JPS60195981A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS60195981A
JPS60195981A JP59051206A JP5120684A JPS60195981A JP S60195981 A JPS60195981 A JP S60195981A JP 59051206 A JP59051206 A JP 59051206A JP 5120684 A JP5120684 A JP 5120684A JP S60195981 A JPS60195981 A JP S60195981A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
semiconductor
incident light
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59051206A
Other languages
Japanese (ja)
Inventor
Masanori Ito
正規 伊藤
Teruo Sakurai
照夫 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59051206A priority Critical patent/JPS60195981A/en
Publication of JPS60195981A publication Critical patent/JPS60195981A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the frequency characteristic and to reduce the noise in a semiconductor photodetector having internal amplifying function by shortening a lifetime of holes generated by the incident light. CONSTITUTION:A semi-insulating GaAs substrate 11, N<-> type GaAs semiconductor layer (the first semiconductor layer) 12, an Al0.3Ga0.7As semiconductor layer (the second semiconductor layer) 13 of tunneling layer, an N<+> type GaAs semiconductor layer (the third semiconductor layer) 14 of contacting layer, and ohmic electrodes 15, 16 made of Au.Ge/Au are provided. The relationships of forbidden band width of the semiconductor layers are the layer 13> the layer 12, the layer 13> the layer 14. The boundary of the first and second semiconductor 12, 13 are in the lattice matched state, holes generated in the layer 12 are not trapped by the incident light, the lifetime of the holes is extremely short, and the pulse current corresponding to the incident light is less tailed.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、内部に増幅機能を有し、低雑音で高速動作が
可能である半導体受光装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an improvement in a semiconductor light receiving device that has an internal amplification function and is capable of low noise and high speed operation.

従来技術と問題点 従来、この種の半導体受光装置として第1図に見られる
構成のものが知られている。尚、これはMSM(met
aI semiconduct。
Prior Art and Problems Conventionally, as this type of semiconductor light receiving device, one having the configuration shown in FIG. 1 is known. In addition, this is MSM (met
aI semiconductor.

rmetal)ダイオードと呼ばれているものである。rmetal) diode.

図に於いて、1は半絶縁性GaAs基板、2はn−(或
いはノン・ドープ)型GaAs半導体層、3.4,5.
6はシ四ントキ電極、7は空乏層をそれぞれ示している
In the figure, 1 is a semi-insulating GaAs substrate, 2 is an n- (or non-doped) type GaAs semiconductor layer, 3.4, 5.
Reference numeral 6 indicates a horizontal electrode, and reference numeral 7 indicates a depletion layer.

第2図は第1図に示されているMSMダイオードにバイ
アス電圧を印加して第1図の一点鎖線に沿らて見た場合
のエネルギ・バンド・ダイヤグラムを表し、第1図に関
して説明した部分と同部分は同記号で指示しである。
FIG. 2 shows an energy band diagram when a bias voltage is applied to the MSM diode shown in FIG. 1 and viewed along the dashed-dotted line in FIG. The same parts are indicated by the same symbols.

図に於いて、8及び9は自然酸化膜、10はトラップ、
eはエレクトロン、hはホールをそれぞれ示している。
In the figure, 8 and 9 are natural oxide films, 10 is a trap,
e represents an electron and h represents a hole, respectively.

第1図並びに第2図に表されているMSMダイオードの
GaAs半導体層2に光が入射すると、iのGaAs半
導体層2に於いてエレクトロン・ホール対が発生し、エ
レクトロンeはショットキ114fH,4fi←達する
がホールhはシラ。ツリ電極3とGaAs半導体層2の
界面にトラップされ、その作用でエレクトロンeがショ
ットキ電極3側から引き込まれてトンネル電流が流れる
When light enters the GaAs semiconductor layer 2 of the MSM diode shown in FIGS. 1 and 2, an electron-hole pair is generated in the GaAs semiconductor layer 2 of i, and the electron e is Schottky 114fH,4fi I reach it, but hole h is blank. The electrons e are trapped at the interface between the tree electrode 3 and the GaAs semiconductor layer 2, and as a result of this action, electrons e are drawn in from the Schottky electrode 3 side, causing a tunnel current to flow.

