JPS60195985A - Constant output semiconductor laser element - Google Patents

Constant output semiconductor laser element

Info

Publication number
JPS60195985A
JPS60195985A JP59051991A JP5199184A JPS60195985A JP S60195985 A JPS60195985 A JP S60195985A JP 59051991 A JP59051991 A JP 59051991A JP 5199184 A JP5199184 A JP 5199184A JP S60195985 A JPS60195985 A JP S60195985A
Authority
JP
Japan
Prior art keywords
output
light
optical
substrate
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59051991A
Other languages
Japanese (ja)
Other versions
JPH0426234B2 (en
Inventor
Yukikazu Hanamitsu
花光 幸和
Setsuo Kotado
古田土 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP59051991A priority Critical patent/JPS60195985A/en
Publication of JPS60195985A publication Critical patent/JPS60195985A/en
Publication of JPH0426234B2 publication Critical patent/JPH0426234B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a microminiature and inexpensive constant output semiconductor laser element by forming a semiconductor layer, a drive circuit, a light spectral analyzer and a light power detector on a ferrodielectric substrate for foring a photoconductive waveguide. CONSTITUTION:Partial step is formed on an insulating substrate 1, and a laser diode 2 is arranged. The laser output is led by a photoconductive waveguide 3 formed of a thin film into a light spectral analyzer 4. The waveguide 3 is formed by diffusing an impurity such as Ti in the substrate 1 of LiNbO3. Part of the laser output is fed through the waveguide to a photoreceptor 5 formed of a photodiode. The photoreceptor 5 transmits an electric signal is response to the received light amount to a controller 6 to control the laser output light to be always at constant level. The elements are formed by using a semiconductor IC manufacturing technique to determine the positions of the elements in high accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する分野】[Field to which the invention pertains]

この発明は半導体レーザ素子に関し、でらに詳述すれば
、半導体レーザとその出力光を一定にするための回路素
子とを、同一基板上に集積して組み上けた定出力の半導
体レーザ素子に関する。
The present invention relates to a semiconductor laser device, and more specifically, to a constant output semiconductor laser device in which a semiconductor laser and a circuit element for making its output light constant are integrated on the same substrate. .

【発明の背景となる技術】[Technology behind the invention]

一般にレーザ光を発生する光出力素子は内部の発熱に伴
い、温度が上昇しやすいもので多る。なんとなれば、半
導体レーザの光出力部、っまυ、活性層は、幅が一般に
1μm以下と狭く、元出力断面槓が小さい割に80mw
以上の高出力が出て、エネルギー密度が高いために発熱
量が太きいからである。レーザの発掘によるこの発熱は
、周囲の温度によって熱放散量が変わって活性層自体の
温度も変化スる。すると、熱平衡状態が変化し、伝導帯
と価′電子帯に注入している電子や正孔の数が袈化し、
再結合の生じる頻度が変化する。このことによって、レ
ーザの出力光のレベルが変化する。 また、半導体レーザ駆mu圧の揺らぎによっても光出力
は大きく変化する。こうした諸要因が光出力の不安定を
もたらしている。
In general, many optical output elements that generate laser light tend to have a temperature increase due to internal heat generation. The reason is that the optical output part of a semiconductor laser, the active layer, is generally narrow, less than 1 μm in width, and the original output cross section is small, yet it is only 80mW.
This is because it produces a high output and has a high energy density, so it generates a large amount of heat. The amount of heat dissipated by the laser excavation changes depending on the surrounding temperature, and the temperature of the active layer itself also changes. Then, the thermal equilibrium state changes, and the number of electrons and holes injected into the conduction band and valence band becomes limited.
The frequency with which recombination occurs changes. This changes the level of the laser output light. Furthermore, the optical output changes greatly due to fluctuations in the semiconductor laser driving pressure. These factors cause instability in the optical output.

