JPS60197498A - Controller for orbit of artificial satellite - Google Patents

Controller for orbit of artificial satellite

Info

Publication number
JPS60197498A
JPS60197498A JP59051777A JP5177784A JPS60197498A JP S60197498 A JPS60197498 A JP S60197498A JP 59051777 A JP59051777 A JP 59051777A JP 5177784 A JP5177784 A JP 5177784A JP S60197498 A JPS60197498 A JP S60197498A
Authority
JP
Japan
Prior art keywords
orbit
satellite
thruster
pitch axis
volaris
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59051777A
Other languages
Japanese (ja)
Inventor
五十嵐 一則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59051777A priority Critical patent/JPS60197498A/en
Publication of JPS60197498A publication Critical patent/JPS60197498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は静止軌道上を飛翔する三軸安定型の人工衛星
の軌道制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an orbit control device for a three-axis stable artificial satellite flying in a geostationary orbit.

〔従来技術〕[Prior art]

従来のこの種軌道傾斜角制御は1人工衛星の軌道を地上
局において決定し、その決定値から推定した制御日時と
制御量により地上局から衛星にスラスタ噴射開始時刻と
噴射時間を送信しその送信コマンドに従ってスラスタを
噴射することにより実施していた。その為、制御前の軌
道決定、制御用コマンド作成、コマンド送信、制御後の
軌道決定とその決定値による次回制御時期予測という多
量の作業を衛星運用期間中宮に地上局で実施していかな
くてはならないという欠点があった。
Conventional orbit inclination control of this type involves determining the orbit of one artificial satellite at a ground station, and transmitting the thruster injection start time and injection time from the ground station to the satellite based on the control date and time and control amount estimated from the determined value. This was carried out by firing thrusters according to commands. Therefore, a large amount of work such as orbit determination before control, creation of control commands, command transmission, orbit determination after control, and prediction of the next control timing based on the determined values must be performed at the ground station during the satellite operation period. There was a drawback that it was not possible.

〔発明の概要〕[Summary of the invention]

この発明はかかる欠点を改善する目的でなされたもので
、衛星に北極星を観測する恒星センサ(以下ボラリスセ
ンサと称す)及びこのセンサデータを処理する装置を搭
載することにより1地上局からの指示がなくてもオンボ
ードで軌道傾斜角を制御する人工衛星の軌道制御装置を
提案するものである。
This invention was made with the aim of improving such drawbacks, and by equipping a satellite with a stellar sensor (hereinafter referred to as the Volaris sensor) that observes the North Star and a device that processes this sensor data, there is no need for instructions from a single ground station. This project proposes an orbit control device for artificial satellites that controls the orbital inclination angle onboard.

〔発明の実施例〕[Embodiments of the invention]

第1図及び第2図はこの発明を説明する為の人工衛星の
静止軌道上の概略図及び衛星本体上の構成要素を示して
いる。図において(1)は地球、+2)は人工衛星の軌
道、(3)は赤道面、 (4a)は外交点を通遇すると
きの衛星、 (4b)は赤道面から北側に最もずれだ時
の衛星、 (4c)は降交点を通過する時の衛星、 (
4a)は赤道面から南側へ最もずれた時の衛星。
1 and 2 show a schematic diagram of an artificial satellite on a geostationary orbit and components on the satellite body for explaining the present invention. In the figure, (1) is the earth, +2) is the satellite's orbit, (3) is the equatorial plane, (4a) is the satellite when it passes a diplomatic point, and (4b) is when it is farthest north from the equatorial plane. satellite, (4c) is the satellite when passing through the descending node, (
4a) is the satellite when it is farthest south from the equatorial plane.

(5)は軌道傾斜角、(6)は一ピッチ軸側に取り付け
たスラスタ、(7)はトピツチ軸側に取り付けたスラス
タ、(8)はロール軸、(9)はピッチ軸、 G[lは
ヨー軸。
(5) is the orbital inclination angle, (6) is the thruster attached to the one pitch axis side, (7) is the thruster attached to the top pitch axis side, (8) is the roll axis, (9) is the pitch axis, G[l is the yaw axis.