従って、このMSMダイオードは内部増幅機能を有して
いる。
Therefore, this MSM diode has an internal amplification function.

ところで、前記のようにして発生したエレクトロン・ホ
ール対のうち、ホールhが第2図に矢印で示したような
部分でトラップされるのであれば・問題はない力j5、
界面状態に依るトラップ9にホールhがトラップされる
と、その場合に於けるホールhのライフ・タイムは長い
ので、その影響に依。
By the way, if the hole h among the electron-hole pairs generated as described above is trapped in the part shown by the arrow in Fig. 2, then there is no problem with the force j5,
When a hole h is trapped in a trap 9 that depends on the interface state, the life time of the hole h in that case is long, so it depends on the influence.

す、長い時間に亙すエレクトロンeの注入が行われる。In this case, electrons e are injected for a long time.

即ち、光の入射が停止した後も、その光に対するパルス
電流応答が長くテイルを引くことになって周波数特性は
劣化する。
That is, even after the incidence of light has stopped, the pulse current response to that light has a long tail, and the frequency characteristics deteriorate.

発明の目的 本発明は、内部増幅機能を有する半導体受光装置に於け
る構造に極めて簡単な改変を加えることに依って周波数
特性を向上し低雑音化しようとする。
OBJECTS OF THE INVENTION The present invention attempts to improve frequency characteristics and reduce noise by making extremely simple modifications to the structure of a semiconductor photodetector having an internal amplification function.

発明の構成 、 本発明に於ける半導体受光装置では、光吸収を行う
低キャリヤ濃度の第1の半導体層と、該第1の半導体層
上に形成されたオーミック電極と、同じく前記第1の半
導体層上に形成され該第1の半導体層に於ける禁制帯幅
より広いそれを有し且つキャリヤがトンネリングし得る
程度の厚さを有する低キャリヤ濃度の第2の半導体層と
、該第2の半導体層上に形成され該第2の半導体層に於
ける、禁制帯幅より狭いそれを有し且つキャリヤ供給機
能を有する高キャリヤ濃度の第3の半導体層と、該第3
の半導体層上に形成されたオーミック電極とを備えてな
ることを特徴とする構成を採っている。
Structure of the Invention: A semiconductor light-receiving device according to the present invention includes a first semiconductor layer with a low carrier concentration that absorbs light, an ohmic electrode formed on the first semiconductor layer, and a first semiconductor layer that absorbs light. a second semiconductor layer having a low carrier concentration, which is formed on the first semiconductor layer, has a forbidden band width wider than that of the first semiconductor layer, and has a thickness that allows carriers to tunnel; a third semiconductor layer formed on the semiconductor layer and having a high carrier concentration and having a bandgap narrower than the forbidden band width of the second semiconductor layer and having a carrier supply function;
The structure is characterized by comprising an ohmic electrode formed on a semiconductor layer.

前記第1の半導体層と第2の半導体層との界面は格子整
合された状態にあり、従って、該界面には界面状態に依
るトラップは存在せず、光の入射で第1の半導体層で発
生するエレクトロン・ホール対のホールがトラップされ
ることはなくなるので、ホールのライフ・タイムは極め
で短く、その結果、パルス電流応答性は良好になり、周
波数特性は向上する。
The interface between the first semiconductor layer and the second semiconductor layer is in a lattice-matched state. Therefore, there is no trap depending on the interface state at the interface, and the first semiconductor layer is not affected by the incidence of light. Since the holes of the generated electron-hole pairs are no longer trapped, the lifetime of the holes is extremely short, resulting in good pulse current response and improved frequency characteristics.

発明の実施例 第3図は本発明一実施例を表す要部切断側面図である。Examples of the invention FIG. 3 is a cutaway side view of essential parts showing one embodiment of the present invention.