【先行技術とその問題点】[Prior art and its problems]

従来はこれを解決するために、熱伝導性の良い物質、例
えばダイヤモンドをヒートシンクとして用いた。しかし
、高価であシ、かつ密着剤としてInを使用するために
ウェーッ・プロセス及びボンディングプロセスが増える
という欠点がありだ。 させ、反射光を光電変換素子等で検知し、その検知信号
を電流・電圧制御駆動回路にフィートノ(し゛りさせる
ことにより、レーザの出力光を安定させる方法を用いて
いた。しかし、)1−フミラーを使用することによって
透過光と反射光の角度tm節する作業に熟練度が要求さ
れ、しかもノ・−7ミラ一自体の反射率分布のむらによ
シ、一定の割合で透過光と反射光を分岐させることはむ
ずかしいという欠点があった。 さらにまた、このような従来の装置、すなわち、光出力
部としての半導体レーザ、分波器としてのハーフミラ−
1光検出器としてのフォトダイオード、−動回路として
FETなどを使った定出力半導体レーザ出力装置を構成
する場合、それぞれインターフェイスを介して光及び電
気回路で接続していた。この際の光軸合わせ等の工程が
複雑困難なこと、かつ、装置が大型になることなどの欠
点があった。 従来の半導体レーザ出力装置における光出力の不安定さ
は、レーザ測定器としての確度の限界を自ら決定づけて
いた。例えば、元ファイバの伝播損失等を測定する場合
に、ファイバへ入射するし□−ザの光出力が不安定であ
ると、ファイバからの出射光も、入射光の強度変化に伴
なって変化するので、光検出器の感度が安定していても
、元ファイバの伝播損失等を精度良く検知することがで
きない等の事実があった。
Conventionally, to solve this problem, a material with good thermal conductivity, such as diamond, was used as a heat sink. However, it has the disadvantage that it is expensive and that the wafer process and bonding process are increased due to the use of In as an adhesive. The method used was to stabilize the output light of the laser by detecting the reflected light with a photoelectric conversion element, etc., and feeding the detection signal to the current/voltage control drive circuit.However, 1- By using a mirror, skill is required to adjust the angle tm of transmitted light and reflected light, and in addition, due to the unevenness of the reflectance distribution of the mirror itself, the transmitted light and reflected light are adjusted at a constant rate. The drawback was that it was difficult to branch out. Furthermore, such conventional devices, ie, a semiconductor laser as an optical output section and a half mirror as a demultiplexer,
1. When constructing a constant output semiconductor laser output device using a photodiode as a photodetector and a FET as a dynamic circuit, they are connected to each other through an optical and electrical circuit via an interface. The disadvantages are that the process of aligning the optical axis is complicated and difficult, and the device becomes large. The instability of the optical output in conventional semiconductor laser output devices has determined the limit of accuracy as a laser measuring device. For example, when measuring the propagation loss of the original fiber, if the optical output of the laser input to the fiber is unstable, the output light from the fiber will also change as the intensity of the incident light changes. Therefore, even if the sensitivity of the photodetector is stable, the propagation loss of the original fiber cannot be accurately detected.

【発明の目的】[Purpose of the invention]

本発明は、これらの欠点を取り除くために考えられたも
のであり、その目的は、同一基板上に、光出力部として
半導体レーザ、分波器として光導波路分岐路、光検出器
とじ七7オトダイオードやされた定出力半導体レーザを
提供することにある。 すなわち、光導波路を形成する強訪電体基板上に半導体
レーザ、駆動面路、光導波路、レーザ出力光をモニタす
るための光分波器および元パワー検出器を半導体プロセ
スおよびホトエツチンン技術に代表される微細加工技術
を用いて構成し、超小形かつ安価な一定出力半導体レー
ザ素子を提供するものである。この集積化された定出力
半導体レーザ素子は、光分波器ハーフミラ−が不要の他
、半導体レーザ、光導波路、光分波路および光パワー検
出器の各々がホトエツチング技術を用いて形成されるの
で、お互いの素子の位置が高精度に決定される。したが
って、光軸合わせなど複雑・困難な作業を必要としない
定出力半導体レーザ素子を提供することを目的としてい
る。 以上、本発明の構成を要約すれば、
The present invention was devised to eliminate these drawbacks, and its purpose is to mount a semiconductor laser as an optical output section, an optical waveguide branch as a demultiplexer, and a photodetector on the same substrate. The object of the present invention is to provide a constant output semiconductor laser using a diode or the like. In other words, a semiconductor laser, a driving surface path, an optical waveguide, an optical demultiplexer for monitoring the laser output light, and an original power detector are mounted on a strong current substrate that forms an optical waveguide using semiconductor processing and photoetching technology. The present invention provides an ultra-small and inexpensive constant output semiconductor laser device constructed using microfabrication technology. This integrated constant output semiconductor laser device does not require an optical demultiplexer half mirror, and the semiconductor laser, optical waveguide, optical branching path, and optical power detector are each formed using photoetching technology. The positions of the elements are determined with high precision. Therefore, it is an object of the present invention to provide a constant output semiconductor laser device that does not require complicated and difficult operations such as optical axis alignment. To summarize the configuration of the present invention as described above,

