JPS60195853A - Microwave ion source - Google Patents

Microwave ion source

Info

Publication number
JPS60195853A
JPS60195853A JP59049064A JP4906484A JPS60195853A JP S60195853 A JPS60195853 A JP S60195853A JP 59049064 A JP59049064 A JP 59049064A JP 4906484 A JP4906484 A JP 4906484A JP S60195853 A JPS60195853 A JP S60195853A
Authority
JP
Japan
Prior art keywords
gas
ion source
boron
microwave
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59049064A
Other languages
Japanese (ja)
Other versions
JPH0572053B2 (en
Inventor
Katsumi Tokikuchi
克己 登木口
Hidemi Koike
英巳 小池
Kuniyuki Sakumichi
訓之 作道
Osami Okada
岡田 修身
Takeshi Ninomiya
健 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59049064A priority Critical patent/JPS60195853A/en
Priority to DE8585101560T priority patent/DE3584105D1/en
Priority to EP85101560A priority patent/EP0154824B1/en
Priority to KR1019850001084A priority patent/KR920003156B1/en
Priority to US06/711,824 priority patent/US4658143A/en
Publication of JPS60195853A publication Critical patent/JPS60195853A/en
Publication of JPH0572053B2 publication Critical patent/JPH0572053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To stably extract boron beams for a long period of time by guiding boron trifluoride or boron trichloride as discharge gas and mixing a small amount of gas that produces a chemical substance reacting to boron. CONSTITUTION:A leak valve 14 is mounted on a gas introduction pipe 6 and BF3 gas and O2 gas are mixed in it. When the mixing ratio of O2 gas is set to 5%, 10% or 20%, the proportion of B<+> contained in an ion beam that is extracted in proportion to the concentration of O2 gas is apt to decrease slightly, but deposit is not observed in a discharge box 5 and at an ion beam exit opening section 12. As a result, a B<+> beam of 60keV, 4mA or more can stably be obtained over 4hr or more by mass-separating an ion beam extracted from an ion source by a fan-shaped magnetic field type mass separator. An effect starts appearing from the Bf3 gas pressure of 0.1% as the O2 concentration and the effect is increased by an increase in the O2 concentration.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はマイクロ波イオン源の性能向上に係り。[Detailed description of the invention] [Field of application of the invention] The present invention relates to improving the performance of microwave ion sources.

特にBFs又はB CQ 3ガスを導入してB+ビーム
を長時間、安定に取得するに好適なマイクロ波イオン源
に関する。
In particular, the present invention relates to a microwave ion source suitable for stably obtaining a B+ beam for a long time by introducing BFs or B CQ 3 gas.

〔発明の背景〕[Background of the invention]

従来のマイクロ波イオン源の構造を第1図に示す。マイ
クロ波イオン源は、マイクロ波を伝播する導波管である
矩形導波管2a、2b、リッジ導波管構造を形成するリ
ッジ電極4.リッジ電極4間に設けられたボロンナイト
ライド製の放電箱5、及びイオンビーム9を引出す引出
し電極系7a。
The structure of a conventional microwave ion source is shown in FIG. The microwave ion source includes rectangular waveguides 2a and 2b that are waveguides for propagating microwaves, and a ridge electrode 4 that forms a ridge waveguide structure. A discharge box 5 made of boron nitride provided between the ridge electrodes 4 and an extraction electrode system 7a for extracting the ion beam 9.

