JPS60195434A - Stress measuring method of object by stress releasing method - Google Patents

Stress measuring method of object by stress releasing method

Info

Publication number
JPS60195434A
JPS60195434A JP5049684A JP5049684A JPS60195434A JP S60195434 A JPS60195434 A JP S60195434A JP 5049684 A JP5049684 A JP 5049684A JP 5049684 A JP5049684 A JP 5049684A JP S60195434 A JPS60195434 A JP S60195434A
Authority
JP
Japan
Prior art keywords
stress
slits
slit
strain
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5049684A
Other languages
Japanese (ja)
Inventor
Minoru Yamamoto
稔 山本
Etsuro Miyata
宮田 越郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESUKO KK
Esco Corp
Original Assignee
ESUKO KK
Esco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESUKO KK, Esco Corp filed Critical ESUKO KK
Priority to JP5049684A priority Critical patent/JPS60195434A/en
Publication of JPS60195434A publication Critical patent/JPS60195434A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To measure exactly a stress of an object by forming slits of one pair or more on the surface of the object, and estimating a stress state from a correlation of a depth of the slit and a release distortion. CONSTITUTION:On the surface of an object 1, slits 2, 2 are formed at a prescribed interval, and formed by increasing a depth of the slits 2, 2 successively to about 1:0.4 against an interval between the slits. Also, a strain gauge 3 is stuck to the surface of a concrete block 1 placed between the slits 2, 2. In this state, pressure is applied in advance by a pressure device 8, the slits 2, 2 are deepened successively from a condition of depth ''0'' of the slits 2, 2, and on all such occasions, a distortion is measured by the strain gauge 3, and also a stress state which exists already in the object 1 is estimated from a correlation of a depth of the slits 2, 2 of this time and a release distortion.

Description

【発明の詳細な説明】 本発明は応力解放法による構造物など対象物の応力計測
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring stress in objects such as structures using a stress release method.

一般に岩盤の一次応力をlt1゛副する方法としては孔
底ひすみ法、ひずみゲージ埋設法が知らnている。
In general, the hole bottom strain method and the strain gauge embedding method are known as methods for subtracting the primary stress of rock.

孔底ひすみ法は岩盤にポーリング孔を形成し。The hole bottom crack method forms a poling hole in the rock.

その孔底にひすみゲージを貼付しに後にオーバーコアリ
ングを行い、岩盤中の一次応力を屏放し、これに工って
得ら庇るひずみ1直から一次応力を逆算する方法である
This method involves attaching a strain gauge to the bottom of the hole and then performing overcoring to release the primary stress in the rock mass.The primary stress is then calculated backwards from the resulting strain.

またひずみゲージ埋設法はポーリング孔中にひずみゲー
ジをセメントモルタル等で埋設しに後に同じくオーバー
コアリングを行い岩盤中の一次応力を解放し、こむ、に
よるひずみのit 611値から一次応力を逆算する方
法を採用している。
In addition, in the strain gauge embedding method, the strain gauge is buried in the poling hole with cement mortar, etc., and then overcoring is performed in the same way to release the primary stress in the rock, and the primary stress is back calculated from the IT 611 value of the strain due to compression method is adopted.

こ扛らの方法の他に岩盤の表mlやコンクリート構造物
の縁辺に丁でに存在している応力を計測する方法として
、構造物等の表面にひずみゲージを貼付した後にひすみ
ゲージ’k 128んで深いスリットを形成し、縁辺の
応力會確爽に解放した後、ひずみ値ft1t1′測し、
このひずみ値から丁でに存在している応力を推定するこ
とも試験的に行わnている。
In addition to these methods, there is also a method to measure the stress that exists on the surface of the bedrock or on the edges of concrete structures by attaching a strain gauge to the surface of the structure, etc. After forming a deep slit at 128 and releasing the stress at the edge, the strain value ft1t1' was measured.
Estimating the stress existing at the edge from this strain value has also been experimentally conducted.

孔底ひすみ法とひずみゲージ埋設法においてはオーバー
コアリングすることに工ってコアを基若などから抜政取
り完全にひずみを解放する方法をとるから、計測工程は
面倒であるし、対象物を損傷する。しかし、−次応力に
よるひずみの弾性成分は全て解放さnるkめ、応力解放
の手法には問題がない。
In the hole bottom strain method and the strain gauge embedding method, overcoring is used to completely release the strain by removing the core from Motowaka, etc., so the measurement process is troublesome, and the measurement process is troublesome. damage property; However, since all the elastic components of the strain due to the -order stress are released, there is no problem with the stress release method.

