JPS6019744A - Production of alpha-tetralone - Google Patents

Production of alpha-tetralone

Info

Publication number
JPS6019744A
JPS6019744A JP58127554A JP12755483A JPS6019744A JP S6019744 A JPS6019744 A JP S6019744A JP 58127554 A JP58127554 A JP 58127554A JP 12755483 A JP12755483 A JP 12755483A JP S6019744 A JPS6019744 A JP S6019744A
Authority
JP
Japan
Prior art keywords
tetralone
tetralin
catalyst
selectivity
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58127554A
Other languages
Japanese (ja)
Inventor
Makoto Tanaka
信 田中
Takao Matsuki
松木 隆郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawatetsu Kagaku KK
Original Assignee
Kawasaki Steel Corp
Kawatetsu Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, Kawatetsu Kagaku KK filed Critical Kawasaki Steel Corp
Priority to JP58127554A priority Critical patent/JPS6019744A/en
Publication of JPS6019744A publication Critical patent/JPS6019744A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain alpha-tetralone useful as an intermediate of dyes, raw material of agricultural chemicals, raw material of the antioxidant for rubber, etc., in high conversion and selectivity, by the liquid-phase oxidation of tetralin with O2 or an O2-containing gas in the presence of a specific catalyst. CONSTITUTION:The objective compound is produced by the oxidizing tetralin with O2 or an O2-containing gas at 30-160 deg.C, preferably 60-130 deg.C, in the presence of a catalyst comprising a mixture of a soluble chromium salt (e.g. beta- diketone complex salt, acetate, etc.) and one or more compounds selected from N-acylpiperidines of formula (R1-R11 are alkyl or H) (e.g. N-formylpiperidine, N-acetyl-piperidine, etc.). The amount of the chromium salt is >=0.0003mol/l, and the volume ratio of N-acylpiperidine to tetralin is 1:100-10:1.

Description

【発明の詳細な説明】 本発明はテトラリンの液相酸化反応によるα−テトラロ
ンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing α-tetralone by a liquid phase oxidation reaction of tetralin.

α−テトラロンは染料中間体、農薬原料、ゴム老化防止
剤原料などとして利用価値の高い有用な物質である。
α-tetralone is a useful substance with high utility value as a dye intermediate, a raw material for agricultural chemicals, a raw material for rubber anti-aging agents, etc.

従来、α−テトラロンの8A造方法としては、酢酸り四
ムと2−メチル−5−エチルピリジンの組合せに代表さ
れるクロム−アミン錯体触媒の存在下、テトラリンを酸
素で酸化し、α−テトラロンを得る方法が提案された(
米国特許第8404186号明細書)。しかし、この方
法は酢酸クロムの反応液への溶解性が低いため、実質的
に反応液・・・中の触媒濃度が低く、従って反応速度が
遅い。そのため適当な反応速(9)を得るには、反応温
咽と酸素分圧を高める必要があり、その結果、α−テト
ラロンの選択率が低くなりがちである。更に、この触媒
は、工業的製造方法として重要な連続反応□では、溶解
性が低いためり四ム塩が固体として析出し、反応ライン
に沈積し、パイプの閉塞等の原因となる重大な欠点を有
している。
Conventionally, the 8A production method for α-tetralone involves oxidizing tetralin with oxygen in the presence of a chromium-amine complex catalyst represented by a combination of lithium acetate and 2-methyl-5-ethylpyridine to produce α-tetralone. A method was proposed to obtain (
(U.S. Pat. No. 8,404,186). However, in this method, since the solubility of chromium acetate in the reaction solution is low, the catalyst concentration in the reaction solution is substantially low, and therefore the reaction rate is slow. Therefore, in order to obtain an appropriate reaction rate (9), it is necessary to increase the reaction temperature and oxygen partial pressure, and as a result, the selectivity of α-tetralone tends to be low. Furthermore, this catalyst has a serious drawback in that it has low solubility in continuous reactions, which are important as an industrial production method, and the tetramer salt precipitates as a solid and deposits in the reaction line, causing blockage of pipes, etc. have.