(11a)はボラリスセンサ座標上の北極星位置を確定
するデータ処理器1 、 (11b)は(11a)でめ
た北極星の位置から噴射スラスタを選択してかつ噴射実
行を指示する信号を作成するデータ処理器2 、 ti
2はボラリスセンサである。第3図はボラリスセンサ座
標上の北極星の位置を示している。図においてti 、
 041 、0M、 (teはそれぞれ第1図における
(4a) 。
(11a) is a data processor 1 that determines the position of the North Star on the Volaris sensor coordinates, and (11b) is a data processor that selects an injection thruster from the position of the North Star determined in (11a) and creates a signal instructing execution of injection. vessel 2, ti
2 is a volaris sensor. Figure 3 shows the position of Polaris on the Volaris sensor coordinates. In the figure, ti,
041, 0M, (te are (4a) in FIG. 1, respectively.

(4b)、 (4c)、 (4a)に衛星が位置してい
る時のボラリスセンサ座標上の北極星位置である。第4
図は第2図に示した構成要素間の信号の流れを示すもの
である。
This is the position of the North Star on the Volaris sensor coordinates when the satellite is located at (4b), (4c), and (4a). Fourth
The figure shows the flow of signals between the components shown in FIG.

三軸姿勢制御衛星の姿勢は、ヨー軸u1を地球中心方向
に指向させ、ピッチ軸(9)を軌道面に垂直になるよう
常に制御されている。従って、衛星の一ピツチ軸方向に
ボラリスセンサを搭載して北極星を感知できるようにす
ると軌道傾斜角が零度の場合には第3図に示しだボラリ
スセンサの中心すなわちロール軸方向、ヨー軸方向とも
零の位置に北極星を感知することになる。しかし、第1
図及び第3図に示すように軌道傾斜角(5)がある場合
は。
The attitude of the three-axis attitude control satellite is always controlled so that the yaw axis u1 is directed toward the center of the earth and the pitch axis (9) is perpendicular to the orbital plane. Therefore, if a volaris sensor is installed in one pitch axis direction of the satellite to be able to detect the Polaris, if the orbital inclination is 0 degrees, the center of the volaris sensor as shown in Figure 3, that is, both the roll axis direction and the yaw axis direction, will be zero. You will sense the North Star in your position. However, the first
If there is an orbital inclination angle (5) as shown in Figures and Figure 3.

軌道の位置により北極星を感知する位置が軌道1周回で
1回転することになる。これを利用してデータ処理器1
(11a)でボラリスセンサ座標上での北極星の位置を
めそのデータをデータ処理器2 (1l b)に送り、
データが第3図の00から右廻りにa撞を通ってI迄の
領域に存在する時は一ピッチ軸側のスラスタ(6)を噴
射する信号を作り、 04から右廻りにa!9を通って
Oe迄の領域に存在する時は+ピッチ軸側のスラスタ(
7)を噴射する信号を作り、その信号をスラスタに送り
スラスタを駆動して軌道傾斜角を零度に近づける。零度
に達した後はボラリスセンサが北極星を感知してそのデ
ータを処理して作成された信号に従ってスラスタを噴射
し、その噴射後にボラリスセンサがデータを感知すると
いう周期でスラスタを噴射しつづけることにより軌道傾
斜角はほぼ零度に保持されることになる。但しスラスタ
の推力レベルは小さい程保持される軌道傾斜角も小さく
なる。又、スラスタ161.+71がピッチ軸に平行で
かつトルクを発生しないように取り付けられない場合は
、−ピッチ軸及び+ピッチ軸方向それぞれにおいて2つ
以上のスラスタを搭載して、その合成された推力ベクト
ルがトルクを発生しないで又は9発生しても姿勢制御系
で十分制御できる大きさで、並進方向の推力を発生され
るように取り付ければ良い。
Depending on the position of the orbit, the position at which the North Star is detected will rotate once per orbit. Using this, data processor 1
(11a) sends data on the position of the North Star on the Volaris sensor coordinates to the data processor 2 (1lb),
When the data exists in the area from 00 clockwise in Figure 3 to I passing through a axis, a signal is generated to fire the thruster (6) on the one pitch axis side, and from 04 clockwise a! When existing in the area from 9 to Oe, the thruster on the + pitch axis side (
7) Create a signal to inject and send that signal to the thruster to drive the thruster and bring the orbital inclination angle closer to zero. After the temperature reaches zero, the Volaris sensor detects the Polaris and fires the thrusters in accordance with the signal created by processing that data. After the firing, the Volaris sensor detects the data. By continuing to fire the thrusters at a cycle, the orbit is tilted. The angle will be held at approximately zero degrees. However, the smaller the thrust level of the thruster, the smaller the orbital inclination angle maintained. Also, the thruster 161. If the +71 cannot be installed parallel to the pitch axis so as not to generate torque, install two or more thrusters in each of the -pitch axis and +pitch axis directions, and the combined thrust vector will generate torque. It is only necessary to attach the thrust force in the translational direction so that it can be sufficiently controlled by the attitude control system even if no thrust force is generated.

