JPS60196643A - Strength measuring method of brittle material - Google Patents

Strength measuring method of brittle material

Info

Publication number
JPS60196643A
JPS60196643A JP5231584A JP5231584A JPS60196643A JP S60196643 A JPS60196643 A JP S60196643A JP 5231584 A JP5231584 A JP 5231584A JP 5231584 A JP5231584 A JP 5231584A JP S60196643 A JPS60196643 A JP S60196643A
Authority
JP
Japan
Prior art keywords
test piece
stress
supporting member
brittle material
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5231584A
Other languages
Japanese (ja)
Inventor
Doushichi Tanaka
田中 道七
Nagatoshi Okabe
永年 岡部
Yoji Onishi
大西 洋治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5231584A priority Critical patent/JPS60196643A/en
Publication of JPS60196643A publication Critical patent/JPS60196643A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils
    • G01N2203/0441Chucks, fixtures, jaws, holders or anvils with dampers or shock absorbing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/388Ceramics

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To measure the static tensile strength characteristic accurately and simply, by applying stress to a body under test comprising a brittle material such as ceramics through a supporting member, in hich deformation is yielded by the stress. CONSTITUTION:A load converter 3 is fixed to an upper cross head 2A of a tensile tester 1. A universal joint 4 is attached to the load converter 3. A pair of rods 5A and 5B is connected to the universal joint 4 and a moving cross head 2B by pins 6A and 6B. A test piece is supported by holding tools 7A and 7B, which are connected to the rods 5A and 5B by pins 8A and 8B. A V-shaped groove 71A of a pair of the holding tools 7A is line-contacted with a supporting member 9, which comprises a round pipe, whose elastic constant is lower than that of the test piece 10 and plastic deformation ability is large, e.g., a aluminum round pipe. Thus the initial deformation can be made adequate. Since the bending stress, which is applied on the test piece 10 by the initial deformation of the supporting member, can be absorbed, troublesome breakdown of the test piece 10 can be avoided.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、セラミックス等の脆性材料の強度測定方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for measuring the strength of brittle materials such as ceramics.

発明の技術的背景とその問題点) 近年、窒化けい素、アルミナ等のファインセラミックス
は自動車エンジン部品をはじめ、各種エネルギー機器の
構造材料としてのニーズが高まり工業ベースでの実用化
が進みつつある。
Technical background of the invention and its problems) In recent years, the need for fine ceramics such as silicon nitride and alumina as structural materials for various energy devices including automobile engine parts has increased, and their practical use on an industrial basis is progressing.

したがって、そのためには材料の基本的な特性である引
張強度等の強度を知ることは設計上の観点からもまた、
材石間発の面からも非常に市川である。しかしながら、
脆性材料であるセラミックスは塑性変形をはと/νど生
じないため、例えば引張試験においては試験に供する供
試体の中心軸と試験機の中心軸の不一致による偏心荷重
や供試体と掴み治具との接触部に発生しやすい集中荷重
により試験片に、亀裂が入ったり破壊したりして引張強
度等を精度よく測定することは容易でなかった。
Therefore, in order to do this, it is important to know the basic properties of materials, such as tensile strength, from a design perspective.
It is also very similar to Ichikawa in terms of its origin from the wood. however,
Ceramics, which are brittle materials, do not undergo plastic deformation, so in tensile tests, for example, there may be eccentric loads due to mismatch between the central axis of the specimen being tested and the central axis of the testing machine, or the relationship between the specimen and the gripping jig. It has been difficult to accurately measure tensile strength, etc. because the test pieces tend to crack or break due to concentrated loads that tend to occur at the contact areas.

発明の目的) 本発明は、セラミックス等の脆性材料の強度を精度よく
簡便に測定できる方法を提供する。
Purpose of the Invention) The present invention provides a method that can easily and accurately measure the strength of brittle materials such as ceramics.

