JPS60194330A - Viscosity measuring apparatus - Google Patents

Viscosity measuring apparatus

Info

Publication number
JPS60194330A
JPS60194330A JP4959084A JP4959084A JPS60194330A JP S60194330 A JPS60194330 A JP S60194330A JP 4959084 A JP4959084 A JP 4959084A JP 4959084 A JP4959084 A JP 4959084A JP S60194330 A JPS60194330 A JP S60194330A
Authority
JP
Japan
Prior art keywords
switching
pulse signal
measured
coil
moving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4959084A
Other languages
Japanese (ja)
Other versions
JPH0430540B2 (en
Inventor
Munehiro Date
宗宏 伊達
Makoto Kaihara
真 貝原
Katsuo Nishi
西 克夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP4959084A priority Critical patent/JPS60194330A/en
Publication of JPS60194330A publication Critical patent/JPS60194330A/en
Publication of JPH0430540B2 publication Critical patent/JPH0430540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • G01N11/162Oscillations being torsional, e.g. produced by rotating bodies
    • G01N11/167Sample holder oscillates, e.g. rotating crucible

Abstract

PURPOSE:To measure an accurate clotting process, by measuring the inertia moment of a specimen to be measured in such a state that said specimen is sealed in a specific container. CONSTITUTION:The upper and lower ends of an artificial vessel 2, in which blood 1 is injected, are clamped by clamps 3, 3'. A movable coil 4 and a torsion wire 5 are connected to the upper clamp 3 and a torsion wire 5' is connected to the lower clamp 3'. The electrode of the movable coil 4 is connected to amplifiers 8, 10 through a change-over switch 7. The pulse signal generated by a pulse generator 9 is supplied to the coil 4 to rotate the artificial vessel 2 and, when the vessel 2 begins to freely vibrate, the coil 4 generates electromotive force and a blood clotting process is measured from the attenuation ratio and cycle of the wave form of electromotive force.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粘度測定装置に関し、特に、特定の容器内に
外気から遮蔽された状態で保持される試料の粘度あるい
は凝固過程を測定するのに適した粘度測定装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a viscosity measuring device, particularly for measuring the viscosity or solidification process of a sample held in a specific container while being shielded from the outside air. This invention relates to a viscosity measuring device suitable for.

(従来波・術) 従来の粘度測定装置は、試料中に棒あるいは円板等を挿
入して、この棒あるいは円板を動かした時に生じる粘性
抵抗等から試料の粘度を測定するようになっている。し
かしながら、測定試料によっては、特定の物質に接触す
ると測定試料が凝固しはじめたシ、あるいは凝固速度が
変化するという問題がある。例えば、人工血管の抗血栓
性(血液の凝固しにくさ)を正確に調べるためには、血
液が空気をふくめ人工血管以外の物質に接触しない状態
で測定する必要があるが、従来の粘度測定装置はいずれ
も測定装置の一部が試料に接触するようになっているの
で、人工血管の抗血栓性を正確に調べることは、動物実
験を行なう以外は不可能だった。
(Conventional wave/technique) Conventional viscosity measurement devices insert a rod or disk into the sample and measure the viscosity of the sample from the viscous resistance that occurs when the rod or disk is moved. There is. However, depending on the measurement sample, there is a problem in that when it comes into contact with a specific substance, the measurement sample begins to solidify or the solidification rate changes. For example, in order to accurately examine the antithrombotic properties (difficulty of blood coagulation) of an artificial blood vessel, it is necessary to measure the blood while it contains air and does not come into contact with any substance other than the artificial blood vessel, but conventional viscosity measurement Since a part of the measuring device in each device comes into contact with the sample, it has been impossible to accurately examine the antithrombotic properties of artificial blood vessels without conducting animal experiments.

(発明の目的) 本発明の目的は、測定試料を特定の容器に封入せしめた
状態で、内部の測定試料の粘度あるいは特定の容器に対
する内部の測定試料の凝固過程を測定することができる
粘度測定装置を提供することにある。
(Object of the Invention) The object of the present invention is to measure the viscosity of a sample sealed in a specific container and to measure the viscosity of the sample inside or the solidification process of the sample inside the specific container. The goal is to provide equipment.