こ1.に対し、対象物の表面に貼付したひずみゲージt
 it+んでスリットヲ形成し、応力を解放する方法で
は、深いスリットヲ一度にうがち、かつスリットに工っ
て囲tn:q応力解放部分を基若等の対象物から分離せ
ず、一体のまま表面部分のみの応力を解放する手段をと
っていたから、確実に応力を解放するkめには深いスリ
ットを必要としたし、f、に基若等の接続部分が解放応
力の計測値に与える影響を評価することも困難であった
。従って原理的には計測手法として成立していても実用
化には問題があり、Ffi 6111法として価値が認
めらnるチでには至っていlい0 本発明は以上のような事情に朧み成きノ1にもので対象
物の表面にスリットを形成することけ既存の手法と同様
であるが、応力のが(放4行う過程に工夫をすることに
工って対象物に存在する応力状転を確実にイト定するこ
とがでAる工うに構成したことを特徴とする対象物の一
次16カ計測法を提供することr目的としている。
This 1. On the other hand, the strain gauge t attached to the surface of the object
In the method of forming a slit with it + and releasing stress, a deep slit is created at once, and the slit is not separated from the surrounding tn:q stress release part from the object such as the base, but only the surface part is left as one piece. Since the method was used to release the stress, a deep slit was required to ensure stress release, and the influence of the connection part of the base on the measured value of released stress was evaluated. It was also difficult. Therefore, even if it is established as a measurement method in principle, there are problems in practical application, and the value of the FFI 6111 method has not yet been recognized. The process of forming slits on the surface of the target object is similar to the existing method, but it is possible to create a slit in the target object by creating a slit in the process of releasing stress. It is an object of the present invention to provide a method for primary 16-point measurement of an object, which is characterized in that it is configured in such a way that it is possible to reliably determine the stress state.

本発明において汀土台1シの■的(r−達成するために
対象物に所定の間+w e 離り、て一対2本のスリッ
トを一対筐πV、1井桁状などの工うK 2対以上形成
すると共に相対する一対のスリブ)(5基準としてその
スリット間隔に対する溝の深さケ1:o、4程度筐で順
次増加させながら解ツタひすみを計測し、溝の深さと解
放ひずみとの相関関係から対象物の応力状ルを推定する
方法ケ球用している。
In the present invention, in order to achieve the target (r) of the base, one pair of two slits are made in the object at a predetermined distance +w e apart, one pair of slits are made in the shape of a pair of casings, one cross-shaped, etc. (a pair of slits that face each other as they form) (5 criteria: groove depth relative to the slit spacing; A method of estimating the stress profile of an object from correlations is used.

以下、図面と共に本発明方法のIIP細?一対2本のス
リットヲ形成する場合を例として説明する0 対象物にスリットを形成して応力解放を行う場合の問題
点は次の工うに考えらnる0丁なわち、スリットの間隔
と、スリットの深さとの関係は縁辺に清う応力の解放と
どの工つな関係にあるのかという点が第1点であり、他
の問題点はスリットを形波した時、基若′1には構造物
など対象物に存在する一次応力によってスリット底部近
傍には応力集中が生じるが、この時スリット底部の応力
集中域には弾性的挙動にとどすらず、塑性的挙動が発生
することもある。こn、らの挙動は局部的なのであるが
、大きなひずみを伴う斤め、このひずみがスリット間の
解放ひずみにどのように影響するかという点である。
Below are the IIP details of the method of the present invention along with the drawings. We will explain the case of forming one pair of two slits as an example.The problem when releasing stress by forming slits in a target object is as follows.In other words, the spacing between the slits and the The first point is how the depth of the slit is related to the release of stress at the edges.The other problem is that when the slit is shaped, there is no structure in Motowaka'1. Stress concentration occurs near the bottom of the slit due to the primary stress present in the object, such as an object, but at this time, the stress concentration area at the bottom of the slit does not remain elastic, but sometimes plastic behavior occurs. Although these behaviors are local, the problem is that the compression is accompanied by a large strain, and how this strain affects the release strain between the slits.