(発明の概要) 本発明は、セラミックスのような脆性(4石でなる供試
体に強度測定のための応力を加えるに際し、該応力によ
り変形を生ずる支持部材を介して応力を加えることを特
徴とづる。セラミックスは脆いため強度測定法が限られ
ていたが、本発明方法によればセラミックスの引張強度
等を容易にかつ正確に測定づることがでいる。支持部材
は供試体に応力を加えたときに適切に変形して供試体に
損傷を与えないものがよい。特にΩ荷を与える初期に供
試体にががる曲げ応力を緩和するものが好ましい。この
ために支持部材は供試体より弾性定数が低くかつ塑性変
形能に優れlJものが有効である。例えばアルミニウム
等の軟金属で構成したものがよい。更に管状体のように
内部に空間を有するものが適切な変形をもたらず。なお
、本発明方法は、引張試験のように応力がイハ試体の軸
方向に沿うものである場合特に有効である。
(Summary of the Invention) The present invention is characterized in that when stress is applied to a brittle (four-stone) specimen such as ceramics for strength measurement, the stress is applied via a support member that is deformed by the stress. Due to the brittleness of ceramics, methods for measuring their strength have been limited, but the method of the present invention makes it possible to easily and accurately measure the tensile strength, etc. of ceramics.The supporting member applies stress to the specimen. It is better to use a support member that deforms appropriately and does not cause damage to the specimen.In particular, it is preferable to use a material that alleviates the bending stress that is applied to the specimen at the initial stage of applying the Ω load.For this reason, the supporting member should be more elastic than the specimen. A material having a low constant and excellent plastic deformability is effective.For example, a material made of soft metal such as aluminum is preferable.Furthermore, a material having a space inside, such as a tubular body, does not result in appropriate deformation. The method of the present invention is particularly effective when the stress is along the axial direction of the specimen, such as in a tensile test.

本発明方法の実施に好適な引張試験装置を第1図に示J
゛。第1図において、引張試験(幾1は引張試験装置1
の上部の固定クロスヘッド2△に固定した荷重変換器3
に取り付(]たユニバーザルジョイン1〜4と、下部に
設()た移動クロスヘッド2Bとに一対の上、下部ロッ
ド5△、5Bをピン6△、6Bで接合し、そのうえ下部
ロッド5△、5Bのそれぞれの下端及び上端部に前記接
合ピン6△、6Bとほぼ直交づるようにピン8△、8B
で試験片を支持づ゛る挾持具7△。
A tensile test apparatus suitable for carrying out the method of the present invention is shown in Figure 1.
゛. In Figure 1, the tensile test (1 is the tensile test device 1)
Load transducer 3 fixed to fixed crosshead 2△ on top of
A pair of upper and lower rods 5△, 5B are connected to the universal joins 1 to 4 attached to ( ) and the movable cross head 2B installed at the lower part ( ) with pins 6△, 6B, and the lower rod 5 Pins 8△, 8B are installed at the lower and upper ends of each of △, 5B so as to be substantially perpendicular to the joining pins 6△, 6B.
A clamping tool 7△ that supports the test piece.

7Bを上下一対接合する構造になっている。ユニバーサ
ルジョイン1〜及び直交づるピンによる接合IA3fi
のため、試験片の中心線は負荷にともなっで伺重軸につ
ねに一致することが可能である。また、上、下部[1ツ
ドは可能な範囲で長くすることにより荷重の偏心を抑え
ることができる。第2図に挾持具部分を拡大して示づ。
It has a structure in which a pair of upper and lower 7Bs are joined. Universal join 1~ and joint IA3fi with orthogonal hinge pins
Therefore, the center line of the test piece can always align with the gravity axis as the load is applied. In addition, the eccentricity of the load can be suppressed by making the upper and lower parts as long as possible. Figure 2 shows an enlarged view of the clamping tool part.

第2図において前記一対の挾持具7△は、試験片10よ
りも弾性定数が低く、塑性変形能の大きい例えばアルミ
ニウムの円管でなる支持部材9゜9と線接触するように
V型溝71A、71Aを設りている。試験片10は支持
部材9.9に線接触される。このように試験片と支持部
材を線接触さゼることにより初期変形を適切にするこ、
どができる。この支持部材9.9は引張試験時の荷重の
増加に応じて徐々に塑性変形を起こし、それに応じて試
験片10との接触面積が増加し、良りfかつ安定した接
触状態をもたらす。特に試験片10の支持手段を上記の
ような構造にJることにより、試験片10を挟持するこ
となく、かつ、支持部(イの初1yJの変形により試験
片10にかかる曲げ応力を吸収できるので試験片10の
不都合な破壊を防ぐことができる。また、支持部材9,
9は試験片の材質に応じて適切な材質、形態を選び負荷
能力を増減することができるので従来生じていたような
試験片10が挟持部分で破壊づることを防ぐことが可能
となる。
In FIG. 2, the pair of clamping tools 7Δ are arranged in a V-shaped groove 71A so as to be in line contact with a supporting member 9°9 made of, for example, an aluminum circular tube, which has a lower elastic constant than the test piece 10 and a greater plastic deformability. , 71A are installed. The test specimen 10 is placed in line contact with the support member 9.9. In this way, by bringing the test piece into line contact with the supporting member, the initial deformation can be made appropriate.
What can you do? This support member 9.9 gradually undergoes plastic deformation as the load increases during the tensile test, and the contact area with the test piece 10 increases accordingly, resulting in a good and stable contact state. In particular, by structuring the support means for the test piece 10 as described above, it is possible to absorb the bending stress applied to the test piece 10 due to the initial deformation of the support part (A) without pinching the test piece 10. Therefore, inconvenient destruction of the test piece 10 can be prevented.Furthermore, the supporting members 9,
Since the load capacity of the test piece 9 can be increased or decreased by selecting an appropriate material and form depending on the material of the test piece, it is possible to prevent the test piece 10 from breaking at the clamped portion, which has conventionally occurred.