(発明の構成) 本発明の粘度測定装置は、内部に試料が封入された被測
定物を保持する保持手段、この保持手段によって保持さ
れた被−1j定物を受量中につるす上端が固定されたト
ーションワイヤ、前記保持手段に一部が固定され前記被
測定物を回転揺動するjiJ動コイル、仁の可動コイル
を挾んで相対向して設けられた一対の磁極、前記可動コ
イルと接続される共通端子と2つの切換端子とを有する
切換手段、この切換手段の一方の切換端子を介して前記
可動コイルへ・fルス信号を送る・ぐルス信号発生器、
およびこのノ9ルス信号発生器へパルス信号の発生を指
示する指示信号を送り1,4ルス信号が発生される場合
は前記切換手段の共通端子と前記一方の切換端子とを接
続してノ母ルス信号を前記可動コイルへ送シ、その他の
場合は前記切換手段の共通端子と他方の切換端子とを接
続して前記可動コイルから発生される起電力を前記他方
の切換端子から出力させる、前記パルス信号発生器と前
記切換手段とを制御する制御手段がIJa見られたこと
を特徴とする。
(Structure of the Invention) The viscosity measuring device of the present invention includes a holding means for holding an object to be measured in which a sample is enclosed, and an upper end on which the object to be measured held by the holding means is fixed during receiving. a torsion wire, a part of which is fixed to the holding means and rotates and oscillates the object to be measured, a pair of magnetic poles facing each other with the other moving coil in between, and a pair of magnetic poles that are connected to the moving coil. a switching means having a common terminal and two switching terminals; a signal generator for sending an f pulse signal to the movable coil through one switching terminal of the switching means;
and an instruction signal instructing the generation of a pulse signal to this pulse signal generator, and when a pulse signal of 1 or 4 is generated, the common terminal of the switching means and the one switching terminal are connected to each other. transmitting a pulse signal to the moving coil; in other cases, connecting the common terminal of the switching means and the other switching terminal to output the electromotive force generated from the moving coil from the other switching terminal; The present invention is characterized in that a control means for controlling the pulse signal generator and the switching means is shown in FIG.

本発明は、内部に試料が封入された被測定物の慣性モー
メントが、内部が固体状態か液体状態かで変わるという
原理を用いたものである・従って、本発明は粘度測定の
ための試料中に挿入される部材および装置自身の測定容
器を有さないので、例えば血液試料の場合異物による凝
固を生じることなく試料の粘度測定することができる。
The present invention uses the principle that the moment of inertia of a measured object with a sample sealed inside changes depending on whether the inside is in a solid or liquid state. Since the device does not have a member to be inserted into the device or a measuring container of its own, it is possible to measure the viscosity of a blood sample without causing coagulation due to foreign matter, for example.

従って、特定の封入容器に対する血液の凝固過程を正確
に測定することができる。
Therefore, the blood coagulation process for a specific enclosure can be accurately measured.

なお、本発明において測定される粘度は相対値であるが
、既知の慣性モーメントを持つ物体を測定することによ
シ絶対較正を容易に行なうことができる。
Although the viscosity measured in the present invention is a relative value, absolute calibration can be easily performed by measuring an object having a known moment of inertia.

(実施例) 以下1本発明を実施例につき詳細に説明する・第1図は
2本発明の粘度測定装置の一実施例・特に人工血管の血
液凝固過程の測定に適する実施例の概略図である。
(Example) Below, the present invention will be explained in detail with reference to an example. Figure 1 is an example of the viscosity measuring device of the present invention. Figure 1 is a schematic diagram of an example particularly suitable for measuring the blood coagulation process of an artificial blood vessel. be.