〔発明の効果」 以上述べたようにこの発明によれば、静止軌道上の人工
衛星の軌道傾斜角は零度近傍に保持することがボラリス
センサとボラリスセンサ座標上の北極星位置を確定する
データ処理器1とボラリスセンサ上の北極星位置から噴
射スラスタを選択してかつ噴射実行開始を指示する信号
を作成するデータ処理器2とスラスタを用いることによ
り、軌道傾斜角制御が地上局からの制御コマンドを送る
ことなく可能となる。
[Effects of the Invention] As described above, according to the present invention, the orbital inclination angle of a satellite in a geostationary orbit can be maintained near zero degrees by the Volaris sensor and the data processor 1 that determines the position of the North Star on the Volaris sensor coordinates. Orbit inclination angle control is possible without sending control commands from the ground station by using the data processor 2, which selects the injection thruster from the North Star position on the Volaris sensor and creates a signal to instruct the start of injection execution, and the thruster. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は人工衛星の軌道上の位置と各軸方向を説明する
為の図、第2図はこの発明による人工衛星の軌道制御装
置を説明する為の図、第3図は軌道上の衛星の位置に対
応するボラリスセンサ座標上の北極星の位置及び噴射ス
ラスタの選択基準を説明する為の図、第4図は第2図に
示す構成機器間の接続及び信号の流れを示す図である。 図中の(1)は地球、(2)は人工衛星の軌道、(3)
は赤道面、 (4a)は外交点を通過する時の衛星、 
(4b)は赤道面から北側に最もずれた時の衛星、 (
4c)は降交点を通過する時の衛星、 (4a)は赤道
面から南側へ最もずれた時の衛星、(5)は軌道傾斜角
、(6)は−ピッチ軸側に取り付けたスラスタ、(7)
は+ピッチ軸側に取り付けたスラスタ、(8)はロール
軸、(9)はピッチ軸、 Qlはヨー軸、 (11a)
はボラリスセンサ座標上の北極星位置を確定するデータ
処理器1 、(11b)は(11a)でめた北極星の位
置から噴射スラスタを選択してかつ噴射実行を指示する
信号を作成するデータ処理器2 、02はボラリスセン
サ、([、(141゜as、asはそれぞれ(4a)、
 (4b)、 (4a)、 (4a)に衛星が位置して
いる時のボラリスセンサ座標上の北極星位置である。 代理人大岩増雄 第2図 6 第 3 図 第4図
Figure 1 is a diagram for explaining the position of an artificial satellite on its orbit and the direction of each axis, Figure 2 is a diagram for explaining the orbit control device for an artificial satellite according to the present invention, and Figure 3 is a diagram for explaining the satellite in orbit. FIG. 4 is a diagram showing the connection and signal flow between the components shown in FIG. 2. In the diagram, (1) is the earth, (2) is the orbit of the satellite, and (3)
is the equatorial plane, (4a) is the satellite when passing the diplomatic point,
(4b) is the satellite when it is farthest north from the equatorial plane, (
4c) is the satellite when it passes through the descending node, (4a) is the satellite when it is farthest south from the equatorial plane, (5) is the orbital inclination, (6) is the thruster attached to the -pitch axis side, ( 7)
is the thruster attached to the +pitch axis side, (8) is the roll axis, (9) is the pitch axis, Ql is the yaw axis, (11a)
(11b) is a data processor 1 that determines the position of the North Star on the Volaris sensor coordinates; (11b) is a data processor 2 that selects an injection thruster from the position of the North Star determined in (11a) and creates a signal instructing execution of injection; 02 is the Volaris sensor, ([, (141°as, as is (4a),
(4b), (4a), This is the position of the North Star on the Volaris sensor coordinates when the satellite is located at (4a). Agent Masuo Oiwa Figure 2 6 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 静止軌道上の三軸姿勢制御衛星において、−ピッチ軸方
向に北極星を観測する恒星センサを、一ピッチ軸方向及
び+ピッチ軸方向に推力を発生するスラスタを備え、上
記恒星センサ出力を処理して両スラスタ噴射のON、O
FFを指示する信号を作成し、その信号に従って軌道傾
斜角を零にする様スラスタを噴射し常に零近傍に保つよ
うに制御することを特徴とする人工衛星の軌道制御装置
A three-axis attitude control satellite in a geostationary orbit is equipped with a stellar sensor that observes Polaris in the -pitch axis direction, a thruster that generates thrust in the one-pitch axis direction and the +pitch axis direction, and processes the stellar sensor output. Both thruster injection ON/O
An orbit control device for an artificial satellite, characterized in that a signal instructing FF is created, and in accordance with the signal, a thruster is injected so as to bring the orbital inclination angle to zero, and the orbital inclination angle is always maintained near zero.
JP59051777A 1984-03-16 1984-03-16 Controller for orbit of artificial satellite Pending JPS60197498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051777A JPS60197498A (en) 1984-03-16 1984-03-16 Controller for orbit of artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051777A JPS60197498A (en) 1984-03-16 1984-03-16 Controller for orbit of artificial satellite