【発明の要約】[Summary of the invention]

この発明の要旨とするところを列挙すると、次の通りで
ある。 (イ)分波器として光導波路分岐路を用いて、半導体レ
ーザ光出力の一部を検出用として分岐する。 取シ出した光出力全光導波路で光検出素子まで誘導し、
光電変換素子で検出するようにしている。 (ロ)光導波路を半導体回路の製造技術、ホトエツチン
グ等によって同一基板上に構成している。 (ハ) レーザ光出力を一定に保つために、前記検出素
子から受領した電気信メ撮準信号とを比較判断し、レー
ザ光出力を制御するだめの電圧・電流を作シ出す制御駆
動回路(6)を備えた。 に)又、第2実施例(第4図(a)(b) )に光分波
器と受光素子の機能を兼ね備えた光電変換器を用いてレ
ーザ光の一部を電気信号として検出する技術を開示した
。 (ホ)フィードバンク機能を備えた単一基板で成る定出
力半導体レーザ素子を実現した。
The gist of this invention is listed as follows. (a) Using an optical waveguide branch as a splitter, a part of the semiconductor laser light output is branched for detection. The extracted light output is guided to the photodetector element using the all-optical waveguide,
It is detected using a photoelectric conversion element. (b) Optical waveguides are constructed on the same substrate using semiconductor circuit manufacturing technology, photoetching, etc. (c) In order to keep the laser light output constant, a control drive circuit that compares and judges the electric signal and the standard signal received from the detection element and generates voltage and current to control the laser light output ( 6). In addition, the second embodiment (Fig. 4 (a) and (b)) describes a technique for detecting a part of laser light as an electrical signal using a photoelectric converter that has both the functions of an optical demultiplexer and a light receiving element. disclosed. (e) A constant output semiconductor laser device made of a single substrate with a feed bank function was realized.

【発明の構成(実施例)】[Structure of the invention (examples)]