7b、7cで構成される。さらに、放電箱5にはコイル
8の励磁で発生する軸方向磁場が印加され、試料ガスが
導入バイブロを通し導入される。第2図に放電箱の詳細
を示す、第1図のイオン源において、半導体用イオン打
込みで用いられるP+(リン)IAll”(ヒ素)イオ
ン等のビームを得る場合、放電ガスには水素化合物であ
るP H3(ホスフィン)、A8H3(アルシン)等が
用いられる。この場合、P”、As+イオンビームは長
時間、安定に引出せる。しかし、半導体用のイオン打込
みで必要とするB+ビームを得るため、BF3ガスを導
入すると、以下の問題点が発生し、長時間にわたり大電
流イオンビームを安定に取得することは困難である。す
なわち、 (1)イオンビーム引出し開口部(第1図中、12の部
分)での析出物の堆積 (2)放電箱5内の析出物の堆積 が発生する。(1)があると、開口部面積が減少するた
め引出しビーム電流の減少を引きおこす。
Consists of 7b and 7c. Further, an axial magnetic field generated by excitation of the coil 8 is applied to the discharge box 5, and a sample gas is introduced through the introduction vibro. When using the ion source shown in Figure 1, which shows details of the discharge box in Figure 2, to obtain a beam such as P+ (phosphorus) IAll'' (arsenic) ions used in semiconductor ion implantation, the discharge gas contains hydrogen compounds. Certain PH3 (phosphine), A8H3 (arsine), etc. are used. In this case, P", As+ ion beams can be extracted stably for a long time. However, when BF3 gas is introduced to obtain a B+ beam required for ion implantation for semiconductors, the following problems occur, and it is difficult to stably obtain a large current ion beam over a long period of time. That is, (1) deposition of precipitates at the ion beam extraction opening (portion 12 in FIG. 1); and (2) deposition of precipitates within the discharge box 5. (1) causes a decrease in the extraction beam current because the aperture area decreases.

ちなみに、B F sガスを導入した実験によれば、約
4時間のイオン源の運転後、開口部面積は約半分になる
。一方、(2)が起ると、析出物がしばしば、はく離す
るため、プラズマ状態が不安定になる。また、はく離物
質が電t17bをたたき、これから発生する二次電子が
火種になって、正の高電圧が印加された電極7aと、負
の高電圧が印加された電極7bの間で、異常放電が発生
した。このため、安定にビームを得ることは困難であっ
た。
Incidentally, according to an experiment in which B F s gas was introduced, the opening area was reduced to about half after operating the ion source for about 4 hours. On the other hand, when (2) occurs, the precipitates often separate, making the plasma state unstable. In addition, the peeling substance strikes the electric current t17b, and the secondary electrons generated from this become a spark, causing an abnormal discharge between the electrode 7a to which a positive high voltage is applied and the electrode 7b to which a negative high voltage is applied. There has occurred. For this reason, it was difficult to obtain a stable beam.

BF3又はB CQ 3ガス使用の時にのみ特徴的に析
出が発生する理由としては、マイクロ波放電で発生する
フッ素又は塩素原子が化学的に極めて活性であるため、
放電箱の材質であるボロンナイトライド13を腐蝕、解
離するためと考えられる。
The reason why precipitation characteristically occurs only when using BF3 or B CQ3 gas is that fluorine or chlorine atoms generated by microwave discharge are chemically extremely active.
This is thought to be due to corrosion and dissociation of boron nitride 13, which is the material of the discharge box.

事実、析出物を物理分析したところ、イオン化箱構造材
として使用しているボロンナイトライドであることが同
定された。この様な析出物の発生を防ぐため、放電箱を
熱絶縁構造とし、その温度を上げ、析出物を熱解離、あ
るいは蒸発させる工夫が有効である。しかしながら、放
電箱の熱絶縁に対する構造上の制約から、温度上昇にも
限度がある(800〜900℃位)、シたがって、熱絶
縁法だけで、実用上、問題とならないレベルにまで、析
出量を抑えることは、困難であった。
In fact, physical analysis of the precipitate revealed that it was boron nitride, which is used as a structural material for the ionization box. In order to prevent the occurrence of such precipitates, it is effective to provide the discharge box with a thermally insulating structure and raise its temperature to thermally dissociate or evaporate the precipitates. However, due to structural constraints on the thermal insulation of the discharge box, there is a limit to the temperature rise (approximately 800 to 900°C).Therefore, thermal insulation methods alone can reduce precipitation to a level that does not pose a practical problem. It was difficult to keep the amount down.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、マイクロ波イオン源にBF3或いはB
 CR3ガスを導入し、B+ビームを得るにあたり、長
時間、安定にビームを引出すため、放電箱内に析出物が
付かないイオン源を提供することにある。
The object of the present invention is to add BF3 or B to a microwave ion source.
The object of the present invention is to provide an ion source that does not cause deposits inside the discharge box in order to stably extract the beam for a long time when introducing CR3 gas and obtaining a B+ beam.