Publications (1)

Publication Number Publication Date
JPS60197498A true JPS60197498A (en) 1985-10-05

Family

ID=12896374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051777A Pending JPS60197498A (en) 1984-03-16 1984-03-16 Controller for orbit of artificial satellite

Country Status (1)

Country Link
JP (1) JPS60197498A (en)

Similar Documents

Publication Publication Date Title
EP0225683B1 (en) Method for spinning up a three-axis controlled spacecraft
US6296207B1 (en) Combined stationkeeping and momentum management
US6481672B1 (en) Gimbaled thruster control system
US5813633A (en) Method and apparatus for stationkeeping a satellite offset by pitch rotation
US5349532A (en) Spacecraft attitude control and momentum unloading using gimballed and throttled thrusters
JP2987337B2 (en) Momentum braking using gimbal controlled thrusters
JP2635821B2 (en) Three-axis stabilizing satellite pointing at the earth and method for capturing the attached sun and earth
EP0434861B1 (en) Attitude pointing error correction system and method for geosynchronous satellites
US5459669A (en) Control system and method for spacecraft attitude control
US5284309A (en) Propellant immobilizing system and method
JPH06227498A (en) East west orbit control device between north and south stationary operations of space flight body
US20050133671A1 (en) Star-tracker-based attitude determination for spinning spacecraft
JP2001270499A (en) Magnetic torquer control with thruster augmentation
JP2000168697A (en) Practical method and device to stationarily hold satellite
US6102337A (en) Spacecraft attitude control with gimbaled thrusters
JP2567098B2 (en) Attitude control system
US20060049315A1 (en) Precision attitude control system for gimaled thruster
US3977633A (en) Orientation system for a spin stabilized spacecraft
JPH0653519B2 (en) Dual spin satellite nutation suppression device
US4807835A (en) Spacecraft attitude stabilization system
US6076774A (en) Fuel and thermal optimal spiral earth acquisition
JPS60197498A (en) Controller for orbit of artificial satellite
JPS6146798A (en) Controller for orbit of artificial satellite
US3997137A (en) Minimization of residual spacecraft nutation due to disturbing torques
USRE30429E (en) Minimization of residual spacecraft nutation due to disturbing torques