JPS60193794A - Aircraft - Google Patents

Aircraft

Info

Publication number
JPS60193794A
JPS60193794A JP4808584A JP4808584A JPS60193794A JP S60193794 A JPS60193794 A JP S60193794A JP 4808584 A JP4808584 A JP 4808584A JP 4808584 A JP4808584 A JP 4808584A JP S60193794 A JPS60193794 A JP S60193794A
Authority
JP
Japan
Prior art keywords
outboard
aileron
leading edge
main wing
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4808584A
Other languages
Japanese (ja)
Inventor
炭田 潤一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON KOUKUUKI KAIHATSU KIYOUK
NIHON KOUKUUKI KAIHATSU KIYOUKAI
Original Assignee
NIHON KOUKUUKI KAIHATSU KIYOUK
NIHON KOUKUUKI KAIHATSU KIYOUKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON KOUKUUKI KAIHATSU KIYOUK, NIHON KOUKUUKI KAIHATSU KIYOUKAI filed Critical NIHON KOUKUUKI KAIHATSU KIYOUK
Priority to JP4808584A priority Critical patent/JPS60193794A/en
Publication of JPS60193794A publication Critical patent/JPS60193794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)
  • Details Of Aerials (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は航空機、特に、機体に固定した主翼を有する固
定翼航空機に関する、 固定翼航空機の主翼設計は、飛行中に発生する連動荷重
や突風荷重またはフラッタに対する剛性等を標定として
行われるが、最近では能動制御技術(アクティブ・コン
トロール・テクノロジ)と称して主翼端等に配置した加
速度計等の出力により、各制御舵面すなわち外舷エルロ
ン、内舷エルロンおよびエレベータ(:Eたはスタビレ
ータ]を制御するようにして、設計標定荷重馨軽減し、
フラッグ速度を増加させることが行われている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aircraft, particularly a fixed-wing aircraft having a main wing fixed to the fuselage. However, recently, active control technology uses the output of accelerometers placed at the tips of the main wings to locate each control surface, namely the outer aileron, inner aileron, and elevator (: E or stabilizer] to reduce the design load,
Increasing flag speed is being done.

例えば、外舷エルロンを後縁上げ、内舷エルロンを後縁
下げにすることにより、主翼の全揚力係数は一定に保っ
た面下、外舷部の揚力係数ビ低減し、内舷部の揚力係数
乞増大させて、主翼の曲げモーメントを減少させたり、
主翼に上向さの突風が作用した場合迎角が増1111.
することによる上向き揚力を抑えるために、外舷エルロ
ンン移縁上げに操作し、下向さ突風に対しては逆に操作
するようにしたりしている。
For example, by raising the trailing edge of the outer aileron and lowering the trailing edge of the inner aileron, the total lift coefficient of the main wing is kept constant, but the lift coefficient on the outer side is reduced, and the lift on the inner side is reduced. By increasing the coefficient, the bending moment of the main wing can be reduced,
When an upward gust of wind acts on the main wing, the angle of attack increases1111.
In order to suppress the upward lift caused by this, the outboard ailerons are raised, and reversed when facing downward gusts.

しかし、前記各制御舵面のうち、外舷エルロンの作動の
場合は、主翼に捩りモーメントが発生し。
However, among the control surfaces, when the outboard aileron is operated, a torsional moment is generated in the main wing.

減少する曲げモーメント量がその’f!標定荷重の減少
へとは繋がらない。
The amount of bending moment that decreases is the 'f! This does not lead to a decrease in the oriented load.

従って本発明は、外舷エルロンの作動によって生ずる主
翼捩りモーメントの増加乞抑制して、綜合的標(定荷重
の低減を図ろうとするものである。
Therefore, the present invention attempts to reduce the overall target (constant load) by suppressing the increase in the main wing torsional moment caused by the operation of the outboard aileron.

