JPS60195842A - Gyrotron device - Google Patents

Gyrotron device

Info

Publication number
JPS60195842A
JPS60195842A JP5111084A JP5111084A JPS60195842A JP S60195842 A JPS60195842 A JP S60195842A JP 5111084 A JP5111084 A JP 5111084A JP 5111084 A JP5111084 A JP 5111084A JP S60195842 A JPS60195842 A JP S60195842A
Authority
JP
Japan
Prior art keywords
mirror
electromagnetic waves
electron beam
electromagnetic wave
partially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5111084A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ito
保之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5111084A priority Critical patent/JPS60195842A/en
Priority to EP84306562A priority patent/EP0141525B1/en
Priority to DE8484306562T priority patent/DE3483945D1/en
Priority to US06/655,466 priority patent/US4636688A/en
Publication of JPS60195842A publication Critical patent/JPS60195842A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/025Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy

Abstract

PURPOSE:To generate an electromagnetic wave of the large power by constituting a resonance part while using an axially symmetrical partially transmissive mirror. CONSTITUTION:The electromagnetic wave of an electron beam 19 is oscillated and amplified by a partially transmissive mirror 22 for being transmittd in the direction of a mirror 23. The reflection face of the mirror 23 has an oval face 40 having two focal points, namely the center 37 of the partially transmissive mirror 22 and the center 39 of the reflection face 38 of a mirror 24. Similarly, the mirror 24 has two focal points, namely the center 41 of the mirror 23 and the center 43 of the reflection face 42 of the mirror 24, while the electromagnetic wave reflected on the reflection face 28 is reflected on the reflection face 42 for being transmitted in the direction of the mirror 25. Also the mirror 25 has the reflection faces 44 and 45 while transmitting the electromagnetic wave in the Z-direction and the reflection face 45 is formed into an oval rotary face for matching its focuss point on the plasma 46 to be an object of heating. Accordingly, the electromagnetic wave in the radial direction generating from the electron beam is made to resonate while being amplified covering the whole periphery for being efficiently transmitted in the direction of a heating target thus being able to obtain a device of the large power.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は核融合炉のプラズマなどを加熱する電磁波ビー
ムを発生するジャイロトロン装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a gyrotron device that generates an electromagnetic beam for heating plasma in a nuclear fusion reactor.

〔従来技術とその問題点〕[Prior art and its problems]

従来のジャイロトロン装置は、第1図に示すように、電
子ビームを2方向に発生する電子銃1と、この電子銃1
から発射された電子ビームにサイクロトロン運動を起こ
させる磁気コイル2と、この電子ビームから得られる電
磁波を共振させて電磁波のみを出力する出力部3とで主
に構成されている。
As shown in FIG. 1, a conventional gyrotron device includes an electron gun 1 that generates electron beams in two directions;
It mainly consists of a magnetic coil 2 that causes a cyclotron motion in the electron beam emitted from the electron beam, and an output section 3 that resonates the electromagnetic waves obtained from the electron beam and outputs only the electromagnetic waves.

電子銃】は電子放出帯4を設けた陰極5と、この陰極5
に同軸状に対抵配置された第1の陽極6と、この第1の
陽極6で、陰極5より引出された電子なZ方向に導き、
第2の陽極7によって中空の電子ビーム8を発生するよ
うに構成されている。
The electron gun] has a cathode 5 provided with an electron emission band 4, and this cathode 5.
A first anode 6 is arranged coaxially with a resistor, and the first anode 6 guides the electrons extracted from the cathode 5 in the Z direction.
The second anode 7 is configured to generate a hollow electron beam 8 .

尚、電子銃1は、各電極5,6.7に、それぞれの間を
絶縁する絶縁体9・・・と、それぞれの間に電圧を印加
する電源10 、11が設けられ、電子ビーム8を整形
する電子銃コイル12が配置されている。
The electron gun 1 is provided with an insulator 9 for insulating between each electrode 5, 6.7, and a power source 10, 11 for applying a voltage between each electrode. An electron gun coil 12 for shaping is arranged.