第3図に本発明方法に適する引張試験用の試験片を示す
。試験片は前記支持部材と接する個所11は中心軸に対
しほぼ直角に形成し、中央部に向って幅狭とする。待に
セラミックスのような脆性材料で(,1試験片中央部の
板厚を減少し、試験ハ中央部で破断Jる414造とする
ことがよい。
FIG. 3 shows a test piece for tensile testing suitable for the method of the present invention. The portion 11 of the test piece in contact with the support member is formed approximately at right angles to the central axis, and the width becomes narrower toward the center. When using a brittle material such as ceramics, it is preferable to reduce the thickness of the central part of the test piece and make it a 414-piece structure in which the test piece breaks at the central part.

(発明の実施例) 第1図に示づ引張試験装置6により、窒化けい素試験片
(第3図に示すもの)3本を用いて引張試験を行なった
ところ、いヂれの試験片もほぼ試験片中央部において破
断し、挟持部分での破壊は全くなかった。なJ5、同様
にして第3図に示す形状のうち板厚方向の減少がない試
験片(3本)に試験を施こしたどころ上記と同じよ゛ 
うな結果が得られた。ただ、第3図に示す試験片の方が
破断個所がより確実に一定であり、精度の高い測定が可
能と考えられる。
(Example of the Invention) When a tensile test was conducted using three silicon nitride test pieces (shown in FIG. 3) using the tensile test device 6 shown in FIG. The test piece broke almost at the center, and there was no breakage at the sandwiched part. Similarly, J5 was tested on three specimens of the shape shown in Figure 3 with no reduction in the thickness direction, but the results were the same as above.
I got some great results. However, in the test piece shown in FIG. 3, the fracture location is more reliably constant, and it is considered that highly accurate measurement is possible.

上記の引張試験において引張試験機1により引張荷重を
付加していくと荷重の増大に応じて金属円管で形成した
支持部材9は塑性変形して行き、それに応じて試験片1
0と挾持具7の挾持部の接触面積が増加し、良好かつ安
定した接触状態が得られる。このときの荷重変換器3で
検出される引張荷重と固定・移動クロスヘッド間の変位
の挙動を示す荷重−変位曲線に基づき支持部材の変形挙
動を模式的に第4図に示づ。
In the above tensile test, as a tensile load is applied by the tensile testing machine 1, the support member 9 formed of a metal circular tube is plastically deformed as the load increases, and the test piece 1
0 and the clamping portion of the clamping tool 7 increases, and a good and stable contact state can be obtained. FIG. 4 schematically shows the deformation behavior of the support member based on a load-displacement curve showing the behavior of the tensile load detected by the load converter 3 at this time and the displacement between the fixed and moving crossheads.

第4図に示づように支持部材の変形挙動は王。As shown in Figure 4, the deformation behavior of the support member is normal.

I、Hの領域に区分覆ることかできる。It can be divided into areas I and H.