図に於いて、11は半絶縁性GaAs基板、12はn−
型(或いはノン・ドープ)GaAs半導体層(第1の半
導体層)、13は□トンネリング層であるAI。1.G
a、、、Am半導体ji(第1半導体層)、14はコン
タクト層であるn+型GaAs半導体層(第3の半導体
層)、15は例えば金・ゲルマニウム/金(Au−Ge
/Au)からなるオーミック電極、16も同じ<Au−
Ge/Auからなるオーミック電極、hνは入射光、e
はエレクトロン、hはホールをそれぞれ示している。
In the figure, 11 is a semi-insulating GaAs substrate, 12 is an n-
type (or non-doped) GaAs semiconductor layer (first semiconductor layer), and 13 is an AI tunneling layer. 1. G
a, , Am semiconductor ji (first semiconductor layer), 14 is an n+ type GaAs semiconductor layer (third semiconductor layer) which is a contact layer, 15 is, for example, gold-germanium/gold (Au-Ge
/Au), 16 is also the same <Au-
Ohmic electrode made of Ge/Au, hν is incident light, e
indicates an electron, and h indicates a hole.

本実施例に於いて、第1の半導体層であるGaAs半導
体層12は厚さが例えば3〔μm〕程度であり、ドープ
した場合にはlXl0”〜1o′4〔1弓〕程度にする
In this embodiment, the GaAs semiconductor layer 12, which is the first semiconductor layer, has a thickness of, for example, about 3 [μm], and when doped, it has a thickness of about 1X10'' to 10'4 [1 arch].

第2の半導体層であるAI。、5Gao、IAs半導体
層13は厚さが例えば5O−100C人〕程度であって
、要はキャリヤが充分にトンネリングすることができれ
ば良く、ドープはしていない。
AI, which is the second semiconductor layer. , 5Gao, IAs semiconductor layer 13 has a thickness of, for example, about 5O-100C, and is not doped as long as carriers can tunnel sufficiently.

第3の半導体層であるGaAs半導体層14は厚さが例
えば0.5〜l 〔μm〕程度であり、不純物濃度はl
Xl0”(a1弓〕程度にする。
The GaAs semiconductor layer 14, which is the third semiconductor layer, has a thickness of, for example, about 0.5 to 1 [μm], and an impurity concentration of 1
Make it about Xl0” (a1 bow).

Alo、、Ga、、As半導体層13とオーミック電極
16との間の距離、従って、オーミック電極15とオー
ミック電極16との間の平面的に見た距*ziは1−1
0 (μm) (7)範囲で選択スルことができ、また
、オーミンク電極15及び16の輻i!2及び13は1
〜5〔μm〕の範囲で選択することができる。
The distance between the Alo, , Ga, , As semiconductor layer 13 and the ohmic electrode 16, therefore, the distance between the ohmic electrode 15 and the ohmic electrode 16 in plan view *zi is 1-1
0 (μm) (7) can be selected, and the radiation i! of Ohmink electrodes 15 and 16 can be selected within the range of (7). 2 and 13 are 1
It can be selected within the range of ~5 [μm].

第1の半導体層であるGaAs半導体層12と第2の半
導体層であるA16.2Qao、フAs半導体層13と
第3の半導体層であるGaAs半導体層14それぞれに
於ける禁制帯幅の関係は次ぎの通りである。
The relationship between the forbidden band widths of the GaAs semiconductor layer 12 which is the first semiconductor layer and the A16.2Qao semiconductor layer which is the second semiconductor layer, and the GaAs semiconductor layer 14 which is the third semiconductor layer is as follows. It is as follows.

Ad、、、Ga0.、As半導体層13>GaAs半導
体層12 、Alo、s Gao、y As半導体J113>Ga
As半導体層14 第4図は第3図について説明した実施例にバイアス電圧
を印加した場合のエネルギ・バンド・ダイヤグラムであ
り、第3図に関して説明した部分と同部分は同記号で指
示しである。
Ad, , Ga0. , As semiconductor layer 13 > GaAs semiconductor layer 12 , Alo, s Gao, y As semiconductor J113 > Ga
As semiconductor layer 14 FIG. 4 is an energy band diagram when a bias voltage is applied to the embodiment described in FIG. 3, and the same parts as those described in relation to FIG. 3 are indicated by the same symbols. .