出力部3は、第2の陽極7と同電位の共振部13%出力
出力部14、ビームコレクタ部15および出力導波部1
6と電気的に分離し電磁波のみを通すセラミック製の出
力窓とで主に構成されている。すなわち、電子銃1から
出力部3に導出された電子ビーム8は、磁気コイル2に
より生じる電子振動を共振部13で共振させて所定の電
磁波となるように整合部14で整合して出力窓17を介
して導波部16に電磁波のみを出力するように動作する
。共振部13および整合部14を通過する電子ビームは
ビームコレクタ部15の壁面に衝突し熱に変換される。
The output section 3 includes a resonance section 13% output section 14 having the same potential as the second anode 7, a beam collector section 15, and an output waveguide section 1.
6 and a ceramic output window that is electrically isolated and allows only electromagnetic waves to pass through. That is, the electron beam 8 led out from the electron gun 1 to the output section 3 is matched by the matching section 14 so that the electron vibration generated by the magnetic coil 2 resonates at the resonance section 13 and becomes a predetermined electromagnetic wave, and then the electron beam 8 is output from the output window 17. It operates to output only electromagnetic waves to the waveguide section 16 via the waveguide section 16. The electron beam passing through the resonance section 13 and the matching section 14 collides with the wall surface of the beam collector section 15 and is converted into heat.

この時の熱は出力部3の壁面に設けた冷却水の流通する
冷却装置18によって冷却される。また、電子銃1およ
び出力部3の内部は真空になっている。
The heat at this time is cooled by a cooling device 18 provided on the wall of the output section 3 through which cooling water flows. Further, the inside of the electron gun 1 and the output section 3 are in a vacuum.

このように構成された従来のジャイロトロン装置であっ
ては、扱う電子共鳴の周波数が高いために共振部の寸法
を大きく取れず、共振器壁面で生じる過大なジュール熱
のために、大出力の装置を作ることが困難であった。故
に、核融合装置のプラズマを加熱する為には極めて多数
の装置を配置しなければならないなどの欠点があった。
In conventional gyrotron devices configured in this way, the dimensions of the resonant part cannot be made large due to the high frequency of the electronic resonance handled, and the excessive Joule heat generated on the resonator walls makes it difficult to achieve high output. It was difficult to make the device. Therefore, there is a drawback that an extremely large number of devices must be arranged in order to heat the plasma of a nuclear fusion device.

〔発明の目的〕[Purpose of the invention]

この発明は、上述した従来装置の欠点に鑑み為されたも
ので、プラズマ加熱に適するように電磁波を単一方向に
伝送しかつ集束させるととも(二、効率良く大出力の得
られるジャイロトロン装置を提供することを目的とする
This invention was devised in view of the drawbacks of the conventional devices mentioned above, and it transmits and focuses electromagnetic waves in a single direction so as to be suitable for plasma heating. The purpose is to provide

〔発明の概要〕[Summary of the invention]

本発明は、電子ビームを発生する電子銃と、この電子銃
より発射する電子ビームに磁場を印加する磁場発生部と
、上記電子ビームが上記磁場内を通過するときに生じる
電磁波のうち、この電子ビームの走行軸に対して径方向
に放射された電磁波を準光学的に反射させて共振し増幅
し部分的に電磁波を透過できる部分透過ミラ一体と、こ
の部分透過ミラ一体を通して径方向に通過した電磁波を
照射目標方向に変更するようこの電磁波を反射するよう
断面で楕円の一部で形成して構成した方向変更ミラーと
を具備したジャイロトロン装置である。また、部分透過
ミラ一体を軸対称ミラーとしたジャイロトロン装置であ
る。
The present invention provides an electron gun that generates an electron beam, a magnetic field generator that applies a magnetic field to the electron beam emitted from the electron gun, and an electromagnetic wave generated when the electron beam passes through the magnetic field. The electromagnetic waves radiated in the radial direction relative to the beam travel axis are semi-optically reflected, resonated and amplified, and the electromagnetic waves are partially transmitted through the integrated partially transmissive mirror. This gyrotron device is equipped with a direction changing mirror whose cross section is formed by a part of an ellipse so as to reflect the electromagnetic waves so as to change the direction of the electromagnetic waves to the irradiation target direction. It is also a gyrotron device in which the partially transmitting mirror is an axially symmetrical mirror.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軸対称部分透過ミラーを用いて共振部
を構成しているので、ミラーに加わる電磁波強度を少な
くし、ジュール熱を少なくできるので、大出力の電磁波
を発生させることができる。
According to the present invention, since the resonator is configured using an axially symmetrical partially transmitting mirror, the intensity of electromagnetic waves applied to the mirror can be reduced, and Joule heat can be reduced, so that high-output electromagnetic waves can be generated.