初期の領域工においては荷重Pの変位δに対ヅる上昇率
(曲線の勾配)はδととしに減少し、この領域では上部
または下部の支持部材に加わる荷重に差があるどきはそ
の変位δの増加とともに緩和される。この領域■では、
荷重Pによ (り試験片に/Lする曲は応力を緩和、吸
収し、Jメ後の負荷状態を安定にづる効果をもlこら1
゜領j或1にJ3い−C【よ荷重]〕と変位δの間にほ
ぼ直線関係が成立ら、この領域では荷重Pの変位δに対
づる上R率は最小値をとり、この領域−C支持部材の変
形が最もJみやかに進行して試験片と挟持具の接触面積
を増大させ良好な接触状態を形成する。領域■では、領
域■とは逆に曲線の勾配が増加りるためここでは何らか
の原因で牛 4じた曲げ応力がさらに拡大される可能性
かあり、支持部材の破壊が発止づる領域である。以上の
ことから支持部材としては試験ハのス」法と予測される
引張強さに応じて試聞ハの破断が前記領域■の中頃から
後半に生ずるように定めるのが好ましい。
In the early area construction, the rate of increase (slope of the curve) of the load P against the displacement δ decreases as δ, and in this area, if there is a difference in the load applied to the upper or lower support member, the displacement increases. It is relaxed as δ increases. In this area■,
Due to the load P, the curve applied to the test piece relaxes and absorbs the stress, and has the effect of stabilizing the load state after J-measuring.1
An almost linear relationship is established between the displacement δ and the displacement δ, and the upper R ratio of the load P to the displacement δ takes the minimum value in this area. -C The deformation of the supporting member progresses most gracefully, increasing the contact area between the test piece and the clamping tool, and forming a good contact state. In region ■, the slope of the curve increases, contrary to region ■, so there is a possibility that the bending stress will be further expanded for some reason, and this is the region where the support member will begin to fail. . In view of the above, it is preferable that the supporting member be determined so that the fracture of the test sample C occurs in the middle to the latter half of the region (C) according to the predicted tensile strength of the test C method.

板厚3m1llの窒化けい素試朕片を用いた場合支持部
伺とし−(外径的9 +u+++、長ざ約iQ+nu+
程度のアルミニウム円管を用いると上記の領域1を安定
して19ることがてき良好であった。
When using a silicon nitride specimen with a plate thickness of 3 ml, the support part is - (outer diameter 9 +u+++, length dimension iQ+nu+
When using an aluminum circular tube of about 100 mL, the above-mentioned region 1 could be stably achieved.

発明の効果) 本発明方法によれば、破壊時に塑fi変形をほとんど伴
なわないセラミックス等の脆性材料の強度試験の際に挟
持’eA ”C’試駿ノ4が餓壊ゼず曲げ応力成分の発
生を極めて少なくづることかできる。したがって、4M
 造Ml感廿の高いセラミックスなどの脆性材料の強度
計画する上での基本的な静的引張強度特性を粘度よく測
定づることができる。
Effects of the Invention) According to the method of the present invention, when testing the strength of brittle materials such as ceramics that are hardly accompanied by plastic deformation at the time of fracture, the clamping 'eA'C' test does not result in starvation and the bending stress component is reduced. It can be said that the occurrence of 4M
It is possible to measure the basic static tensile strength characteristics with good viscosity when planning the strength of brittle materials such as ceramics with high Ml sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法を適用した引張試験装置の正面図
、第2図は引張試験!li置の試験片挟持部分を拡大し
て示づ図、第3図は本発明に用いる試躾パの一例を示づ
図、第4図は本発明方法に用いる支持部44の変形挙動
を模式的に示すグラフである。 1・・・引張試験装置 3・・・荷重変換器 4・・・ユニバーサルジヨイント 7A、 713 ・ ・ ・ (火 持 V↓9・・・
支持部材 10・・・試験片 代理人ブr埋士 側 近 憲 f(i (IJか1名)
冶1 図 冨2図 猶3図 (a) I (b) 第4図 変位量J
Figure 1 is a front view of a tensile test device to which the method of the present invention is applied, and Figure 2 is a tensile test! FIG. 3 is an enlarged view of the portion holding the test piece in the li position, FIG. 3 is a view showing an example of the testing machine used in the present invention, and FIG. 4 is a schematic diagram showing the deformation behavior of the support portion 44 used in the method of the present invention. This is a graph showing the 1...Tensile test device 3...Load converter 4...Universal joint 7A, 713 ・ ・ ・ (Fire holding V↓9...
Supporting member 10...Test piece representative Burialist side Ken Ken f(i (IJ or 1 person)
Figure 1 Figure 2 Figure 3 (a) I (b) Figure 4 Displacement J

Claims (4)