本実施例では、光hνがGaAs半導体層12に入射す
ることに依ってエレクトロン・ホール対が発生し、エレ
クトロンeはオーミック電極16に到達するがホールh
はGaAs半導体層12とAlo、、Gao、、As半
導体層13との界面にトラップされ、そこにホールhが
存在することに依っ7caAs半1体層14からのエレ
クトロンeがAI。、、Ga、、ッAs半導体層13を
トンネリングしてGaAs半導体層12中に引き込まれ
るので、ここに、所謂、光励起キャリヤの増幅が行われ
るものである。
In this embodiment, electron-hole pairs are generated by the light hν entering the GaAs semiconductor layer 12, and the electron e reaches the ohmic electrode 16, but the hole hv
is trapped at the interface between the GaAs semiconductor layer 12 and the Alo, Gao, and As semiconductor layer 13, and due to the presence of the hole h there, the electron e from the 7caAs semi-uniform layer 14 becomes AI. ,,Ga,... Since they tunnel through the As semiconductor layer 13 and are drawn into the GaAs semiconductor layer 12, so-called optically excited carriers are amplified.

本実施例に於いては、ホールhがトラップされるQaf
i、s半導体層12とA16.z Ga6.7 As半
導体層13との界面は格子整合されていて、そこには界
面状態に依るトラップなどは存在しない為、そこにトラ
ップされるホールhのライフ・タイムは短いので、入射
光hνに対応するパルス電流がテイルを引くことは少な
くなり、従って、周波数特性は向上する。
In this embodiment, Qaf where the hole h is trapped is
i, s semiconductor layer 12 and A16. z The interface with the Ga6.7 As semiconductor layer 13 is lattice matched, and there are no traps depending on the interface state, so the life time of holes h trapped there is short, so that the incident light hν The pulse current corresponding to the current tail is less likely to tail, and the frequency characteristics are therefore improved.

第5図は本発明に於ける他の実施例の要部切断側面図を
表している。
FIG. 5 shows a cutaway side view of a main part of another embodiment of the present invention.

図に於いて、21はInP基板、22はIno、5aG
ao、47As半導体層、23はInP半導体層、24
はI n o、 ssG a 11.4?A 8半導体
層、25及び26ははオーミック電極をそれぞれ示して
いる。
In the figure, 21 is InP substrate, 22 is Ino, 5aG
ao, 47 As semiconductor layer, 23 InP semiconductor layer, 24
is I no, ssG a 11.4? A 8 semiconductor layer, 25 and 26 indicate ohmic electrodes, respectively.

この実施例は、半導体材料が相違するのみで、キャリヤ
濃度、エピタキシャル成長の半導体層に於ける厚さ等は
第3図の実施例と変わりない。
This embodiment differs only in the semiconductor material, but the carrier concentration, the thickness of the epitaxially grown semiconductor layer, etc. are the same as the embodiment shown in FIG.

第6図は本発明の半導体受光装置と光ファイバとの結合
効率が良好であるようにする為の電極構成を例示する要
部平面図であ′志。
FIG. 6 is a plan view of a main part illustrating an electrode configuration for achieving good coupling efficiency between the semiconductor light receiving device of the present invention and an optical fiber.

図に於いて、31及び32は櫛歯゛状部分番有する電極
、33は光ファイバをそれぞれ示してεする。
In the figure, reference numerals 31 and 32 represent electrodes having comb-shaped portion numbers, and reference numeral 33 represents an optical fiber.

発明の効果“ 本発明の半導体受光装置では、光吸収を行う低重中リヤ
濃度の第1の半導体層と、該第1の半導体層上に形成さ
れたオーミック電極と、同じく゛前記第1の半導体層上
に形成され該第1の半導体層に於ける禁制帯幅より広い
それを有し且つキャリヤがトンネリングし得る程度の厚
さを有する低キャリヤ濃度の第2の半導体層と、該第2
の半導体層上に形成され該第2の半導体層に於ける禁制
帯幅より狭いそれを有し且つキャリヤ供給機能をゆうす
る高キャリヤ濃度の第3の半導体層と、該第3の半導体
層上に形成されたオーミック電極とを備えてなることを
特徴とする構成を採っている。
Effects of the Invention In the semiconductor light receiving device of the present invention, the first semiconductor layer having a low concentration of light, which absorbs light, and the ohmic electrode formed on the first semiconductor layer are similar to the first semiconductor layer. a second semiconductor layer with a low carrier concentration, which is formed on the semiconductor layer and has a forbidden band width wider than that of the first semiconductor layer and has a thickness that allows carriers to tunnel;
a third semiconductor layer formed on the semiconductor layer with a high carrier concentration and having a forbidden band width narrower than that of the second semiconductor layer and having a carrier supply function; The structure is characterized in that it includes an ohmic electrode formed on the ohmic electrode.