内部に血液1が注入された人工血管2が上下端をクラン
プ3.3′によ)挾まれている。クランプ3の上方には
可動コイル4が固設されておシ、この可動コイル4には
さらに上端が固定されたトーションワイヤ5が接続され
ている。クリップ3の下方には下端が固定された上方の
トーションワイヤと等長のトーションワイヤ5′が接続
されている。可動コイル4t−挾んで相対向する磁極6
.6′が配されている。可動コイル4の電極は切換スイ
ッチ7の共通端子7aK接続されている。切換スイッチ
7の一方の切換端子7bK、は増幅器8を介してパルス
発生器9が接続されておシ、ノfルス発生器9が発生し
たパルス信号が可動コイル4に供給されるようになって
いる。切換スイッチ7の他方の切換端子7Cには増幅器
10が接続されておシ、可動コイル4に発生された起電
力が外部に出力しうるようにされている。・ぐルス発生
器9および切換スイッチ7はコントローラ11により制
御され、ノクルス発生器9からパルス信号が発生されて
いる間は、これと同期して切換スイッチ7が切夛換えら
れて、ノ’?ルス信号が可動コイル4に送ら九、可動コ
イル4が自由振動されている間は、この自由振動により
可動コイル41C発生された起動力が測定されるよう切
換スイッチ7が切シ換えられる。
An artificial blood vessel 2 into which blood 1 has been injected is clamped at its upper and lower ends by clamps 3.3'. A movable coil 4 is fixedly installed above the clamp 3, and a torsion wire 5 whose upper end is fixed is further connected to the movable coil 4. A torsion wire 5' having a fixed lower end and having the same length as the upper torsion wire is connected to the lower part of the clip 3. Moving coil 4t - magnetic poles 6 facing each other in between
.. 6' is arranged. An electrode of the moving coil 4 is connected to a common terminal 7aK of the changeover switch 7. One switching terminal 7bK of the changeover switch 7 is connected to a pulse generator 9 via an amplifier 8, so that the pulse signal generated by the pulse generator 9 is supplied to the moving coil 4. There is. An amplifier 10 is connected to the other switching terminal 7C of the changeover switch 7 so that the electromotive force generated in the moving coil 4 can be outputted to the outside. - The pulse generator 9 and the changeover switch 7 are controlled by the controller 11, and while the pulse signal is being generated from the Noculus generator 9, the changeover switch 7 is switched in synchronization with the pulse signal, and the pulse signal is changed over. The pulse signal is sent to the movable coil 4, and while the movable coil 4 is freely vibrating, the changeover switch 7 is switched so that the starting force generated by the movable coil 41C due to this free vibration is measured.