第Jの問題点にスリットの間隔と深さに関する光弾性災
kAなど弾性域内での実験に工り、スリットの深さdと
スリットの純間隔Bの比d/BがOから0.3〜0.4
となる深さまでスリットを(5) 形成して計測Inば、縁辺の応力を完全に解放すると同
等な条件を形成できることが明らかになった。
For the Jth problem, we conducted an experiment in the elastic range such as photoelastic damage kA regarding the spacing and depth of slits, and found that the ratio d/B of the slit depth d and the pure slit spacing B was 0.3 to 0. 0.4
By forming a slit to a depth of (5) and performing measurements, it became clear that the same conditions could be created by completely releasing the stress on the edge.

なお、この場合スリット自材の%Iσ任意で良い○ この*験からスリットの深さをただ単に深くする必要が
なく、スリット幅も狭いもので良いことがわかり#4街
的に′64+1定できることかゎ〃為つπ0 また第2の問題点はスリット底部の応力集中が弾性的な
場合d/)3 l−lo、 3工す大食くなる条件では
解放さるべさ縁辺の応力は応力集中の影響にエリ逆符号
の解放応力すら計測さnるCとが実験に工って明らかに
なった。この事実は、−次応力によるスリット底部の応
力集中の影響がスリットをうがつ各段階で存在すること
を教えるから、その影91を排除するにはスリットの深
さの増分と、縁辺の応力の解放に係る縁ひずみの増分ま
fcは減分との関係から相殺丁fば工い。
In addition, in this case, the %Iσ of the slit material itself can be set arbitrarily. From this *experiment, we found that it is not necessary to simply increase the depth of the slit, and the slit width can also be narrow. The second problem is that if the stress concentration at the bottom of the slit is elastic, d/)3 l-lo, 3 should be released under conditions where the stress is concentrated at the edge. Experiments have revealed that due to the influence of C, even the release stress of opposite sign can be measured. This fact tells us that the effect of stress concentration at the bottom of the slit due to the -order stress exists at each step of gargling the slit, so in order to eliminate that shadow 91, it is necessary to increase the depth of the slit and release the stress at the edge. The increment of edge strain related to fc must be offset from the relationship with the decrement.

すなわち、スリットの深さが多少違っても応力(6) 集中の影響は七扛はど相違しないと考えnば、増減分は
スリットの深さの変化に対応する成分だけになるからで
ある。この手段を応用することにエリ、−次応力として
丁でに存在する縁辺の応力に対する弾性ひずみを解放ひ
ずみとして抽出することができる。
In other words, if we consider that the influence of stress (6) concentration will be the same even if the depth of the slit is slightly different, then the increase or decrease will be only the component corresponding to the change in the depth of the slit. By applying this means, it is possible to extract the elastic strain in response to the edge stress existing at the edge as the release strain.

問題点に対する以上の説明では、スリット底部付近の応
力果中域に塑性的挙動がない場合を取扱ったが、解放ひ
ずみは弾性成分に限らnるから、塑性域が存在する場合
についても結果は1wl様であることは明らかである。
In the above explanation of the problem, we have dealt with the case where there is no plastic behavior in the stress region near the bottom of the slit, but since the release strain is limited to the elastic component, the result is 1wl even when there is a plastic region. It is clear that this is the case.

なお、目十測手法としてスリットの深さと解放ひずみの
増減分関係を用いnば、形成するスリットの深濾は浅く
することができるから、対象物の損渦を軒減し、非破壊
の状態で計測ができるし、#1測工程もl′1lIl略
化できて経済的になる。
In addition, by using the relationship between the depth of the slit and the increase/decrease of the release strain as a measurement method, the deep filtration of the slit to be formed can be made shallow, reducing the loss of vortices on the object and creating a non-destructive state. The #1 measurement process can also be simplified, making it more economical.

次に、応力計測法を具体例に1って説明する。Next, the stress measurement method will be explained using a specific example.

第1図は本発明の方法e−4川した計測法の一例を示す
もので手法の開発にも利用したものでめる0対家物は軸
力を導入したコンクリートグロックlで、その表面には
所定の間隔を離してスリット2.2が深さ0から逐次に
形成は71.る。
Figure 1 shows an example of the method of measuring the e-4 river according to the present invention, which was also used in the development of the method. 71. The slits 2.2 are formed successively from depth 0 at predetermined intervals. Ru.