これらの点について改良した触媒として、クロムアセチ
ルアセトネートとN、N−ジメチルアセトアミ ドに代
表されるクロム−N、N−シアキル酸アミド・錯体触媒
が提案されている。この触媒は、上述の酢酸クロムと2
−メチル−5−エチルピリジンのりpムーアミン錯体触
媒と比較すると、反応液中によく溶解し、クロム塩の析
出がほとんど認められない。かつ20〜25嗟以下の転
化率では)α−テトラロンの選択率も高い。しかし、助
触媒であるN、N−ジメチルアセトアミドは、一部酸化
されるため補充する必要があり、かつ酸化生成物との分
離操作を加える必要があり、製品コストを・引上げる原
因となっている。よって酸化に対し堅牢な助触媒の早急
な開発が望まれた。
As a catalyst improved in these respects, a chromium-N,N-siakyl acid amide complex catalyst represented by chromium acetylacetonate and N,N-dimethylacetamide has been proposed. This catalyst combines the above-mentioned chromium acetate and 2
-Methyl-5-ethylpyridine paste When compared with p-mooramine complex catalyst, it dissolves well in the reaction solution, and almost no precipitation of chromium salt is observed. and the selectivity for α-tetralone is also high (at a conversion rate of 20 to 25 mo or less). However, N,N-dimethylacetamide, which is a co-catalyst, is partially oxidized, so it needs to be replenished, and it is also necessary to separate it from the oxidized product, which causes an increase in product costs. There is. Therefore, it was desired to develop a cocatalyst that is robust against oxidation as soon as possible.

本発明者らはこの点に着目し、テトラリンを液相酸化し
てα−テトラロンを製造するため、醇化に対し充分耐え
られる堅牢な助触媒について鋭意□研究した結果、本発
明に到達した。
The present inventors focused on this point, and as a result of intensive research into a robust co-catalyst that can sufficiently withstand meltification in order to produce α-tetralone by liquid-phase oxidation of tetralin, the present invention was achieved.

すなわち本発明は、可溶性クロム塩とN−アシルピペリ
ジン類からなる触媒の存在下、テトラリンを分子状酸素
又は分子状酸素含有ガスにより、温和な条件下で液相酸
化し、助触媒が醇化される・□ことなく、クロム塩の不
溶性固体が析出すること□もなく、かつ転化率が高く、
選択率の高いα−テトラロンを製造する方法を提供する
ものである。
That is, the present invention oxidizes tetralin in a liquid phase with molecular oxygen or a molecular oxygen-containing gas under mild conditions in the presence of a catalyst consisting of a soluble chromium salt and N-acylpiperidines, and the co-catalyst is liquefied.・No □, no precipitation of insoluble solids of chromium salt, and high conversion rate.
The present invention provides a method for producing α-tetralone with high selectivity.

本発明に用いられるN−アシルピペリジン類バ一般式 で表される。この式においてR,、R2# R8,R4
゜R,、R6,R,、R8,R,、R,。及びR11は
それぞれアルキル基又は水素原子を示し、アルキル基と
しては特にメチル、エチル、プロピル、ブチル等の低級
アルキル基が好ましい。具体的には、N−ホ1ルミルビ
ベリジン、N−アセチルピペリジン、N−プロビオニル
ピペリジン等が例示される。
The N-acylpiperidines used in the present invention are represented by the general formula. In this formula, R,, R2# R8, R4
°R,, R6, R,, R8, R,, R,. and R11 each represent an alkyl group or a hydrogen atom, and the alkyl group is preferably a lower alkyl group such as methyl, ethyl, propyl or butyl. Specifically, N-formylbiveridine, N-acetylpiperidine, N-probionylpiperidine and the like are exemplified.

N−アシルピペリジン類は1種だけでなく2種以上の混
合物であってもよい。N−アシルピペリジン類の使用量
は、原料テトラリンとの容量比が”□] :100〜1
0:1の範囲で用いられ、好まし1くは1:20〜5:
1の範囲で用いられる。N−アシルピペリジン類の使用
量が上記範囲より少なすぎると、反応液に対するクロム
塩の溶解性が低下し、有効触媒すが減少するため、その
結果α−テトラリルヒドロペルオキシドの生成毎が増加
し、目的のα−テトラロンの選択率が低下する。又、N
−アシルピペリジン類の使用量が上記範囲より多くなり
すぎると、反応液中の原料テトラリン濃度が減少するた
め容積効率が低下し、従ってα−テトラロンの生産性が
恋くなる。
The N-acylpiperidines may be used not only as a single type but as a mixture of two or more types. The amount of N-acylpiperidines to be used is such that the volume ratio to the raw material tetralin is "□": 100 to 1.
Used in the range of 0:1, preferably 1:20 to 5:
Used in the range 1. If the amount of N-acylpiperidine used is too small than the above range, the solubility of the chromium salt in the reaction solution will decrease and the amount of effective catalyst will decrease, resulting in an increase in the amount of α-tetralyl hydroperoxide produced. , the selectivity of the target α-tetralone decreases. Also, N
- If the amount of the acylpiperidine used is too much above the above range, the concentration of raw material tetralin in the reaction solution decreases, resulting in a decrease in volumetric efficiency and, therefore, a decrease in the productivity of α-tetralone.