このような構成を採っていることから、第1の半導体層
に光が入射することに依って発生するキャリヤ対の中、
一方のキャリヤは直ちに第10半導体層上に形成された
オーミック電極に達し、他方のキャリヤは第1の半導体
層と第2の半導体層との界面にトラップされる。その他
方のキャリヤの存在に依って、一方のキャリヤが第3の
半導体層から第2の半導体層をトンネリングして第1の
半導体層に注入される。この過程に於いて、第1品半導
体層と第2の半導体層との界面は格子整合されていて、
そこには界面状態に起因するトラップは存在しない為、
トラップされる他方のキャリヤのライフ・タイムは極め
て短く、従って、その他方のキャリヤの存在に依って第
1の半導体層に流れる電流の切れが悪くなる虞は皆無で
あり、前記入射光に応答するパルス電流の周波数特性は
極めて良好である。そして、このような半導体受光装置
を製造するには、現用の技術で充分可能であり、特殊な
技術を必要とする工程は存在しない。
Since such a configuration is adopted, among the carrier pairs generated when light enters the first semiconductor layer,
One carrier immediately reaches the ohmic electrode formed on the tenth semiconductor layer, and the other carrier is trapped at the interface between the first semiconductor layer and the second semiconductor layer. Depending on the presence of the other carrier, one carrier tunnels from the third semiconductor layer through the second semiconductor layer and is injected into the first semiconductor layer. In this process, the interface between the first semiconductor layer and the second semiconductor layer is lattice matched,
Since there are no traps caused by the interface state,
The life time of the other trapped carriers is extremely short, so there is no possibility that the presence of the other carriers will impede the current flowing through the first semiconductor layer and respond to the incident light. The frequency characteristics of the pulse current are extremely good. In addition, to manufacture such a semiconductor light receiving device, it is possible to sufficiently manufacture the semiconductor light receiving device using current technology, and there is no process that requires special technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の要部切断側面図、第2図は第1図に見
られる従来例に於けるエネルギ・バンド・ダイヤグラム
、第3図は本発明一実施例の要部切断側面図、第4図は
第3図に見られる実施例に於けるエネルギ・バンド・ダ
イヤグラム、第5図は本発明に於ける他の実施例の要部
切断側面図、第6図は光ファイバと結合する際に有利な
電極パターンを有する本発明一実施例の要部平面図をそ
れぞれ表している。 図に於いて、11は半絶縁性GaAs基板、12はn−
型(或いはノン・ドープ)GaAs半導体層、13はA
lo、s Gao、7 As半導体層、14はn+型G
aAs半導体層、15及び16はオーミック電極、eは
エレクトロン、hはホール、hνは入射光をそれぞれ示
している。 特許出願人 富士通株式会社 代理人弁理士 相 谷 昭 司 代理人弁理士 渡 邊 弘 − 第1図 第3図 第4図 第6図 1
FIG. 1 is a cutaway side view of the main part of the conventional example, FIG. 2 is an energy band diagram of the conventional example shown in FIG. 1, and FIG. 3 is a cutaway side view of the main part of an embodiment of the present invention. FIG. 4 is an energy band diagram in the embodiment shown in FIG. 3, FIG. 5 is a cutaway side view of main parts of another embodiment of the present invention, and FIG. 6 is coupled with an optical fiber. 1 and 2 respectively represent a plan view of a main part of an embodiment of the invention with a particularly advantageous electrode pattern; In the figure, 11 is a semi-insulating GaAs substrate, 12 is an n-
type (or non-doped) GaAs semiconductor layer, 13 is A
lo, s Gao, 7 As semiconductor layer, 14 is n+ type G
In the aAs semiconductor layer, 15 and 16 are ohmic electrodes, e is an electron, h is a hole, and hv is incident light. Patent Applicant Fujitsu Ltd. Representative Patent Attorney Shoji Aitani Representative Patent Attorney Hiroshi Watanabe - Figure 1 Figure 3 Figure 4 Figure 6 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 光吸収を行う低キャリヤ濃度の第1の半導体層と、該第
1の半導体層上に形成されたオーミック電極と、同じく
前記第1の半導体層上に形成され該第1の半導体層に於
ける禁制帯幅より広いそれを有し且つキャリヤがトンネ
リ□ングし得る程度の厚さを有する低キャリヤ濃度の第
2の半導体層と、該第2の半導体層上に形成され該第2
の半導体層に於ける禁制帯幅より狭いそれを有し且つキ
ャリヤ供給機能を有する高キャリヤ濃度の第3の半導体
層と、該第3の半導体層上に形成されたオーミック電極
とを備えてなることを特徴とする゛半導体受光装置。
a first semiconductor layer with a low carrier concentration that absorbs light; an ohmic electrode formed on the first semiconductor layer; and an ohmic electrode formed on the first semiconductor layer and in the first semiconductor layer. a second semiconductor layer with a low carrier concentration that is wider than the forbidden band width and has a thickness that allows carriers to tunnel;
A third semiconductor layer having a high carrier concentration and having a forbidden band width narrower than the forbidden band width of the semiconductor layer of the semiconductor layer and having a carrier supply function, and an ohmic electrode formed on the third semiconductor layer. ``Semiconductor photodetector device'' characterized by:
JP59051206A 1984-03-19 1984-03-19 Semiconductor photodetector Pending JPS60195981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051206A JPS60195981A (en) 1984-03-19 1984-03-19 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051206A JPS60195981A (en) 1984-03-19 1984-03-19 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS60195981A true JPS60195981A (en) 1985-10-04