こnらスリット2,2は平行なものとして示したが必ず
し@半行でおる必要幻ない。そして、こ扛らスリット2
,2に工って挾まnたコンクリートブロック1の表面に
はひずみゲージ3が貼付されている。
These slits 2 and 2 are shown as being parallel, but it is not necessarily necessary that they be @half-line. And this slit 2
A strain gauge 3 is affixed to the surface of the concrete block 1 which has been constructed and sandwiched between the concrete blocks 1 and 2.

コンクリートブロックjの帽方向のII’OIIIにね
支持板4.5が形成ざ111両者間は作数本のロッド6
に1って連結さn、ている。
A support plate 4.5 is formed on II'OIII of the concrete block j in the cap direction.A number of rods 6 are formed between the two.
1 is connected to n.

そして一方の支持8!4とコンクリートグロックlの端
縁との間には当板7を介して加圧器(ジヤツキ)8が配
置さ扛ている。
A pressurizer (jacket) 8 is placed between one support 8!4 and the edge of the concrete glock l with a contact plate 7 interposed therebetween.

以上の工つな状態で加圧器8に工す圧力をあらかじめ加
えておA、スリットの深さ0の条件から逐次にスリン)
Th深くし、その都度ひずみゲージ3によってひずみを
御1定する〇第2図には一足の出力を加えπ後における
第1図に示す測定状態に工って測定しπ場合の解放ひず
みとd/Bとの関係を示し、第3図t’J、tl141
図に示した状態と回様なスリットをもつ2次元光弾性モ
テルに一定荷1を載荷した場合のスリット2.2間の縁
応力とσBとの関係を示している0 第2図及び第3図から明らかな工うにd/B =ΩΩノ
ル0.の間で、解放ひずみの状態は同様で、Ii線的に
変化し2ている。こt′しは、この部分でスリットの深
さに対する解放ひずみの変化割合がほぼ一定とみな丁こ
とかできることを教えるものである。一方、光弾性実験
結果である第3図に示すように、全解放ひずみに相当す
るしま次数は、 d/B = O,1〜0.3の範囲の
曲線の最大勾配を示す係数に0.25Bk乗することに
工ってめらnることもわかる。こfLは実験結果に基づ
く事実であるが、処理の妥当性は次の考察に1って泉付
けらnる。
In the above-mentioned state, apply the pressure to the pressurizer 8 in advance and slit sequentially from the condition of A and the slit depth of 0)
Th depth, and each time the strain is controlled by the strain gauge 3. In Figure 2, add one foot of output and create the measurement state shown in Figure 1 after π. /B, Figure 3 t'J, tl141
Figures 2 and 3 show the relationship between the edge stress between slits 2 and 2 and σB when a constant load 1 is applied to a two-dimensional photoelastic model with circular slits in the state shown in the figure. It is clear from the figure that d/B = ΩΩ nor 0. The state of release strain is the same between 2 and 2, changing linearly with Ii. This is to teach that in this part, the rate of change in release strain with respect to the depth of the slit can be considered to be approximately constant. On the other hand, as shown in FIG. 3, which is the result of a photoelastic experiment, the fringe order corresponding to the total release strain is d/B = O, a coefficient indicating the maximum slope of the curve in the range of 1 to 0.3. You can also see that it is difficult to raise the number to the 25Bk power. Although this fL is a fact based on experimental results, the validity of the processing is determined by the following consideration.

第3因において1点鎖線は最大勾配を示すが、はぼ一定
の勾配のもとでは大きい勾配はど解放の影q1を正しく
表現していると考えて工いし、またスリットの深さが0
.25B程度でスリット間(9) の表面ひずみは確実に解放ざr、ると考えらnるから、
これらを組み合わせnば、最大勾配に0.251乗する
ことに工っで解放ひすみ全推定できることになる。なお
、勾配とそfL K fずべ@長さは、相補的な関係に
あるから、勾配としての二0.1〜0.3のコト均勾配
を使用1− f+、げ、乗ずべき長さは0.25Bとは
異なるもの例えば0.275Bなどになるのは当然であ
る。しかし、第3(2)の工うに最大勾配と0.25H
の組み合わせに裏ってあらかじめ存在している一次応力
全推定できることは明らかである。第2図においても第
3図と同様に操作丁nは、回じ〈第2図に示すように、
第l□□□において加えπ圧力(−次応力)に相当する
ひずみを正しく推定で攻ることがわかる。
In the third factor, the one-dot chain line indicates the maximum slope, but we considered that under a nearly constant slope, a large slope correctly represents the free shadow q1, and also when the slit depth is 0.
.. Since it is thought that the surface strain between the slits (9) will definitely be released at about 25B,
If these are combined n, the total release strain can be estimated by multiplying the maximum gradient to the 0.251 power. Incidentally, since the slope and the length are complementary, use the uniform slope of 20.1 to 0.3 as the slope.1- f+, ge, the length to be multiplied is Naturally, it is different from 0.25B, such as 0.275B. However, the maximum slope and 0.25H of the third (2)
It is clear that it is possible to estimate all the primary stress that exists in advance due to the combination of . In Fig. 2, as in Fig. 3, the operating knob n is a turn (as shown in Fig. 2,
It can be seen that the strain corresponding to the added π pressure (-th order stress) in the l□□□-th can be correctly estimated.