次に本願発明の構成を図面を参照しながら説明する。 第1図は本願発明の第1実施例を示す図であシ、第2図
(a)はそのA−AWR面図を示す図であシ、第2図(
b)はその平面図を機能的な模式で表わした図である。 第1図において、まず、絶縁性基板(11上に一部段差
を設け、レーザダイオード(2)を配設する。レーザ出
力光は薄膜で作られた光導波路で光分波器(4)へ導び
かれる。L i N b 03等強誘電体基板は元年導
体であるがTi等の不純物を拡散することることかでき
る。又、光年導体よシなる強篩電体基板や各棟誘電体基
板上の一部に光良導体のカルができる。光分波器の第1
実施例としては第3図に示すようにLiNbO3等の防
電体上にTi拡散導波路を近接して配列することにより
形唇する。 ここで分岐されたレーザ出力の一部はフォトダイオード
等で構成される受光器(5)へ同じく光導波路を通じて
送られる。受光器(5)では受光された光量に対応した
電気信号を制御回路(6)へ送る。フォトダイオードは
従来の半導体集積回路技術で作られる。ここで外部から
入力される基準イg号と比較してその大小を判別し、常
にレーザ出力光が一部レベルとなるように制御する。制
御はレーザ駆動電圧・電流を制御することにより行う。 本願発明の半導体レーザ装置は上記の各素子を同一基板
上に設けるようにしたので、半導体IC製造技術により
その寸法等が精度よく作られるから同一品質のものを作
ることができる。 第4図は本願の第2実施例であp、前記光分岐器と受光
素子を一つにした機能を有する元IC用充電変換器を示
す図である。 すなわち、第4図は元エネルギーの吸収・発熱に伴う熱
電効果を利用した光電変換器を示す図で、リコ/薄膜対
、15 、16は電極対、17はレーザ入力光、8はレ
ーザ出力光を示す。図中のp形アモルファスシリコン薄
膜は光吸収・発熱作用を行い、対をなすように設けられ
たn形アモルファスシリコン薄膜とで熱電体を形成する
。本実施例では、埋め込み型光導波路(例えは、LiN
bO3基板にTi拡散によシ形成する)を用いているの
で、光導波路の一部をエツチングで除去し、除去された
凹部は強誘電体基板上に堆積されたp形アモルファスシ
リコン薄膜で埋め込まれる。p形アモルファスシリコン
薄膜は、光吸収特性に線長依存性があシ、かつ吸収係数
の大きさとしては10’〜103a++−’で6る。従
って、光導波路の凹部の長さを1〜10μmにすれば、
p形アモルファスシリコン薄M領域で吸収されるレーザ
光の光量は0.1〜100チになる。 1 この場合、し7ザ光の波長と吸収すべき光量が決定
されれば、p形アモルファスシリコン薄膜の組成および
光導波路における凹部の長さの組み合わせで構成できる
。凹部のp形アモルファスシリコン薄膜は、レーザ光の
吸収によル発熱し高温となる。凹部近傍のp形アモルフ
ァスシリコン薄膜の一部に接して設けられたn形アモル
ファスシリコン薄膜は、p形アモルファスシリコン薄膜
とで熱電体を構成し、凹部近傍が温接点を、各アモルフ
ァスシリコン薄膜と互いに分離して設けられた電極対が
冷接点を形成する。一般にアモルファスシリコン薄膜は
熱伝導性が良いので、検出感度を高めるため、各アモル
ファスシリコン薄膜の形状は第4図のようにストリップ
線状となる。 導電率が大きくかつゼーベック係数のアモルファスシリ
コン薄膜の形成法に関しては、「熱電対素子」(特願昭
56〜108728号)で述べた方法を用いる。 以上のごとく、本り発明の第2実施例では、半導体で形
成された接合部が有する熱電効果、光起電力効果、広義
の光導電効果、史にはP−i−n構造の有する光逓倍効
果のいずれがと、光透過性半導体のもつ光吸収特性を組
み合わせることにょp、半導体に入射される光エネルギ
ーの一部を半導体に吸収させて光電変換し、光エネルギ
ーを電気4g号に変える一方で、吸収されなかった大部
分の入射光エネルギーを通過させることにより入射され
た光二不ルギーの大きさを検出する新しい型の光検出器
を用いているものである。
Next, the configuration of the present invention will be explained with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of the present invention, FIG. 2(a) is a diagram showing an A-AWR plane view thereof, and FIG.
b) is a functional schematic representation of the plan view. In Fig. 1, first, a part of the step is provided on an insulating substrate (11), and a laser diode (2) is arranged.The laser output light is sent to an optical demultiplexer (4) through an optical waveguide made of a thin film. Ferroelectric substrates such as L i N b 03 are conductors, but they can also diffuse impurities such as Ti.Also, ferroelectric substrates such as L i N b 03 are conductors, but they can also be used to diffuse impurities such as Ti. A cull of good optical conductor is formed on a part of the dielectric substrate.The first part of the optical demultiplexer
As an example, as shown in FIG. 3, a lip is formed by arranging Ti diffusion waveguides close to each other on an electrically shielding material such as LiNbO3. A part of the laser output branched here is also sent to a light receiver (5) composed of a photodiode or the like through an optical waveguide. The light receiver (5) sends an electrical signal corresponding to the amount of light received to the control circuit (6). The photodiode is made using conventional semiconductor integrated circuit technology. Here, it is compared with a reference Ig input from the outside to determine its magnitude, and is controlled so that the laser output light is always at a certain level. Control is performed by controlling laser drive voltage and current. In the semiconductor laser device of the present