しかも、この大出力の電磁波を目標方向に効率良く伝送
させかつ集束させられるので、プラズマ加熱のように特
定化された場所であっても大出力の電磁波を照射するこ
とができる。
Moreover, since this high-power electromagnetic wave can be efficiently transmitted and focused in the target direction, high-power electromagnetic waves can be irradiated even to a specified place such as plasma heating.

〔発明の実施例〕 以下、本発明の一実施例を詳細に説明する。[Embodiments of the invention] Hereinafter, one embodiment of the present invention will be described in detail.

本発明によるジャイロトロン装置は、電磁波を光学的に
扱うので準光学的ジャイロトロン装置と称し、第2図に
示すように、電子ビーム19を発生するマグネトロン型
電子銃20と、この電子銃器より発射する電子ビーム1
9に磁場を印加する超電導磁気コイル21と、電子ビー
ム19が磁場内を通過するときに生じる電磁波のうち、
この電子ビーム19の走行軸に対して径方向に放射され
た電磁波を準光学的に共振し増幅する円環状の軸対称部
分透過ミラー22と、この部分透過ミラー22を通して
径方向に通過した電磁波を電子ビーム19の放射方向に
方向を変更するようこの電磁波を反射するよう構成した
複数の電磁波伝送用軸対称ミラーブロック23 、24
 、25と、使用済みの電子ビーム19のエネルギーを
熱に変換する電子ビームダンプ26と、電子ビーム19
をこのダンプ26に集める超電導コイル27とで主に構
成されている。
The gyrotron device according to the present invention is called a quasi-optical gyrotron device because it handles electromagnetic waves optically, and as shown in FIG. electron beam 1
Among the electromagnetic waves generated when the superconducting magnetic coil 21 and the electron beam 19 pass through the magnetic field,
An annular axially symmetrical partially transmitting mirror 22 quasi-optically resonates and amplifies the electromagnetic waves radiated in the radial direction with respect to the traveling axis of the electron beam 19; A plurality of axisymmetric mirror blocks 23 , 24 for transmitting electromagnetic waves configured to reflect the electromagnetic waves so as to change the direction in the emission direction of the electron beam 19
, 25, an electron beam dump 26 that converts the energy of the used electron beam 19 into heat, and an electron beam 19.
It mainly consists of a superconducting coil 27 that collects the superconducting material into this dump 26.

このジャイロトロン装置の内部は排気用パイプ四から排
気され真空状態となっていて、出力電磁波29のみを出
力するようにセラミック製の出力窓30が設けられてい
る。尚、図示しないが電子ビームダンプ26など、加熱
される部分には水冷却装置が設けられている。また、各
ミラーブロック器。
The inside of this gyrotron device is evacuated through an exhaust pipe 4 and is in a vacuum state, and an output window 30 made of ceramic is provided so as to output only the output electromagnetic waves 29. Incidentally, although not shown, a water cooling device is provided at a heated portion such as the electron beam dump 26. We also have each mirror blocker.

u、25の配置間隔は環状のスペーサ31 、32 、
33で位置規制されている。このスペーサ31 、32
 、33はその表面が黒鉛層47で形成され、その厚み
を4電極波周波数で定まる電気的な吸収のできる厚さに
して、真空容器を共振器とする予測されないモードの電
磁波が発振、増幅するのを抑制できる。すなわち、真空
容器の内面の一部もしくは全部を黒鉛で覆えば良い。
The arrangement interval of u, 25 is annular spacer 31, 32,
The location is restricted by 33. These spacers 31 and 32
, 33 has a graphite layer 47 on its surface, and its thickness is set to a thickness that allows electrical absorption determined by the four electrode wave frequencies, and electromagnetic waves in unexpected modes using the vacuum container as a resonator oscillate and amplify. can be suppressed. That is, part or all of the inner surface of the vacuum container may be covered with graphite.