なおこの−次応力は計測しkひすみ方向の向応力に対応
する〇 ところで、光弾性実験の結果をボ丁絹3図ではφ≧0.
3の置載でンコ、解放はItたしま次数け0を通り越し
て逆符月のし1次数VCなっている。
This −order stress is measured and corresponds to the counterstress in the k strain direction.By the way, the results of the photoelastic experiment are shown in Fig. 3 when φ≧0.
With the placement of 3, the release passes through the order number 0 and becomes the reverse sign month and the first order number VC.

(10) こ71はスリット底部の応力集中の影響によるものであ
る。
(10) This 71 is due to the influence of stress concentration at the bottom of the slit.

この事央はスリット底部付近の応力集中が第3図の場合
の工うに弾性域にあるにしても、こfl、を越えて塑性
域にあるにしても、スリットの深さ’k O,313以
上にすることが応力解放の計測に役立たないことを示[
、ている。
The main reason for this is that even if the stress concentration near the bottom of the slit is in the elastic region as shown in Figure 3, or in the plastic region beyond fl, the slit depth 'k O, 313 This shows that the above is not useful for measuring stress release [
,ing.

従って、安全をみてもd/B≦0.4の範囲の計測で済
ますことができる。この事火はスリットの加工に当って
有利に作用する。
Therefore, from a safety standpoint, measurements within the range of d/B≦0.4 can be sufficient. This fire has an advantageous effect on slit processing.

一方、第2図の結果ケ第3図と比較すると、d/B 配
0.3の部分で相違が認めらnる。こf′Lは1d42
図においては応力集中に工って塑性的ひずみか発生し、
その影響で解放ひずみがOを越えて符号が逆にならなか
ったと考えら扛る。しかし、d/B = 0.1〜0.
3の間における最大勾配を用いることによって一次応力
を推定できることは丁でに指摘した通りであり、d/B
 = 0.3〜0.4の部分については特別な配慮は必
要でない0以上の説明は、一対のスリットの場合に関す
るものでおるが、井桁状にスリットを設ける場合には計
測するひずみ方向に1−交する方向のひずみに関するポ
アソン比の成分たけ計測結果に影響があるにすぎない。
On the other hand, when comparing the results in FIG. 2 with those in FIG. 3, there is no difference in the d/B ratio of 0.3. This f'L is 1d42
In the figure, plastic strain occurs due to stress concentration,
It is thought that this is the reason why the release strain exceeded O and the sign did not reverse. However, d/B = 0.1-0.
As pointed out earlier, the primary stress can be estimated by using the maximum gradient between d/B
= 0.3 to 0.4 does not require special consideration. The explanation for 0 or more relates to the case of a pair of slits, but when slits are provided in a parallel grid shape, 1 in the direction of the strain to be measured. - It only affects the measurement result of the component of Poisson's ratio regarding the strain in the intersecting direction.

し度がって、1ttdll+に当っては、この分だけ誤
差として処理すlj、げ、一対のスリットで済すことが
でき、#−t fsllIの工程は簡略化で扛る。
Therefore, for 1ttdll+, this error can be treated as lj, ge, and a pair of slits, and the process of #-t fsllI can be simplified.

なお、コンクリートにおいてはポアソン比が0、1〜0
.15程度であるから、こtしによる誤差は大きく見積
っても10チ以下に収めることができる。
In addition, in concrete, Poisson's ratio is 0, 1 to 0.
.. Since it is about 15, the error due to this can be estimated to be less than 10 inches.