invention, each of the above-mentioned elements is provided on the same substrate, so that the dimensions and the like can be made with high precision using semiconductor IC manufacturing technology, so that products of the same quality can be manufactured. FIG. 4 is a second embodiment of the present application, and is a diagram showing a charging converter for an original IC having the function of combining the optical splitter and the light receiving element. That is, Fig. 4 shows a photoelectric converter that utilizes the thermoelectric effect associated with absorption and heat generation of source energy, in which the lyco/thin film pair, 15 and 16 are electrode pairs, 17 is laser input light, and 8 is laser output light. shows. The p-type amorphous silicon thin film in the figure absorbs light and generates heat, and forms a thermoelectric body with the paired n-type amorphous silicon thin film. In this example, a buried optical waveguide (for example, LiN
bO3 substrate (formed by Ti diffusion), a part of the optical waveguide is removed by etching, and the removed recess is filled with a p-type amorphous silicon thin film deposited on the ferroelectric substrate. . The p-type amorphous silicon thin film has a light absorption characteristic that is line length dependent, and has an absorption coefficient of 10' to 103a++-'. Therefore, if the length of the concave portion of the optical waveguide is set to 1 to 10 μm,
The amount of laser light absorbed by the p-type amorphous silicon thin M region is 0.1 to 100 inches. 1 In this case, once the wavelength of the laser light and the amount of light to be absorbed are determined, it can be configured by a combination of the composition of the p-type amorphous silicon thin film and the length of the recess in the optical waveguide. The p-type amorphous silicon thin film in the recessed portion generates heat due to absorption of laser light and becomes high in temperature. The n-type amorphous silicon thin film provided in contact with a part of the p-type amorphous silicon thin film near the recess constitutes a thermoelectric body with the p-type amorphous silicon thin film, and the vicinity of the recess forms a hot junction with each amorphous silicon thin film. Separate pairs of electrodes form cold junctions. Since amorphous silicon thin films generally have good thermal conductivity, each amorphous silicon thin film has a strip-like shape as shown in FIG. 4 in order to increase detection sensitivity. Regarding the method of forming an amorphous silicon thin film having high conductivity and Seebeck coefficient, the method described in "Thermocouple Element" (Japanese Patent Application No. 108728-1988) is used. As described above, in the second embodiment of the present invention, the thermoelectric effect, photovoltaic effect, and photoconductive effect in a broad sense that a junction formed of a semiconductor has, and the optical multiplication that a P-i-n structure has. The effect is that by combining the light absorption properties of a light-transmitting semiconductor, a portion of the light energy incident on the semiconductor is absorbed by the semiconductor and photoelectrically converted, converting the light energy into 4g of electricity. This method uses a new type of photodetector that detects the magnitude of incident light by passing most of the incident light energy that is not absorbed.