〔発明の概要〕[Summary of the invention]

磁場中のマイクロ波放電で生成するプラズマの利用分野
としては、イオン源プラズマへの応用の他、このプラズ
マによるSt(シリコン等のエツチング法がある。マイ
クロ波プラズマエツチングの技術によれば、一般に酸素
ガスの混入により。
Application fields of plasma generated by microwave discharge in a magnetic field include application to ion source plasma, as well as etching of St (silicon, etc.) using this plasma.According to microwave plasma etching technology, oxygen Due to gas contamination.

エツチング速度が低下することが知られている。It is known that the etching speed decreases.

また、マイクロ波イオン源において、BF3ガスを導入
してB+ビームを引出す場合、真空容器内の残留ガスで
あるH2Oが多いと、酸素を含んだ化合物イオンBO”
 、BOF+イオン等が比較的多く発生検知されること
がわかっている。以上のことから、マイクロ波イオン源
に02ガスを積極的に混入させれば、放電箱材質のBN
のエツチングが押えられると同時に、解離したBN分子
がBO”、BOF+等に変わり、析出が防止できると予
想される。また析出物が仮に発生しても、この析出物が
BO” 、BOF+の形で逃げていく′!J)ら、析出
速度の著しい減少が期待できる。なお、B+のmA級の
イオンビームを得るイオン源としては、熱フィラメント
による低電圧アーク放電を利用したイオン源がある。こ
の様なイオン源でもBF3ガスが使われる。一方、熱フ
イラメン1−は酸素ガスで激しく腐蝕されるため、安定
なり+ビーム取得を目的として酸素ガス(02)を導入
しても長時間動作は期待できない、この意味で。
In addition, in a microwave ion source, when introducing BF3 gas and extracting a B+ beam, if there is a large amount of H2O, which is the residual gas in the vacuum chamber, compound ions containing oxygen BO"
, BOF+ ions, etc. are known to be generated and detected in relatively large numbers. From the above, if 02 gas is actively mixed into the microwave ion source, BN of the discharge box material can be
At the same time as the etching is suppressed, the dissociated BN molecules change to BO'', BOF+, etc., and it is expected that precipitation can be prevented.Also, even if a precipitate occurs, this precipitate will be in the form of BO'', BOF+, etc. And run away'! J), a significant decrease in the precipitation rate can be expected. Note that as an ion source for obtaining a B+ mA class ion beam, there is an ion source that utilizes low voltage arc discharge using a hot filament. BF3 gas is also used in such an ion source. On the other hand, since the thermal filament 1- is severely corroded by oxygen gas, long-term operation cannot be expected even if oxygen gas (02) is introduced for the purpose of obtaining a stable + beam.

02ガス導入は、熱フィラメントを含まなt)マイクロ
波イオン源に特徴的に活用できる手法である。
The 02 gas introduction is a method that can be uniquely utilized for t) microwave ion sources that do not include a hot filament.

なお、本発明の概要説明では、酸素ガスを代表例にとっ
たが、硼素と反応して容易に化合物を形成すると考えら
れるガス、例えばH2ガスなどでも同様に、析出物の減
少効果が期待できる。
Although oxygen gas is used as a representative example in the general explanation of the present invention, the same effect of reducing precipitates can be expected with gases that are thought to react with boron and easily form compounds, such as H2 gas. .

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を第3図により説明する。図で
はガス導入バイブロに、リークバルブ14を数個け、B
F3ガスと02ガスを混入した。
An embodiment of the present invention will be described below with reference to FIG. In the figure, several leak valves 14 are installed in the gas introduction vibro.
F3 gas and 02 gas were mixed.

Ozガスの混入量を5%、10%、20%にしたところ
、02ガスの濃度に比例して引出されるイオンビームに
含まれるB+の割合がやや減少する傾向があるものの、
放電箱5内やイオンビーム出ロ開ロ部12には析出物は
観測されなかった。その結果、イオン源から引出された
ビームを扇形磁場形質量分離器で質量分離することによ
り、60keV、4mA以上のB+ビームが4時間以上
にわたって安定に取得できた。02濃度としてはB F
 sガス圧の0.1%から効果が現われはじめ、O2濃
度の増加でその効果は増大した。
When the amount of Oz gas mixed was set to 5%, 10%, and 20%, the proportion of B+ contained in the extracted ion beam tended to decrease slightly in proportion to the concentration of 02 gas.
No precipitates were observed inside the discharge box 5 or in the ion beam exit opening 12. As a result, by mass-separating the beam extracted from the ion source using a fan-shaped magnetic field mass separator, a B+ beam of 60 keV and 4 mA or more was stably obtained for more than 4 hours. 02 concentration is B F
The effect began to appear from 0.1% of the s gas pressure, and the effect increased as the O2 concentration increased.