ところで、対象物に対する具体的’Z k、>力の計測
は第4図に斥丁工うにして竹う〇 すなわち第4図において符号9で示すものれ1門状に形
成さnk構造物で、上方から荷4wが加わっているもの
とする。このような場合においては構造物9の1111
4面にスリット2.2を上下に所定間隔離して形成(7
、両者間にひずみゲージ3を貼着して前述した試験と請
求に解放応力の1+側會行えは良いo −f fr 2
’ 、 2’、2”、2’U井桁状tこスリットを設け
、ゲージ3′に工って解放応力を計ttlll ’fる
場8を示すが、手法は2,2とゲージ3に対するものと
同様である。
By the way, the measurement of the specific 'Zk, > force on the object is shown in Figure 4 with a bamboo structure formed in the shape of a gate, as shown in Fig. 4. , it is assumed that a load 4w is applied from above. In such a case, 1111 of structure 9
Slits 2.2 are formed on four sides with a predetermined spacing between the top and bottom (7
, it is better to attach the strain gauge 3 between the two and perform the above-mentioned test and claim on the 1+ side of the release stress. o −f fr 2
', 2', 2'', 2'U cross-shaped slits are provided, and the release stress is measured by making them in gauge 3'. It is similar to

以上の説明〃)ら明らかな工うに、本発明は、応力ti
!1′側する対象物の表面に所定の間隔だけ離して一対
以上のスリットを形[+IjL、こrしらスリットの深
きを基準とTるスリット間の間隔にズ・iしてl:o、
4程肢筐で順次増加させながら解放ひずみを計o11I
 L、、スリットの深さと解放ひずみとの相関関係から
対象物にすでに存在している応力状態を推定する方法の
提案である。本発明に工nば連続的B1副による補正に
工って計測棺展を簡めることができるはかりか、スリッ
トが浅い7rめ、対象物を本質的に損傷しないし、−ま
*計11111の工程も簡略化できるなどの利点がある
As is clear from the above explanation, the present invention provides stress ti
! Form one or more slits at a predetermined interval on the surface of the object on the 1' side.
Measure the release strain while sequentially increasing the strain in the limbs for about 4 degrees.
This is a proposal for a method for estimating the stress state already existing in an object from the correlation between the depth of the slit and the release strain. If the present invention is applied to a scale that can simplify the measurement process by making corrections using the continuous B1 sub-scale, the slit is shallow and does not essentially damage the object. It has the advantage of simplifying the process of

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を説明するもので、第1図tゴ試
験装璽の斜視図、第2図は第1図の試験装wを用いて行
っに笑験からえらn女もので、(13) スリットの間隔に対するスリットの深ざとの11′5率
と、ひずみとの関係を示す線図、第3図V、f光弾性央
験に工つてえら1.πもので、スリットの間隔に対する
スリットの深さの比駆と、し1次数との間の関係を示す
勝因、第4図は実際の第1測状態を示す斜視図である。 1・・・コンクリートグロック 2・・・スリット3・
・・ひずみゲージ 4.5・・・支持& (+・・・ロ
ッド 7・・・当板 8・・・加出器発明者 山水 稔 発明者 ′ばi(」越部 出 願 人 株式会社 エ ス コ 出願人 山水 稔 (14) 第2印 師 第3図 d/s
The figures are for explaining one embodiment of the present invention, and Fig. 1 is a perspective view of the testing device shown in Fig. 1, and Fig. 2 is a perspective view of the testing device shown in Fig. , (13) A diagram showing the relationship between the 11'5 ratio of the slit depth to the slit spacing and strain, Figure 3 V, f. Figure 4 is a perspective view showing the actual first measurement state. 1... Concrete Glock 2... Slit 3.
...Strain gauge 4.5...Support & (+...Rod 7...Plate 8...Expressor inventor Minoru Sanmizu Inventor 'bai(' Koshibe applicant E Co., Ltd. Sco Applicant Minoru Sanmizu (14) 2nd seal figure 3 d/s

Claims (2)