電子銃20は電源34からの電圧によって電子ビーム1
9を発生する従来同様のもので、マグネトロン型が好ま
しいが、特に限定されない。超電導磁気コイル21は電
子銃20、軸対称部分透過ミラー22および電磁波伝送
用軸対称ミラーブロック23 、24を覆うように単一
のコイルで構成しているが、複数のコイルを用いて構成
してもよく、また、超電導コイルに限らす常電導のコイ
ルでも、永久磁石であっても所定の磁場を発生できるも
のであれば良い。円環状の軸対称部分透過ミラー22は
、銅製で、第3図に断面で示すように、その内表面34
がr−z断面で一定の曲率半径(例えば、ミラー直径(
2几)に等しい曲率半径)を有し、全周にわたって凹面
鏡となっていて、径方向35に放射する電磁波を反射さ
せて発振させ、増幅する。この増幅された電磁波は部分
的に薄い部分(断面を凹レンズ状に形成してなる凹部の
部分)に多数の軸方向のスロット36が形成されている
部分を透過する。電磁波伝送用軸対称ミラーブロック2
3 、24 、25は、所定の角度の反射面を有する銅
製のリングで、部分透過ミラー22から放射状に透過し
た電磁波を目標に伝送させ集束させるもので、その断面
形状は次のミラーに焦点を合せた断面楕円面を有するも
ので、その電磁波の伝送経路は、第4図に示すように(
説明を容易にするために平面的に示す)、電子ビーム1
9の電磁波は部分透過ミラー22で発振させ増幅してミ
ラー23の方向に透過させる。ミラーnの反射面はその
焦点を部分透過ミラー22の中心点37とミラー24の
第1の反射面38の中心点39との2つの焦点を有する
楕円面40(この面は2軸を中心軸とする回転体表面で
、その反射面の断面形状が楕円形状の一部となるように
形成されている)を有している。同様にミラー24はミ
ラー23の中心点41とミラー24.の第2の反射面4
2の中心点43との2つの焦点を有し、第1の反射面3
8で反射した電磁波は第2の反射向42で反射してミラ
ー5の方向に電磁波を伝播させる。ミラ一部も第1およ
び第2の反射面44 、45を有し、電磁波をZ方向に
伝播させるが、特に第2の反射面45は加熱の対象とな
る、例えばプラズマ46に一つの焦点を合せるように楕
円の回転体面となるように形成されている。
The electron gun 20 generates an electron beam 1 by the voltage from the power supply 34.
A magnetron type is preferable, but is not particularly limited. The superconducting magnetic coil 21 is composed of a single coil so as to cover the electron gun 20, the axially symmetrical partially transmitting mirror 22, and the axially symmetrical mirror blocks 23 and 24 for electromagnetic wave transmission, but it can also be composed of a plurality of coils. In addition, a normal conducting coil (not limited to a superconducting coil) or a permanent magnet may be used as long as it can generate a predetermined magnetic field. The annular axially symmetrical partially transmitting mirror 22 is made of copper and has an inner surface 34 as shown in cross section in FIG.
is a constant radius of curvature (for example, mirror diameter (
It has a radius of curvature (radius of curvature equal to 2 liters) and is a concave mirror over its entire circumference, and reflects electromagnetic waves emitted in the radial direction 35 to oscillate and amplify them. This amplified electromagnetic wave is transmitted through a partially thin portion (a concave portion whose cross section is shaped like a concave lens) in which a large number of axial slots 36 are formed. Axisymmetric mirror block 2 for electromagnetic wave transmission
3, 24, and 25 are copper rings having reflective surfaces at a predetermined angle, and are used to transmit and focus the electromagnetic waves radially transmitted from the partially transmitting mirror 22 to a target, and their cross-sectional shape focuses them on the next mirror. It has an ellipsoidal cross section, and the transmission path of the electromagnetic wave is shown in Figure 4 (
(shown planarly for ease of explanation), electron beam 1
The electromagnetic wave 9 is oscillated and amplified by the partially transmitting mirror 22 and transmitted in the direction of the mirror 23 . The reflective surface of the mirror n has two focal points: the center point 37 of the partially transmitting mirror 22 and the center point 39 of the first reflective surface 38 of the mirror 24. The surface of the rotating body is formed such that the cross-sectional shape of the reflecting surface is a part of an ellipse. Similarly, the mirror 24 is connected to the center point 41 of the mirror 23 and the mirror 24. second reflective surface 4 of
The first reflective surface 3 has two focal points with a central point 43 of 2.
The electromagnetic waves reflected by the mirror 8 are reflected by the second reflection direction 42 and propagate toward the mirror 5 . A portion of the mirror also has first and second reflective surfaces 44 and 45, which propagate electromagnetic waves in the Z direction. In particular, the second reflective surface 45 focuses one focal point on a heating target, for example, a plasma 46. They are formed to form elliptical surfaces of the rotating body.