【発明の効果】【Effect of the invention】

上記のごとく、本願の第1災施例及び第2実施例によれ
ば、光信号部と′電気回路部を同一基板上に、互いに両
立しつる製造プロセスで作ることができるから、受光部
と光導波路との接続位置等がきわめて精度良く合せるこ
とができる利点がある。 そのほかにも次のような効果がある。 (、) 温度や印加電流などの要因により半導体レーザ
の出力が影響を受け変化するのを押えるため同一基板上
にレーザダイオード、光検出素子。 及び光出力を常時一定に保つように駆動電流・電圧を調
整するフィードバック機mを備えることにより、超小型
で安定なレーザ出力を得るだめの複合型定出力半導体レ
ーザ素子を構成できる。 (b) 半導体の形成にホトエツチング技術を用いるこ
とができるので、超小型で寸法精度の良い定出力半導体
レーザ素子を構成することができる。 (、) 元エネルギーを検出するのに、従来の入射光分
離方式を用いないので、入射光分離用ミラーや光スィッ
チさらには切シ換え用駆動回路等が不敬となるので安価
な光11変換器を備えた半導体レーザ素子を構成できる
。 よって、本発明の定出力半導体レーザ素子は、産業上、
半導体レーザの用途金さらに安定確実なものとすること
ができる。
As mentioned above, according to the first and second embodiments of the present application, the optical signal section and the electric circuit section can be made on the same substrate by a mutually compatible manufacturing process. There is an advantage that the connection position with the optical waveguide can be matched with extremely high precision. There are other effects as well: (,) In order to prevent the output of the semiconductor laser from changing due to factors such as temperature and applied current, the laser diode and photodetector are placed on the same substrate. By providing a feedback device m that adjusts the driving current and voltage so as to keep the optical output constant at all times, it is possible to construct a composite constant output semiconductor laser device that is ultra-compact and provides stable laser output. (b) Since photoetching technology can be used to form the semiconductor, it is possible to construct a constant output semiconductor laser device that is ultra-small and has good dimensional accuracy. (,) Since the conventional incident light separation method is not used to detect the original energy, the incident light separation mirror, optical switch, and switching drive circuit are unnecessary, so the optical 11 converter is inexpensive. A semiconductor laser device can be constructed. Therefore, the constant output semiconductor laser device of the present invention has industrial advantages.
The use of semiconductor lasers can be made more stable and reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明の第1笑施例を示す図、第2図(、)
は第1図におけるA−A断面図、第2図(b)は第1図
に係る平面図を機能的な模式で表わした図、第3図は元
IC用光分波器、第4図(a)は本願の第2実施例であ
る光IC用光’に変換器を示す図、第4図(b)は第4
図(a)のa部拡大図を示す図である。 図中の1は絶縁性基板、2はレーザダイオード、3は光
導波路、4は光分波器、5は受光素子、6L制御駆動回
路、7は信号入力端子、8Fi、光出力、9は分波され
た光出力、 、 −,13はp形アモルファスシ リコy薄膜、14 tti n 形アモルファスシリコ
ン薄膜・15は電極、16は電極、17は光入力、19
は光電変換器を示す。 特許出願人 安立電気株式会社 代理人 弁理士 不能 龍太部 @1図 第2図(b)
Figure 1 is a diagram showing the first embodiment of the present invention, Figure 2 (,)
2(b) is a functional schematic representation of the plan view of FIG. 1, FIG. 3 is an optical demultiplexer for the original IC, and FIG. 4 is a cross-sectional view taken along line A-A in FIG. (a) is a diagram showing a converter for optical IC light, which is the second embodiment of the present application, and FIG.
It is a figure which shows the a part enlarged view of figure (a). In the figure, 1 is an insulating substrate, 2 is a laser diode, 3 is an optical waveguide, 4 is an optical demultiplexer, 5 is a light receiving element, 6L is a control drive circuit, 7 is a signal input terminal, 8Fi is an optical output, and 9 is a demultiplexer. waved optical output, -, 13 is p-type amorphous silicon thin film, 14 ttin type amorphous silicon thin film, 15 is electrode, 16 is electrode, 17 is optical input, 19
indicates a photoelectric converter. Patent Applicant Anritsu Electric Co., Ltd. Agent Patent Attorney Ryutabe@1 Figure 2 (b)

Claims (1)