プラズマ中では種々の原子、分子イオンの発生があるほ
か、化学的に活性な、中性の原子2分子が多量に発生す
る。その量や成分比は、マイクロ波電力、温度、ガス圧
等により複雑に変化する。
In addition to the generation of various atoms and molecular ions in plasma, a large amount of two chemically active and neutral atoms are generated. The amount and component ratio vary in a complicated manner depending on microwave power, temperature, gas pressure, etc.

したがってOzガスの導入により析出物のない放電維持
が可能となった理由については、今後、詳細な化学的解
析を行う必要がある。
Therefore, it is necessary to conduct a detailed chemical analysis in the future as to why the introduction of Oz gas made it possible to maintain a discharge without any precipitates.

第4図は、本発明の別の実施例を説明する図である。第
4図では、BF3ガスと02ガスを別の導入パイプを通
して放電箱内に導入したものである。本実施例でも第3
図の実施例と同様に、析出物の見られない安定なり+ビ
ーム取得が実現できた。
FIG. 4 is a diagram illustrating another embodiment of the present invention. In FIG. 4, BF3 gas and 02 gas are introduced into the discharge box through separate introduction pipes. In this example, the third
As in the example shown in the figure, stable beam acquisition with no visible precipitates was achieved.

以上、第3図ないし第4図の実施例ではそれぞれ2個の
ニードルバルブを用いてガスを混合したが、初めから混
合されたガスを充填したボンベを用いれば第1図のよう
に一つのニードルバルブを通してガスを導入できること
は明らかである。
As mentioned above, in the embodiments shown in Figs. 3 and 4, two needle valves were used to mix the gases, but if a cylinder filled with the mixed gas from the beginning is used, one needle valve is used as shown in Fig. 1. It is clear that gas can be introduced through the valve.

この他、BF3又はB CQ sガスに混入させるガス
として、酸素を含むガス、例えばCO2を用いた時も、
酸素ガス導入の場合と同様の効果が得られた。また分子
式中に、酸素を原子を含むガスを二種類以」二混合させ
た時も、同様に安定なり+ビーム取得が行なえた。とこ
ろで、Bの化合物の中では、82H8等の水素化合物が
比較的安定に存在することが知られている。したがって
、H2ガスを混入させれば、反応性の水素ラジカル粒子
が析出物等と反応し、析出減少効果が期待できる。
In addition, when a gas containing oxygen, such as CO2, is used as a gas to be mixed with BF3 or B CQ s gas,
The same effect as in the case of oxygen gas introduction was obtained. Furthermore, when two or more types of gases containing oxygen atoms in the molecular formula were mixed, stability was achieved in the same way, and beam acquisition was possible. By the way, among the compounds of B, hydrogen compounds such as 82H8 are known to exist relatively stably. Therefore, when H2 gas is mixed, reactive hydrogen radical particles react with precipitates, etc., and an effect of reducing precipitation can be expected.