このように溝底された粘度測定装置を用^た人工血管の
凝固過程、即ち抗血栓性の測定を説明するO 第1図に示されるように、内部に血液1が注入された人
工血管2がクリップ3.3′によシ挾まれてトーション
ワイヤ5.5′間につシさ&1Mする。コントローラ1
1によシ切換スイッチ7の共通端子7aと切換端子7b
とが連結され、この状態で、ノfルス発生器9がコント
ローラ11に制御されノ4ルス信号が発生される。この
ノ4ルス信号は一旦増幅器8によシ増幅された後、可動
コイル4に人力され、可動コイル4と磁極6.6′の間
に発生された磁力により、可動コイル6ならびに血液が
注入された人工血管2が回転する・/4’ルス信号が可
動コイル4に送られた後は、コントローラ11によシ制
御されて切換スイッチの共通端子7aと切換端子7Cと
が連結される。人工血管2はトーションワイヤ5.5′
に与えられた回転弾性力によシ回転し、自由振動を開始
する。人工血管2が自由振動を開始すると、この際人工
血f2と一体的fc憑動する可動コイル4に発生する起
電力によし、この自由振動の振幅ならびに周期を観測す
る。ことができる。742図に人工血管2が自由振動す
る際の増幅器lOの出力電圧波形を示すOこの波形から
振幅の対数減衰率Δ=、、、、AIと周期2 ■をめ、この値に基づいて血液の粘度を測定することが
できるが、凝固過程を調べるためには、振幅の対数減衰
率Δと周期Tの時間的変化を測定する。即ち、所定の時
間間隔をおいて、ノ量ルス信号を可動コイル4に供給し
、上様と同様にして自由振動に基づく可動コイル4の出
力電圧波形1g3図)から各時刻における対数減衰率へ
(第4図)及び周期T(第5図)をめる。物質が凝固す
ると同期Tが長く一定になシ、対数減衰率へか小さく一
定になるので、この状態になるまでの時間を測定するこ
とによ勺、ある特定の材質から形成された人工血管に対
する血液の凝固過程全調べることができる。
The coagulation process of an artificial blood vessel, that is, the measurement of antithrombotic properties using the grooved viscosity measurement device as described above will be explained. As shown in Fig. 1, an artificial blood vessel 2 into which blood 1 has been injected is is held by the clip 3.3' and stretched between the torsion wires 5.5' and 1M. Controller 1
1, the common terminal 7a and the switching terminal 7b of the switching switch 7
In this state, the nof pulse generator 9 is controlled by the controller 11 to generate the nof pulse signal. After this pulse signal is once amplified by the amplifier 8, it is manually applied to the moving coil 4, and the magnetic force generated between the moving coil 4 and the magnetic pole 6.6' causes the moving coil 6 and blood to be injected. After the /4' pulse signal for rotating the artificial blood vessel 2 is sent to the movable coil 4, the common terminal 7a of the changeover switch and the changeover terminal 7C are connected under the control of the controller 11. Artificial blood vessel 2 is a torsion wire 5.5'
It rotates due to the rotational elastic force applied to it and starts free vibration. When the artificial blood vessel 2 starts free vibration, the amplitude and period of this free vibration are observed based on the electromotive force generated in the movable coil 4 which is integrally attached to the artificial blood f2. be able to. Figure 742 shows the output voltage waveform of the amplifier lO when the artificial blood vessel 2 vibrates freely.From this waveform, the amplitude logarithmic attenuation rate Δ=,..., AI and the period 2 are determined, and based on this value, the blood The viscosity can be measured, but in order to investigate the coagulation process, the logarithmic decay rate Δ of the amplitude and the temporal change in the period T are measured. That is, a normal pulse signal is supplied to the moving coil 4 at predetermined time intervals, and in the same way as above, the output voltage waveform 1g of the moving coil 4 based on free vibration (Fig. 3) is converted to the logarithmic damping rate at each time. (Figure 4) and period T (Figure 5). When a substance solidifies, the synchronization T remains constant for a long time, and the logarithmic decay rate becomes small and constant, so by measuring the time until this state is reached, it is possible to The entire blood coagulation process can be investigated.

上記実施例においては、被測定物の上方および下方にト
ーションワイヤが配されたが、下方のトーションワイヤ
は被測定物の横振れ防止用であり、下方のトーションワ
イヤを全く回転弾性力のないひも等に置き換えることも
できる・ なお1本発明は人工血管中の血液の凝固過程の測定だけ
に有効なのではなく、各種の所定の容器内に封入された
試料の粘度ならびに凝固過程を測定することができるが
、例えば、空気、粘度測定用のプローブ等に接触すると
凝固するあるいは凝固速度が変化する試料の測定が可能
となる。また。
In the above embodiment, torsion wires were placed above and below the object to be measured, but the lower torsion wire was used to prevent the object from lateral vibration, and the lower torsion wire was connected to a string with no rotational elastic force. Note that the present invention is effective not only for measuring the coagulation process of blood in artificial blood vessels, but also for measuring the viscosity and coagulation process of samples sealed in various predetermined containers. However, for example, it is possible to measure samples that solidify or whose solidification rate changes when they come into contact with air, a probe for viscosity measurement, or the like. Also.

有害なガスを発生しfc!7”N気と反応する液体の粘
度を密封したままで測定できる。さらに、アンプルや缶
詰の封を切らずに内部の液体の粘度測定を行なうことが
できるnまた、接着剤や充填剤のように特定の使用容器
中で固化する試料の粘度変化(固化時間)の測定を行な
うことができる。
Generates harmful gas and fc! 7" It is possible to measure the viscosity of liquids that react with N gas while they are sealed. Furthermore, it is possible to measure the viscosity of liquids inside ampules and canned goods without breaking the seals. The change in viscosity (solidification time) of a sample solidifying in a specific container can be measured.