Family

ID=12880426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051206A Pending JPS60195981A (en) 1984-03-19 1984-03-19 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS60195981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015367A1 (en) * 1992-12-21 1994-07-07 The Furukawa Electric Co., Ltd. Distorted superlattice semiconductor photodetecting element with side-contact structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015367A1 (en) * 1992-12-21 1994-07-07 The Furukawa Electric Co., Ltd. Distorted superlattice semiconductor photodetecting element with side-contact structure
US5608230A (en) * 1992-12-21 1997-03-04 The Furukawa Electric Co., Ltd. Strained superlattice semiconductor photodetector having a side contact structure

Similar Documents

Publication Publication Date Title
US5654578A (en) Superlattice avalanche photodiode with mesa structure
JPS6328506B2 (en)
JPH0728047B2 (en) Phototransistor
JPH05211344A (en) Avalanche photodiode
US5324959A (en) Semiconductor optical device having a heterointerface therein
Gammel et al. High-speed photoconductive detectors using GaInAs
JPS60195981A (en) Semiconductor photodetector
JPS61170079A (en) Semiconductor light-receiving element
CA1182200A (en) High sensitivity photon feedback photodetectors
JPH05343731A (en) Photodetector
Law et al. State‐of‐the‐art performance of GaAlAs/GaAs avalanche photodiodes
JP2938479B2 (en) FET type photodetector
JP2671562B2 (en) Phototransistor composed of gallium arsenide and germanium
JPH0265279A (en) Semiconductor photodetecting element
JP2000124493A (en) Semiconductor light receiving element
US4999695A (en) MSM type semiconductor light responsive element
JP2813217B2 (en) Semiconductor device
JPS59232470A (en) Semiconductor light receiving element
Li et al. Demonstration of dual gain mechanism in an InGaAs/InAlAs superlattice photodiode
JP2893092B2 (en) Avalanche photodiode
JP2506655B2 (en) Semiconductor light receiving device
JP2995751B2 (en) Semiconductor light receiving element
JPH08148715A (en) Optical semiconductor device and optical integrated circuit device
JPH04123473A (en) Semiconductor device
JPS6237976A (en) Light conducting type light detector