このため、BFIガスにH2ガスを混入して実験したと
ころ、放電箱内に析出物の発生しない安定なり+ビーム
引出しが実現できた。
For this reason, when we conducted an experiment by mixing H2 gas into the BFI gas, we were able to achieve stable beam extraction without the formation of precipitates in the discharge box.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、BF3又はBCQ3ガス導入時に発生
する析出物の堆積を防止でき、4時間以上にわたって4
mA以上の従来にない大電流B+ビームが安全に取得で
きた。半導体イオン打込み装置の生産ラインでの使用打
込み電流が現在2mA前後であることを考えると、本発
明により、大電流B1−打込みが実用レベルで初めて実
施可能となり、実用に供しその効果は著しく大である。
According to the present invention, it is possible to prevent the deposition of precipitates that occur when introducing BF3 or BCQ3 gas, and
We were able to safely obtain a B+ beam with an unprecedentedly high current of more than mA. Considering that the implantation current used in the production line of semiconductor ion implantation equipment is currently around 2 mA, the present invention makes it possible to implement large current B1-implantation for the first time at a practical level, and the effect of the implementation is extremely large. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマイクロ波イオン源を説明する図、第2
図はマイクロ波イオン源の放電部を説明する詳細図、第
3図は本発明に基づ〈実施例を説明する図、第4図は本
発明の別の実施例を説明する図である。 ■・・・マグネトロン(マイクロ波発移振器)、2a。 2b・・・矩形導波管、3・・・真空シール板、4・・
・リッジ電極、訃・・放電箱、6・・・ガス導入パイプ
、7a。 7b、7c・・・引出し電極系、8・・・ソレノイドコ
イル、9・・・イオンビーム、10・・・碍子、11・
・・絶縁物、12・・・イオンビーム引出し開口部、1
3・・・ボロンナイトライド製放電箱、14・・・ガス
リークバルブ。 児1 口 箇 2 口 第3 図
Figure 1 is a diagram explaining a conventional microwave ion source, Figure 2 is a diagram explaining a conventional microwave ion source.
FIG. 3 is a detailed diagram illustrating a discharge section of a microwave ion source, FIG. 3 is a diagram illustrating an embodiment based on the present invention, and FIG. 4 is a diagram illustrating another embodiment of the present invention. ■...Magnetron (microwave oscillator), 2a. 2b... Rectangular waveguide, 3... Vacuum seal plate, 4...
- Ridge electrode, tail...discharge box, 6...gas introduction pipe, 7a. 7b, 7c... Extraction electrode system, 8... Solenoid coil, 9... Ion beam, 10... Insulator, 11.
...Insulator, 12...Ion beam extraction opening, 1
3... Boron nitride discharge box, 14... Gas leak valve. Child 1 Mouth 2 Mouth 3 Figure

Claims (1)

【特許請求の範囲】 ■、磁場中のマイクロ波放電によって高密度プラズマを
発生し、このプラズマからイオンビームを引出すマイク
ロ波イオン源において、放電ガスとして三弗化硼素(B
F3)又は三塩化硼素(BCQ:l)を導入し、さらに
硼素と反応して化学物を作る微量のガスを混入させ、硼
素イオンビームを取出すことを特徴とするマイクロ波イ
オン源。 2、特許請求の範囲第1項記載のマイクロ波イオン源に
おいて、混入ガスが酸素ガスであることを特徴としたマ
イクロ波イオン源。 3、特許請求の範囲第1項記載のマイクロ波イオン源に
おいて、混入ガスが酸素を含むガス、例えばG Or 
CO2r N OHN 20 t S O2rHzO等
であることを特徴としたマイクロ波イオン源。 4、特許請求の範囲第1項記載のマイクロ波イオン源に
おいて、BF2ガスに混ぜるガスが水素であることを特
徴としたマイクロ波イオン源。 5、特許請求の範囲第1項記載のマイクロ波イオン源に
おいて、混入させるガスが2種類以上のガスを含む混合
ガスであることを特徴としたマイクロ波イオン源。
[Claims] (1) In a microwave ion source that generates high-density plasma by microwave discharge in a magnetic field and extracts an ion beam from this plasma, boron trifluoride (B) is used as a discharge gas.
A microwave ion source characterized in that F3) or boron trichloride (BCQ:l) is introduced, a trace amount of gas that reacts with boron to form a chemical substance is mixed in, and a boron ion beam is extracted. 2. The microwave ion source according to claim 1, wherein the mixed gas is oxygen gas. 3. In the microwave ion source according to claim 1, the mixed gas is a gas containing oxygen, such as G Or
A microwave ion source characterized by being CO2r N OHN 20 t S O2rHzO, etc. 4. The microwave ion source according to claim 1, wherein the gas mixed with the BF2 gas is hydrogen. 5. The microwave ion source according to claim 1, wherein the gas to be mixed is a mixed gas containing two or more types of gas.
JP59049064A 1984-03-16 1984-03-16 Microwave ion source Granted JPS60195853A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59049064A JPS60195853A (en) 1984-03-16 1984-03-16 Microwave ion source
DE8585101560T DE3584105D1 (en) 1984-03-16 1985-02-13 ION SOURCE.
EP85101560A EP0154824B1 (en) 1984-03-16 1985-02-13 Ion source
KR1019850001084A KR920003156B1 (en) 1984-03-16 1985-02-21 Ion source
US06/711,824 US4658143A (en) 1984-03-16 1985-03-14 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049064A JPS60195853A (en) 1984-03-16 1984-03-16 Microwave ion source