被測定物が人工血管のようなチューブ状のものでない場
合は、保持手段として第1図に示したようなものとは異
なる適当な保持手段が使用されるが、例えば容器が缶状
のものの場合は第6図に示されるようなもの即ち被測定
物2を一対の円板31.31 /で挾持して、この円板
31.31′をクランプ32によって固定するものが使
用できる。
If the object to be measured is not a tube-shaped object such as an artificial blood vessel, an appropriate holding means different from the one shown in Figure 1 is used as the holding means. For example, if the container is can-shaped, A device as shown in FIG. 6, in which the object to be measured 2 is held between a pair of discs 31, 31/, and the discs 31, 31' are fixed by a clamp 32, can be used.

(発明の効果う 以上、詳細に説明したように本発明によると、血液等の
測定試料を人工血管等の特定の容器に封入せしめた状態
で、異物と接触することなく凝固過程を測定することが
できるので、正確な凝固過程の測定が可能となる◎
(Advantageous Effects of the Invention) As explained in detail, according to the present invention, the coagulation process can be measured without contacting foreign matter with a measurement sample such as blood sealed in a specific container such as an artificial blood vessel. This makes it possible to accurately measure the coagulation process◎

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の粘度測定装置の一実施例の概略図。 第2図は被測定物がトーションワイヤによシ自由振動を
起した際に可動コイルから得られる電圧波形、 第3図は、所定時間間隔で可動コイルにノeルス信号を
与えた場合に得られる出力電圧波形、第4図および第5
図はそれぞれ第3図の出力電圧波形から得られる周期T
および対数減衰率の時間変化を示すグラフ、 第6図は被測定物を保持する保持手段の別の実施例を示
す概略図である。
FIG. 1 is a schematic diagram of an embodiment of the viscosity measuring device of the present invention. Figure 2 shows the voltage waveform obtained from the moving coil when the object to be measured causes free vibration due to the torsion wire, and Figure 3 shows the voltage waveform obtained when a Norse signal is applied to the moving coil at predetermined time intervals. Output voltage waveforms shown in Figures 4 and 5
Each figure shows the period T obtained from the output voltage waveform in Figure 3.
FIG. 6 is a schematic diagram showing another embodiment of the holding means for holding the object to be measured.

Claims (1)

【特許請求の範囲】[Claims] 内部に試料が封入された被測定物を保持する保持手段、
この保持手段によって保持された被測定物を空間中につ
るす上端が固定されたトーションワイヤ、前記保持手段
に一部が固定され前記被測定物を回転揺動する可動コイ
ル、この可動コイルを挾んで相対向して設けられた一対
の磁極、前記可動コイルと接続される共通端子と2つの
切換端子とを有する切換手段、この切換手段の一方の切
換端子を介して前記可動コイルヘノJ?ルス信号を送る
/譬ルス信号発生器、および仁の/量ルス信号発生器へ
・母ルス信号の発生を指示する指示信号を送り、Iヤル
ス信号が発生される場合は前記切換手段の共通端子と前
記一方の切換端子とを接続して/ぐルス信号を前記可動
コイルへ送力、その他の場合は前記切換手段の共通端子
と他方の切換端子とを接続して前記可動コイルから発生
される起電力を前記他方の切換端子から出力させる、前
記−ンルス信号発生器と前記切換手段とを制御する制御
手段が備えられたことを特徴とする粘度測定装J0
a holding means for holding an object to be measured in which a sample is sealed;
A torsion wire whose upper end is fixed for suspending the object to be measured held by the holding means in space, a movable coil whose upper end is fixed to the holding means and rotates and oscillates the object to be measured, and a movable coil that holds the moving coil between the two ends. A switching means having a pair of magnetic poles facing each other, a common terminal connected to the moving coil, and two switching terminals, and a switching terminal connected to the moving coil through one switching terminal of the switching means. An instruction signal for instructing generation of a master pulse signal is sent to the pulse signal generator and the pulse signal generator, and when an I pulse signal is generated, the common terminal of the switching means and said one switching terminal are connected to send a signal to said moving coil, and in other cases, a common terminal of said switching means and said other switching terminal are connected to send a signal to be generated from said moving coil. A viscosity measuring device J0 characterized in that it is provided with a control means for controlling the pulse signal generator and the switching means for outputting an electromotive force from the other switching terminal.
JP4959084A 1984-03-15 1984-03-15 Viscosity measuring apparatus Granted JPS60194330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4959084A JPS60194330A (en) 1984-03-15 1984-03-15 Viscosity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4959084A JPS60194330A (en) 1984-03-15 1984-03-15 Viscosity measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60194330A true JPS60194330A (en) 1985-10-02
JPH0430540B2 JPH0430540B2 (en) 1992-05-22