このように構成された本発明のジャイロトロン装置は、
電子ビームから発生する径方向の電磁波を全周に渡って
共振させ増幅し、加熱目標方向に効率良く伝送すること
ができるので大出力の装置が得られる。
The gyrotron device of the present invention configured in this way is
Since the radial electromagnetic waves generated from the electron beam can be resonated and amplified over the entire circumference and efficiently transmitted in the heating target direction, a high output device can be obtained.

〔発明の他の実施例〕[Other embodiments of the invention]

本発明の他の実施例として、出力される電磁波を直線偏
波に変換して、照射目標、例えばプラズマの中心まで全
電磁波を伝送するように、最終段の電磁波伝送用ミラー
に1切なパターンのコルゲートを設けても良い。また、
最終段の電磁波伝送用ミラーから放出された電磁波を一
度多数のコルゲートを有する反射板に反射させて、照射
目標となるプラズマまで伝送しても良い。
As another embodiment of the present invention, the electromagnetic wave transmission mirror at the final stage has a single pattern so as to convert the output electromagnetic waves into linearly polarized waves and transmit the entire electromagnetic waves to the irradiation target, for example, the center of the plasma. A corrugated gate may be provided. Also,
The electromagnetic waves emitted from the electromagnetic wave transmission mirror at the final stage may be reflected once on a reflection plate having a large number of corrugates, and then transmitted to the plasma, which is the irradiation target.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のジャイロトロン、装置を示す断面図、第
2図は本発明の実施例のジャイロトロンを示す断面図、
第3図は軸対称部分透過ミラーを示す断面斜視図、第4
図は電磁波の伝送経路を示す説明図である。 19・・・電子ビーム、 20・・・電子銃、21・・
・磁気コイル、 22・・・軸対称部分透過ミラー、2
3 、24 、25・・・電磁波伝送用ミラーブロック
、26・・・電子ビームダンプ、36・・・スロット、
47・・・黒鉛層。 代理人 弁理士 則 近 憲 佑(他1名)C:l ″
FIG. 1 is a sectional view showing a conventional gyrotron, and FIG. 2 is a sectional view showing a gyrotron according to an embodiment of the present invention.
Figure 3 is a cross-sectional perspective view showing an axially symmetric partially transmitting mirror;
The figure is an explanatory diagram showing a transmission path of electromagnetic waves. 19...electron beam, 20...electron gun, 21...
・Magnetic coil, 22...Axisymmetric partially transmitting mirror, 2
3, 24, 25... Mirror block for electromagnetic wave transmission, 26... Electron beam dump, 36... Slot,
47...graphite layer. Agent Patent Attorney Noriyuki Chika (and 1 other person) C:l ″
S

Claims (6)