Publications (2)

Publication Number Publication Date
JPS60195853A true JPS60195853A (en) 1985-10-04
JPH0572053B2 JPH0572053B2 (en) 1993-10-08

Family

ID=12820649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049064A Granted JPS60195853A (en) 1984-03-16 1984-03-16 Microwave ion source

Country Status (1)

Country Link
JP (1) JPS60195853A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237652A (en) * 1986-04-08 1987-10-17 Nec Corp Duoplasmatoron ion source
US6927148B2 (en) 2002-07-15 2005-08-09 Applied Materials, Inc. Ion implantation method and method for manufacturing SOI wafer
US7064049B2 (en) 2002-07-31 2006-06-20 Applied Materials, Inv. Ion implantation method, SOI wafer manufacturing method and ion implantation system
JP2019525381A (en) * 2016-06-21 2019-09-05 アクセリス テクノロジーズ, インコーポレイテッド Implantation with solid aluminum iodide (ALI3) to generate aluminum atomic ions and in situ cleaning of aluminum iodide and its associated by-products
KR20200015527A (en) * 2017-06-05 2020-02-12 액셀리스 테크놀러지스, 인크. Hydrogen cavity gas when using aluminum iodide as ion source material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237652A (en) * 1986-04-08 1987-10-17 Nec Corp Duoplasmatoron ion source
US6927148B2 (en) 2002-07-15 2005-08-09 Applied Materials, Inc. Ion implantation method and method for manufacturing SOI wafer
US7064049B2 (en) 2002-07-31 2006-06-20 Applied Materials, Inv. Ion implantation method, SOI wafer manufacturing method and ion implantation system
JP2019525381A (en) * 2016-06-21 2019-09-05 アクセリス テクノロジーズ, インコーポレイテッド Implantation with solid aluminum iodide (ALI3) to generate aluminum atomic ions and in situ cleaning of aluminum iodide and its associated by-products
KR20200015527A (en) * 2017-06-05 2020-02-12 액셀리스 테크놀러지스, 인크. Hydrogen cavity gas when using aluminum iodide as ion source material
JP2020522838A (en) * 2017-06-05 2020-07-30 アクセリス テクノロジーズ, インコーポレイテッド Hydrogen cogas when aluminum iodide is used as the ion source material

Also Published As

Publication number Publication date
JPH0572053B2 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
KR920003156B1 (en) Ion source
JP4641544B2 (en) Ion source
Kaufman et al. Ion source design for industrial applications
US5977552A (en) Boron ion sources for ion implantation apparatus
US4123316A (en) Plasma processor
US4496843A (en) Method for producing metal ions
ATE179831T1 (en) RESONANCE PLASMA SOURCE AND METHOD OF OPERATION PRODUCED BY ELECTRON ZYLOTRON
CN103222029A (en) Implementation of co-gases for germanium and boron ion implants
JPS6113626A (en) Plasma processor
TW201903815A (en) Method of implanting dopant into workpiece
JPS60195853A (en) Microwave ion source
Okumura et al. Cesium mixing in the multi‐ampere volume H− ion source
Clausnitzer et al. An electron beam ion source for the production of multiply charged heavy ions
US20090087970A1 (en) Method of producing a dopant gas species
JPS60205951A (en) Microwave ion source for aluminium ion
Otte et al. A modified broad beam ion source for low-energy hydrogen implantation
JPH11238485A (en) Ion implanting method
JPS62237652A (en) Duoplasmatoron ion source
Flemming Penning source for ion implantation
KR900008155B1 (en) Method and apparatus for forming a thin fim
Masuda et al. Formation of Hydrogen Negative Ions in Mercury Vapour
Kim et al. Characteristics of Hall effect plasma accelerator for industrial application
JPS5675573A (en) Ion etching method
JPH02168541A (en) Electron beam excitation ion source
Tanjyo et al. Development of a Mass Separation Structure for Large Area Ion Source.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term