【特許請求の範囲】[Claims] 絶縁性を有する基板と;該基板上に生成したレーザ発光
素子と;該基板上に生成され、該発光素子を駆動する制
御駆動回路と:前記発光素子−光出力を外部に出力する
ために前記基板と一体に形成された光導波路と;該光導
波路の中途に設けられ、該光導波路を通過する光出力の
一部を側路する光分波器と;該光分波器によυ側路され
た寒出力を受□領し、光電変換して前記発光素子の光出
力に対えf、61i!′気儒号□前記制御−動回路に7
4−ドバツクさせるために前記基板□上に生成した受光
素子と;該受光素子の光電出力と昆竺するだめの基準電
気信号を前記制御駆動回路に印加する基準信号入力端子
とを備え、レーザ光出力を安定化するようにしたことを
特徴とする定出力半導体レーザ素子。
a substrate having insulating properties; a laser light emitting device produced on the substrate; a control drive circuit produced on the substrate and driving the light emitting device; an optical waveguide formed integrally with the substrate; an optical demultiplexer provided in the middle of the optical waveguide and bypassing a part of the optical output passing through the optical waveguide; □Receives the cold output through the circuit, photoelectrically converts it to the optical output of the light emitting element f, 61i! 'Qi No. □7 in the control-dynamic circuit
4- A light-receiving element produced on the substrate □ for back-up; a reference signal input terminal for applying a reference electric signal to the control drive circuit to match the photoelectric output of the light-receiving element; A constant output semiconductor laser device characterized by stabilizing the output.
JP59051991A 1984-03-16 1984-03-16 Constant output semiconductor laser element Granted JPS60195985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051991A JPS60195985A (en) 1984-03-16 1984-03-16 Constant output semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051991A JPS60195985A (en) 1984-03-16 1984-03-16 Constant output semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS60195985A true JPS60195985A (en) 1985-10-04
JPH0426234B2 JPH0426234B2 (en) 1992-05-06

Family

ID=12902318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051991A Granted JPS60195985A (en) 1984-03-16 1984-03-16 Constant output semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS60195985A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251707A (en) * 1986-04-24 1987-11-02 Fujitsu Ltd Optical passive parts
JPS63117337A (en) * 1986-11-05 1988-05-21 Sharp Corp Waveguide type optical head
JPH1152175A (en) * 1997-07-31 1999-02-26 Kyocera Corp Optical integrated circuit board and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749288A (en) * 1980-09-09 1982-03-23 Toshiba Corp Photo hybrid integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749288A (en) * 1980-09-09 1982-03-23 Toshiba Corp Photo hybrid integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251707A (en) * 1986-04-24 1987-11-02 Fujitsu Ltd Optical passive parts
JPS63117337A (en) * 1986-11-05 1988-05-21 Sharp Corp Waveguide type optical head
JPH1152175A (en) * 1997-07-31 1999-02-26 Kyocera Corp Optical integrated circuit board and its production

Also Published As

Publication number Publication date
JPH0426234B2 (en) 1992-05-06

Similar Documents

Publication Publication Date Title
US7386207B2 (en) In-line light sensor
CN107532967B (en) System for testing performance of optical device and method for testing optical device
US6710378B1 (en) Semiconductor light reception device of end face light incidence type
JP2628956B2 (en) Light switch
US5315104A (en) Photodiode photodetector with adjustable active area
US6452669B1 (en) Transmission detection for vertical cavity surface emitting laser power monitor and system
US9372317B1 (en) Temperature control of a component on an optical device
JP2005093791A (en) Optical receiver
JPS60195985A (en) Constant output semiconductor laser element
US4916305A (en) Optical detectors with selective bias voltage application
US20190033518A1 (en) Deposited si photodetectors for silicon nitride waveguide based optical interposer
JPS6211796B2 (en)
JP4321214B2 (en) Light receiving element and optical receiver
JPS61123190A (en) Manufacture of fixed-output semiconductor laser element
JPH0511609B2 (en)
JPH0121572Y2 (en)
CN114400266B (en) Photoelectric detector integrated with double absorption areas and preparation method thereof
KR100566216B1 (en) Semiconductor optical device being monolith integrated
KR100282611B1 (en) Photodetector for wavelength stabilization device and active wavelength measurement device and manufacturing method of the photodetector
WO2004017428A1 (en) Wavelength-demultiplexer with integrated monolithic photodiodes
JPH11163390A (en) Optical module
JP2667168B2 (en) Edge-receiving photodiode
JPS6320398B2 (en)
JPS62195610A (en) Photodetecting device
JPS60169724A (en) Photoelectric converter