Family

ID=12835441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4959084A Granted JPS60194330A (en) 1984-03-15 1984-03-15 Viscosity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60194330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120242A (en) * 1986-11-07 1988-05-24 Nec Corp Viscosity measuring apparatus
WO1995024630A1 (en) * 1994-03-07 1995-09-14 Joseph Goodbread Method and device for measuring the characteristics of an oscillating system
US5565620A (en) * 1992-10-05 1996-10-15 Aktiebolaget Medicinsk Reologi Lund Method for measuring rheological properties and rheometer for carrying out the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895292A (en) * 1972-03-15 1973-12-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895292A (en) * 1972-03-15 1973-12-06

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120242A (en) * 1986-11-07 1988-05-24 Nec Corp Viscosity measuring apparatus
US5565620A (en) * 1992-10-05 1996-10-15 Aktiebolaget Medicinsk Reologi Lund Method for measuring rheological properties and rheometer for carrying out the method
WO1995024630A1 (en) * 1994-03-07 1995-09-14 Joseph Goodbread Method and device for measuring the characteristics of an oscillating system
US5837885A (en) * 1994-03-07 1998-11-17 Goodbread; Joseph Method and device for measuring the characteristics of an oscillating system

Also Published As

Publication number Publication date
JPH0430540B2 (en) 1992-05-22

Similar Documents

Publication Publication Date Title
CN113640377B (en) Blood viscoelasticity measuring method based on vibration sensor
JPS6145781B2 (en)
JP6482449B2 (en) Measuring method of fluid density
JPH05503771A (en) rheometer
US4166381A (en) Apparatus for determining the viscosity of fluids
JPS60194330A (en) Viscosity measuring apparatus
ES8102676A1 (en) Device for measuring coagulation or lysis parameters.
JPH04346087A (en) Measuring apparatus of magnetic characteristic
SU602825A1 (en) Device for measuring dynamic elasticity modulus of solidifying substances
WO1983002325A1 (en) Vertical balance testing machine
JP3166627B2 (en) Material testing machine
JPH04104039A (en) Tension-type dynamic viscoelasticity measuring apparatus
US5081870A (en) Method and apparatus for determining dynamic mechanical properties of materials
SU1064202A1 (en) Hot-wire anemometer pickup testing method
JPS554536A (en) Internal friction measuring apparatus
JPS61181438A (en) Method and apparatus for measuring viscoelasticity of skin
SU1748142A1 (en) Method of determination of friction coefficient in supports of oscillator of balance-spiral type
JP3189241B2 (en) Method and apparatus for measuring dynamic elastic modulus and rigidity
SU1698729A1 (en) Materials physic-mechanic qualities determination method
SU440603A1 (en) Device for determining the freshness of food
SU1530958A1 (en) Method and bench for determining parameters of force-measuring apparatus for with forced electric balancing
RU2035730C1 (en) Method for measurement of moisture content in iron ore loose materials
SU771489A1 (en) Vibration calibrating installation
JP3286382B2 (en) Vibration test method and device in special environment
JPH0560672A (en) Thermo-mechanical analizer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term