【特許請求の範囲】[Claims] (1)応力を測足丁べき対象物の表面に所定の間隔t−
離して一対2本のスリットを一対以上形成し、スリット
間において対象物の表面にひずみゲージを貼宥し、スリ
ット間の間隔に対するスリットの深さをl:o、4程度
筐で順次増加させつつ解放ひずみを計測し、スリットの
深さと解放ひずみとの相関関係から対象物の応力状態を
推定することを%倣とする応力解放法による対象物の応
力計測法。
(1) At a predetermined interval t- on the surface of the object whose stress is to be measured.
A pair or more of slits are formed in pairs separated from each other, a strain gauge is pasted on the surface of the object between the slits, and the depth of the slits relative to the distance between the slits is l:o, gradually increasing in the case by about 4. A stress measurement method for an object using the stress release method, which measures the release strain and estimates the stress state of the object from the correlation between the slit depth and the release strain.
(2) スリット間の間隔に対するスリットの深さが0
.3程匿以下の領域において、スリットの深さの増分と
、そnに伴う解放ひずみの増減分との関係から対象物の
応力状態を推定することを特徴とする特許請求の範囲第
1項記載の応力解放法による対象物の応力計測法。
(2) The depth of the slits relative to the distance between them is 0.
.. Claim 1, characterized in that the stress state of the object is estimated from the relationship between the increment in the depth of the slit and the corresponding increase/decrease in the release strain in a region of 3 degrees or less. A method of measuring stress on an object using the stress release method.
JP5049684A 1984-03-16 1984-03-16 Stress measuring method of object by stress releasing method Pending JPS60195434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5049684A JPS60195434A (en) 1984-03-16 1984-03-16 Stress measuring method of object by stress releasing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5049684A JPS60195434A (en) 1984-03-16 1984-03-16 Stress measuring method of object by stress releasing method

Publications (1)

Publication Number Publication Date
JPS60195434A true JPS60195434A (en) 1985-10-03

Family

ID=12860537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5049684A Pending JPS60195434A (en) 1984-03-16 1984-03-16 Stress measuring method of object by stress releasing method

Country Status (1)

Country Link
JP (1) JPS60195434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030030326A (en) * 2001-10-09 2003-04-18 김우 Method for measurement of sustained stress on concrete structure
CN104729870A (en) * 2015-04-02 2015-06-24 天津市市政工程研究院 Existing-prestress detection method for concrete bridge structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030030326A (en) * 2001-10-09 2003-04-18 김우 Method for measurement of sustained stress on concrete structure
CN104729870A (en) * 2015-04-02 2015-06-24 天津市市政工程研究院 Existing-prestress detection method for concrete bridge structure

Similar Documents

Publication Publication Date Title
Albrecht et al. Rapid calculation of stress intensity factors
Loret et al. Dynamic strain localization in elasto-(visco-) plastic solids, Part 1. General formulation and one-dimensional examples
Skempton et al. A contribution to the settlement analysis of foundations on clay
Léger et al. Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams
Saatci et al. Nonlinear finite element modeling of reinforced concrete structures under impact loads
US10156506B2 (en) Residual stress estimation method and residual stress estimation device
Adams et al. Rubber model for adhesive lap joints
Eftis et al. On fracture toughness evaluation for semi-brittle fracture
CN104346496A (en) Method for determining resultant force and resultant force application point of active earth under common conditions
JPS60195434A (en) Stress measuring method of object by stress releasing method
Lopez A numerical model for nonlinear response of R/C frame-wall structures
Scribner Delaying Shear Strength Decay In Reinforced Concrete Flexural Members Under Large Load Reversals.
De Wilder et al. Stress field based truss model for shear-critical prestressed concrete beams
JPH0886704A (en) Estimating method of stress acting on existing concrete structure
JP3606651B2 (en) Seismic response analysis method and analyzer for seismic isolation structure
Farouk et al. Calculation of subgrade reaction modulus considering the footing-soil system rigidity
JP3408708B2 (en) Evaluation method of sealing performance
Thompson et al. Developments in a least squares asymptotic analysis of isochromatic data from stress concentration regions in plane problems
Smits Photo-Elastic Determination of Shrinkage Stresses
Lo et al. Applicability of variability response function for geotechnical risk assessment
Sharpe On the measurement of elastoplastic stresses
Lang et al. Buckling characteristics of a sloping snow slab
Silverman Closure to “Asst. Engr., US Bureau of Reclamation, Denver, Colo.”
Byrum Falling weight deflectometer joint load tests used for direct calculation of pavement joint stiffness
Pires Stochastic analysis of seismic safety against liquefaction