【特許請求の範囲】[Claims] (1) 電子ビームを発生する電子銃と、この電子銃よ
り発射する電子ビームに磁場を印加する磁場発生部と、
前記電子ビームが前記磁場内を通過するときに生じる電
磁波のうち、この電子ビームの走行軸に対して径方向に
伝播する電磁波を準光学的に反射させて共振し部分的に
電磁波を透過できる部分透過ミラ一体と、この部分透過
ミラ一体を通して径方向に通過した電磁波を照射目標の
方向に変更するようこの電磁波を反射するよう構成した
方向変更ミラーと、この方向変更ミラーで変更された電
磁波を照射目標方向に伝送するように断面が楕円の電子
ビーム軸を中心軸とする回転体表面の一部として形成し
た電磁波伝送用ミラーとを♀ 具備したことを特徴とするジャイトロン装置。
(1) An electron gun that generates an electron beam; a magnetic field generator that applies a magnetic field to the electron beam emitted from the electron gun;
Among the electromagnetic waves generated when the electron beam passes through the magnetic field, a portion that semi-optically reflects the electromagnetic waves that propagate in the radial direction with respect to the traveling axis of the electron beam to resonate and partially transmit the electromagnetic waves. A transmissive mirror integrated, a direction change mirror configured to reflect electromagnetic waves that have passed in the radial direction through the partially transmissive mirror integrated, and to change the electromagnetic waves in the direction of the irradiation target, and irradiate the electromagnetic waves changed by the direction change mirror. A Gytron device comprising: a mirror for transmitting electromagnetic waves formed as part of the surface of a rotating body whose center axis is an electron beam axis having an elliptical cross section so as to transmit in a target direction.
(2) 部分透過ミラ一体を円環状の軸対称ミラーとし
たことを特徴とする特許請求の範囲第1項に記載のジャ
イロトロン装置。
(2) The gyrotron device according to claim 1, wherein the partially transmitting mirror is an annular axially symmetrical mirror.
(3) 部分透過ミラ一体を軸に向かって断面凹レンズ
状の導電性ミラーとしたことを特徴とする特許請求の範
囲第1項に記載のジャイロトロン装置。
(3) The gyrotron device according to claim 1, wherein the partially transmitting mirror is integrated with a conductive mirror having a concave lens-shaped cross section toward the axis.
(4)電磁波伝送用ミラーを部分透過ミラ一体の同軸状
に配置して、この部分透過ミラ一体がら透過した電磁波
を角度を有して反射させ軸対称な電磁波ビームを伝送す
るよう構成したことを特徴とする特許請求の範囲第1項
に記載のジャイロトロン装置。
(4) The electromagnetic wave transmission mirror is arranged coaxially with the partially transmitting mirror, and the electromagnetic waves transmitted through the partially transmitting mirror are reflected at an angle to transmit an axially symmetrical electromagnetic wave beam. A gyrotron device according to claim 1.
(5)電磁波伝送用ミラーを環状の2つの反射面を単一
部材で形成としたことを特徴とする特t+請求の範囲第
1項に記載のジャイロトロン装置。
(5) The gyrotron device according to claim 1, wherein the electromagnetic wave transmission mirror has two annular reflecting surfaces formed of a single member.
(6)電磁波伝送用ミラーと電磁波伝送用ミラーもしく
は方向変更ミラーとの間の真空容器内の壁面の一部もし
くは全部を黒鉛層で形成したことを特徴とする特許請求
の範囲第1項記載のジャイロトロン装置。
(6) A part or all of the wall surface in the vacuum container between the electromagnetic wave transmission mirror and the electromagnetic wave transmission mirror or the direction changing mirror is formed of a graphite layer. Gyrotron device.
JP5111084A 1983-09-30 1984-03-19 Gyrotron device Pending JPS60195842A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5111084A JPS60195842A (en) 1984-03-19 1984-03-19 Gyrotron device
EP84306562A EP0141525B1 (en) 1983-09-30 1984-09-26 Gyrotron device
DE8484306562T DE3483945D1 (en) 1983-09-30 1984-09-26 Gyrotron.
US06/655,466 US4636688A (en) 1983-09-30 1984-09-28 Gyrotron device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5111084A JPS60195842A (en) 1984-03-19 1984-03-19 Gyrotron device

Publications (1)

Publication Number Publication Date
JPS60195842A true JPS60195842A (en) 1985-10-04

Family

ID=12877662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5111084A Pending JPS60195842A (en) 1983-09-30 1984-03-19 Gyrotron device

Country Status (1)

Country Link
JP (1) JPS60195842A (en)

Similar Documents

Publication Publication Date Title
US5187409A (en) Gyrotron having a quasi-optical mode converter
EP0141525B1 (en) Gyrotron device
US4636689A (en) Microwave propagation mode transformer
JPH04502061A (en) Antenna that produces a millimeter wave beam with a Gaussian distribution
US4839561A (en) Gyrotron device
US5719470A (en) Gyrotron capable of outputting a plurality of wave beams of electromagnetic waves
JPS60195842A (en) Gyrotron device
US4926093A (en) Gyrotron device
JPS6113532A (en) Gyrotron
JPS60195843A (en) Gyrotron device
JPS6132333A (en) Gyrotron device
JPS60264022A (en) Gyrotron device
JPS60195844A (en) Gyrotron device
JPS60195845A (en) Gyrotron device
JPH088159B2 (en) Plasma generator
JPS60195841A (en) Gyrotron device
JPS62290041A (en) Gyrotron device
JPS60195840A (en) Gyrotron oscillation tube
JPS61218046A (en) Gyrotron equipment
JPS63128523A (en) Gyrotron device
JPS59114730A (en) Gyrotron oscillator of multibore cavity for reducing mode bycompetition
JPS62290040A (en) Gyrotron device
JPS63128521A (en) Gyrotron device
JP3144883B2 (en) Mode converter
JPS62110236A (en) Gyrotron device