本発明に用いられる可溶性クロム塩は、β−ジケトンM
体塩(ア°セチルアセトン、ジベンゾイルメタンなどと
の錯体塩)、有機酸塩(酢酸塩、ナフテン酸塩など)、
ハロゲン化物(塩化物、臭化□物など)、硝酸塩、硫m
塩、水酸化物などがあげられるが、その他の塩であって
も反応溶液に可溶性のクロム塩であれば使用可能である
The soluble chromium salt used in the present invention is β-diketone M
body salts (complex salts with acetylacetone, dibenzoylmethane, etc.), organic acid salts (acetates, naphthenates, etc.),
Halides (chlorides, bromides, etc.), nitrates, sulfur
Examples include salts and hydroxides, but other salts can be used as long as they are soluble in the reaction solution.

クロム塩の使用量は、0.0008モル/!以上であり
、好ましくは0.00i〜0.05モル/lの範囲 ゛
である。クロム塩の使用量がo、oooaモル/lよ 
1りも少なすぎると、α−テトラリルヒドロペルオキシ
ドの生成鼠が増加し、目的物のα−テトラロンの選択率
が低下する。又、り四ム塩の使用量が上記範囲より多く
なりすぎると、溶解能を越えるり四ム塩は、反応液中に
沈澱物として析出し、ラインを閉塞するなどプラント操
業上好ましくない。
The amount of chromium salt used is 0.0008 mol/! or more, preferably in the range of 0.00i to 0.05 mol/l. The amount of chromium salt used is o, oooa moles/l.
If the amount is too small, the amount of α-tetralyl hydroperoxide produced increases, and the selectivity of the target product α-tetralone decreases. Furthermore, if the amount of the salt used exceeds the above range, the salt exceeding the solubility will precipitate in the reaction solution, which is unfavorable in terms of plant operation, such as clogging the line.

本反応の酸化剤は分子状酸素であり、純粋なガスであっ
てもよいし、空気などのように他のガスとの混合ガスで
あってもよい。酸素分圧はo、ol ”□気圧以上、好
ましくは0.1気圧以上である。本反応は酸素の反応液
中への溶解速度が反応速度に影智するため、適当な酸素
分圧及び/もしくは適当な気液接触が必要である。
The oxidizing agent in this reaction is molecular oxygen, which may be a pure gas or a mixed gas with another gas such as air. The oxygen partial pressure is o, ol ''□atm or higher, preferably 0.1 atm or higher.In this reaction, the rate of dissolution of oxygen into the reaction solution affects the reaction rate, so the oxygen partial pressure and / Alternatively, appropriate gas-liquid contact is required.

反応温度は80〜160°C1好ましくは60〜′18
0°Cの範囲がよい。反応湿度がこの範囲より低すぎる
と反応速度は遅く、高すぎると副反応を併発し、α−テ
トラロンの選択率を引下げ、更にN−アシルピペリジン
類を酸化する。
The reaction temperature is 80-160°C, preferably 60-'18
A range of 0°C is preferable. If the reaction humidity is too low than this range, the reaction rate will be slow; if it is too high, side reactions will occur, reducing the selectivity of α-tetralone and further oxidizing N-acylpiperidines.

本反応の反応器形式は回分式、連続式のいずれでも可能
である。
The reactor format for this reaction can be either a batch type or a continuous type.

以下、本発明の実施例を示すが、本発明の要旨を越えな
い限り、これに限定されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited thereto unless it goes beyond the gist of the present invention.

