths extraction
AU723800B2 (en) Process for stabilization of arsenic
JPH0310575B2 (en)
JPH0123417B2 (en)
JP7050925B2 (en) Recovery of metals from pyrite
WO2009136299A2 (en) Chemical process for recovery of metals contained in industrial steelworks waste
US3883345A (en) Process for the recovery of antimony
RU2627835C2 (en) Method of complex processing of pyritic raw materials
US20030010156A1 (en) Method for upgrading steel plant dust
JPS6122011B2 (en)
WO2010096862A1 (en) Zinc oxide purification
CN113136488B (en) Wet treatment process for iron vitriol slag in zinc hydrometallurgy
JPS63494B2 (en)
JPS60197828A (en) Treatment of pyrite cinder
CA1177257A (en) Method for processing sulphidic zinc ores
AU2013220926B2 (en) Process for zinc oxide production from ore
JPH105736A (en) Treatment of alkaline fly ash
US4428912A (en) Regeneration of chloridizing agent from chlorination residue
US2348360A (en) Method of recovering minerals
JPS5836055B2 (en) Pellets used for copper recovery from copper sulfide
US2972517A (en) Method of producing lithium sulphate from alpha and beta spodumene
WO2023032043A1 (en) Method for mineralizing co2 gas and recovering valuable metals, co2 mineralizing device, and co2 mineralization and valuable-metal recovery device