【特許請求の範囲】[Claims] (1)脆性材料でなる供試体に応力を加えるに際し、該
応力により変形を生ずる支持部材を介して応力を加える
ことを特徴とする脆性材料の強度測定方法。
(1) A method for measuring the strength of a brittle material, characterized in that when stress is applied to a specimen made of a brittle material, the stress is applied via a support member that is deformed by the stress.
(2)脆性材料はけラミックスである特許請求の範囲第
1項に記載の脆性材料の強度測定方法。
(2) A method for measuring the strength of a brittle material according to claim 1, which is a brittle material.
(3)支持部材は、供試体より弾性定数が低くかつ塑性
変形能に浸れたものである特許請求の範囲第1項に記載
の脆性材料の強度測定方法。
(3) The method for measuring the strength of a brittle material according to claim 1, wherein the supporting member has a lower elastic constant than the specimen and is more plastically deformable.
(4)支持部材は、軟金属で形成した特許請求の範囲第
3項に記載の脆性材料の強度測定lJ法。 〈5)応力は、供試体の軸方向に沿うものである特許請
求の範囲第1項に記載の脆性材料の強度測定方法。
(4) The IJ method for measuring the strength of a brittle material according to claim 3, wherein the support member is formed of a soft metal. (5) The method for measuring the strength of a brittle material according to claim 1, wherein the stress is along the axial direction of the specimen.
JP5231584A 1984-03-21 1984-03-21 Strength measuring method of brittle material Pending JPS60196643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5231584A JPS60196643A (en) 1984-03-21 1984-03-21 Strength measuring method of brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5231584A JPS60196643A (en) 1984-03-21 1984-03-21 Strength measuring method of brittle material

Publications (1)

Publication Number Publication Date
JPS60196643A true JPS60196643A (en) 1985-10-05

Family

ID=12911345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5231584A Pending JPS60196643A (en) 1984-03-21 1984-03-21 Strength measuring method of brittle material

Country Status (1)

Country Link
JP (1) JPS60196643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320045U (en) * 1986-07-22 1988-02-09
CN104330304A (en) * 2014-11-24 2015-02-04 重庆大学 Clamping mechanism of testing device for direct tensile strength of fragile material
CN108760473A (en) * 2018-07-28 2018-11-06 中国石油天然气集团有限公司 A kind of method and experimental rig for the test of flexible composite pipe tensile property

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320045U (en) * 1986-07-22 1988-02-09
CN104330304A (en) * 2014-11-24 2015-02-04 重庆大学 Clamping mechanism of testing device for direct tensile strength of fragile material
CN108760473A (en) * 2018-07-28 2018-11-06 中国石油天然气集团有限公司 A kind of method and experimental rig for the test of flexible composite pipe tensile property
CN108760473B (en) * 2018-07-28 2020-11-06 中国石油天然气集团有限公司 Method and test device for testing tensile property of flexible composite pipe

Similar Documents

Publication Publication Date Title
JPS63101732A (en) Grip of load frame for testing material
CN108195679A (en) A kind of device and test method for measuring wire rod tiny sample tensile strength
Yam et al. Experimental investigation of the compressive behavior of gusset plate connections
CN108362554A (en) A kind of three-point bending vibrating fatigue device with axial tension function
JPS60196643A (en) Strength measuring method of brittle material
CN104655486B (en) Tubular test sample constant-deformation stress corrosion testing clamp
CN108613890A (en) A kind of method of II type stress intensity factor of crack threshold value of measuring metallic materials
CN210863496U (en) Centering device for testing positive tensile bonding strength of adhesive
Lim et al. The effects of concurrent cold-expansion and ring-indentation on the growth of fatigue cracks emanating from circular holes
Barkey et al. Testing of spot welded coupons in combined tension and shear
CN208254934U (en) A kind of three-point bending vibrating fatigue device with axial tension function
JPS6381244A (en) Fatigue testing method
CN106168472A (en) A kind of cuboid sample lateral displacement measurement apparatus
RU166186U1 (en) STRENGTH TEST FOR A WELDED JOINT
CN219495932U (en) Clamp for mechanical test of metal flat plate component
JPH0210245A (en) Apparatus for measuring breakdown strength of material
RU2784407C1 (en) Compression testing device for long specimens
CN115824811B (en) Brazilian split-based brittle material stretching dynamic full curve testing device and method
SU1276468A1 (en) Method of testing spot welds for static vibration strength
CN111504817B (en) Steel fracture strain testing device under explosive load and testing method thereof
JPS6229930Y2 (en)
JPS645230Y2 (en)
RU2247355C1 (en) Device for testing long specimens for plastic compression
SU1627896A1 (en) Method for torsion test of material specimens
RU2191366C2 (en) Specimen for testing metal of cylindrical articles for impact bending