(実施例1) コンデンサー付の8009nl力ラス製反応器にテトラ
リン125gXtSN−アセチルピペリジン25w+l
、及び酢酸第2クロム0.0959を加え、80°Cに
加熱した。ガス分散器を通じて純酸素ガスを701/時
の流速で流し2時間反応をkけた。反応液を分析したと
ころ、テトラリン転化率は88.1%、α−テトラロン
選択率は88.9%、及びN−アセチルピペリジン回1
(叉率は99.7係であった。
(Example 1) Tetralin 125gXtSN-acetylpiperidine 25w+l was placed in an 8009nl Rirasu reactor equipped with a condenser.
, and 0.0959 chromic acetate were added and heated to 80°C. Pure oxygen gas was flowed through the gas disperser at a flow rate of 701/hr to carry out the reaction for 2 hours. Analysis of the reaction solution revealed that the conversion rate of tetralin was 88.1%, the selectivity of α-tetralone was 88.9%, and the conversion rate of N-acetylpiperidine was 88.1%.
(The ratio was 99.7.

(実施例2) 酢酸第2クロム0.0959の代りに、クロム(1)ア
セチルアセトネート0゜1579を用いた以外は、実施
例1と同様に実験を行った。得られた結果は、テトラリ
ン転化率が81,2%、α−テトラロン選択率が87.
8%、及びN−アセチルピペリジン回収率が99.5%
であった。
(Example 2) An experiment was carried out in the same manner as in Example 1, except that chromium (1) acetylacetonate 0°1579 was used instead of 0.09599 chromic acetate. The obtained results showed that the tetralin conversion rate was 81.2% and the α-tetralone selectivity was 87.2%.
8%, and N-acetylpiperidine recovery rate was 99.5%.
Met.

(実施例8) N−アセチルピペリジン25−の代りに、N−ホルミル
ピペリジン25tt/を用いた以外は、実施例2と同様
に実験を行った。得られた結果は、テトラリン転化率が
26.6憾、α−テトラロン★択率が80゜7%、及び
N−ホルミルピペリジン回収率が100%であった。
(Example 8) An experiment was conducted in the same manner as in Example 2 except that N-formylpiperidine 25tt/ was used instead of N-acetylpiperidine 25-. The obtained results were that the conversion of tetralin was 26.6%, the selectivity of α-tetralone was 80.7%, and the recovery of N-formylpiperidine was 100%.

(実施例4) N−アセチルピペリジン25−の代りにN−ホルミルピ
ペリジン10−とN−アセチルピペリジン15fnlを
用いた以外は実諦例1と同様に実験を行った。得られた
結果は、テトラリン転化率が85.8%、α−テトラロ
ン選択率が87.0%、及びN−ホルミルピペリジンと
N−アセチルピペリジンの回収率が99.7 %であっ
た。
(Example 4) An experiment was conducted in the same manner as in Example 1 except that N-formylpiperidine 10- and N-acetylpiperidine 15fnl were used instead of N-acetylpiperidine 25-. The obtained results were that the tetralin conversion rate was 85.8%, the α-tetralone selectivity was 87.0%, and the recovery rate of N-formylpiperidine and N-acetylpiperidine was 99.7%.

(参考例1) N−アセチルピペリジンの代りにN、N−ジメチルアセ
トアミドを用い、反応温度を80℃から90°Cに変え
た以外は、実施例1と同様に実験を行った。得られた結
果は、テトラリン転化率が85.0%、α−テトラロン
選択率が87゜5係、及びN、N−ジメチルアセトアミ
ド回収率が95.5% □であった。実施例1と比較す
ると、実施例1の方が、α−テトラロン選択率が高く、
テトラリン転化率及びN、N−ジメチルアセトアミド回
収率は大幅に向上した値を示している。
(Reference Example 1) An experiment was carried out in the same manner as in Example 1, except that N,N-dimethylacetamide was used instead of N-acetylpiperidine and the reaction temperature was changed from 80°C to 90°C. The obtained results were that the tetralin conversion rate was 85.0%, the α-tetralone selectivity was 87°5, and the N,N-dimethylacetamide recovery rate was 95.5% □. Compared with Example 1, Example 1 has a higher α-tetralone selectivity,
The tetralin conversion rate and the N,N-dimethylacetamide recovery rate show significantly improved values.

以上、本発明によれば、触媒系として司溶性りo A 
q(とN−アシルピペリジン類を用いたので、従来のα
−テトラロンの製造方法と比較して、温和な条件下で液
相酸化したにもかかわらず、転化率、選択率が共に向上
した。また、N−アシルピペリジン類が酸化に対し充分
耐えられるため、回収率もほぼ1oosであった。
As described above, according to the present invention, as a catalyst system, a
q (and N-acylpiperidines, the conventional α
- Compared to the method for producing tetralone, both conversion and selectivity were improved despite liquid phase oxidation under mild conditions. Furthermore, since the N-acylpiperidines were sufficiently resistant to oxidation, the recovery rate was also approximately 1oos.

特許出願人 川鉄化学株式会社 ・ 9−30Patent applicant: Kawatetsu Chemical Co., Ltd. ・ 9-30

Claims (1)

【特許請求の範囲】 1 テトラリンを分子状酸素又は分子状酸素含有ガスに
より液相酸化してα−テトラロンを製造するに当たり、
可溶性クロム塩と一般式(式中、R1,R2,R8,R
,、R5,R6,R1,R8゜R8,R,。及びR11
はそれぞれアルキル基又は水素原子を示す) で表されるN−アシルピペリジン類の1種又□は2種以
上の混合物からなる触媒系を使用することを特徴とする
α−テトラロンの製造方法。
[Claims] 1. In producing α-tetralone by liquid phase oxidation of tetralin with molecular oxygen or molecular oxygen-containing gas,
Soluble chromium salt and general formula (wherein, R1, R2, R8, R
,,R5,R6,R1,R8°R8,R,. and R11
each represents an alkyl group or a hydrogen atom) A method for producing α-tetralone, characterized in that a catalyst system comprising one type or a mixture of two or more types of N-acylpiperidines represented by the following is used.
JP58127554A 1983-07-15 1983-07-15 Production of alpha-tetralone Pending JPS6019744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127554A JPS6019744A (en) 1983-07-15 1983-07-15 Production of alpha-tetralone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127554A JPS6019744A (en) 1983-07-15 1983-07-15 Production of alpha-tetralone

Publications (1)

Publication Number Publication Date
JPS6019744A true JPS6019744A (en) 1985-01-31

Family

ID=14962880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127554A Pending JPS6019744A (en) 1983-07-15 1983-07-15 Production of alpha-tetralone

Country Status (1)

Country Link
JP (1) JPS6019744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10485985B2 (en) 2013-04-09 2019-11-26 Photocure Asa Irradiation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10485985B2 (en) 2013-04-09 2019-11-26 Photocure Asa Irradiation device

Similar Documents

Publication Publication Date Title
CN108530326B (en) Preparation method of 2-nitro-4-methylsulfonylbenzoic acid
JP5055262B2 (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JP4047008B2 (en) Method for producing methacrylic acid
JP4788022B2 (en) Process for producing aromatic polycarboxylic acid
JPS6019744A (en) Production of alpha-tetralone
US4175098A (en) Method for the preparation of α-tetralone
JPH01308245A (en) Production of benoic acid and salt thereof
JPS5865241A (en) Carbonylation of secondary benzylhalide
US4297507A (en) Process and apparatus for producing terephthalic acid with high purity
JPH01160943A (en) Production of naphthalenedicarboxylic acid
JPS5945666B2 (en) Method for producing aminocarboxylic acids
JPS6019745A (en) Production of alpha-tetralone
JPS601149A (en) Production of alpha-tetralone
JPH0557250B2 (en)
EP0189312A2 (en) Process for producing an oxygen-containing organic compound from olefins
JPH04504855A (en) Process for producing alkanesulfonylbenzoic acid
JP2697787B2 (en) Method for producing trimellitic acid
JPS603057B2 (en) Method for producing P-nitrobenzoic acid
JP4148480B2 (en) Method for producing 3-nitro-o-toluic acid
JPS609018B2 (en) Production method of terephthalic acid
JPS6137753A (en) Method of oxidizing cinnamic aldehyde
JPS582221B2 (en) Production method of high purity terephthalic acid
JPS591266B2 (en) Satsukarin no Seizou Hohou
KR870001164B1 (en) Synthesis process for organic compounds used oxygen complex materials
JPH03271275A (en) Production of quinolinic acid