このため本発明においては、主翼外舷部に、後縁の外舷
エルロンに対向して前縁に外舷前縁フラップン設け、前
記外舷エルロンと外舷前縁フラップとン互いに上下逆方
向に作動させる。このようにすることにより、外舷前*
7ラツプが、外舷工ルロンの作動によって生ずる主翼捩
りモーメント馨抑制する制御舵面として働く6 以下、本′発明乞図示の実施例により説明する6第1図
は航空機全体を示す斜視図、第2図はその一方の主翼の
平面図で矢印は航空機の飛行方向乞示す。1は胴体、2
は主翼、3は尾翼で、尾翼3にはその後縁にエレベータ
4が枢着されている。
Therefore, in the present invention, an outboard leading edge flap is provided on the leading edge of the main wing outboard portion opposite to the outboard aileron at the trailing edge, and the outboard aileron and the outboard leading edge flap are arranged in opposite directions to each other. Activate. By doing this, you can
7 The lap acts as a control surface that suppresses the main wing torsional moment generated by the operation of the outer sidewall.6 Hereinafter, the present invention will be explained based on an illustrated embodiment.6 Figure 1 is a perspective view showing the entire aircraft. Figure 2 is a plan view of one of the main wings, and the arrow indicates the direction of flight of the aircraft. 1 is the body, 2
is the main wing, 3 is the tail, and the tail 3 has an elevator 4 pivotally attached to its trailing edge.

エンジン5乞取り付けた主翼2の稜縁にば−その内方部
分に内舷エルロン6が設けられるとともに、外方翼端部
分に外舷エルロン7が設けられている。
An inner aileron 6 is provided at the inner portion of the ridge edge of the main wing 2 to which the engine 5 is attached, and an outer aileron 7 is provided at the outer wing tip portion.

翼端部分には■た加速度計8が設けられており、この加
速度計8によって検出される翼端の加煕度に応じた信号
が図示してない1TiI制御装置に送られ、該制御1l
IP叫により前記エレベータ4、内舷エルロン6、外舷
エルロン7等の制御舵面が操作されて、航空機各部の荷
重を一定の制限値以下に抑えるように設計されている。
An accelerometer 8 is provided at the wing tip, and a signal corresponding to the stiffness of the wing tip detected by this accelerometer 8 is sent to a 1TiI control device (not shown), which controls the control 1l.
The control surfaces such as the elevator 4, the inner aileron 6, the outer aileron 7, etc. are operated by the IP shout, and the aircraft is designed to suppress the load on each part of the aircraft below a certain limit value.

9は本発明による外舷前縁フラップで、主翼2の外方翼
端部分の前縁に前部外舷エルロンに対向し、これと対ヲ
なして設けられている。この外舷前縁フラップ9はその
前縁部乞上下に対称に揺動させることができるよう、ヒ
ンジによって主翼2の前縁に取り付けられており、その
作動機構は前記外舷エルロン70作動機構に連動し、第
3図に外舷エルロン7が後縁下げの時には外舷前縁フラ
ップ9は前縁上げになるように、互いに上下逆方向に作
動する。
Reference numeral 9 denotes an outboard leading edge flap according to the present invention, which is provided at the leading edge of the outboard tip portion of the main wing 2, facing and opposite to the front outboard aileron. This outboard leading edge flap 9 is attached to the leading edge of the main wing 2 by a hinge so that its leading edge can be swung symmetrically up and down, and its operating mechanism is connected to the outboard aileron 70 operating mechanism. Interlockingly, as shown in FIG. 3, when the outboard aileron 7 lowers the trailing edge, the outboard leading edge flap 9 operates in opposite directions to raise the leading edge.

例えば、主翼2に上向きの突風がかかった場合、迎角が
増加することによる上向きの揚力Z抑えるタメ、外舷エ
ルロン7は後縁上げに操作されるが、これと同時に外舷
前縁フラップ9か前縁下げに操作され、外舷エルロン7
を作動させることによって発生する主翼捩りモーメント
ン、外舷前縁フラップ9の作動によって打消し、主翼付
根部曲げモーメントの減少効果のみが残る。
For example, when an upward gust of wind is applied to the main wing 2, the outboard aileron 7 is operated to raise the trailing edge in order to suppress the upward lift force Z due to the increase in the angle of attack, but at the same time, the outboard leading edge flap 9 is operated to raise the trailing edge. Or the leading edge is lowered, and the outboard aileron 7
The main wing torsional moment generated by operating the outboard leading edge flap 9 is canceled out by the operation of the outboard leading edge flap 9, and only the effect of reducing the main wing root bending moment remains.

第4図は準定常揚力面理論による数学シュミレーション
結果を示し、横軸は主翼付根部からの戊申方向の長さY
w(ロ)tあられし、縦軸は主翼各部の捩りモーメント
(TOルー扉)ンあられす。なおこのシュミレーション
はエンジン慣性荷重’を含h、B &!エンジン取付位
置である。図において実線aば、外舷エルロンの作動角
度0°、外舷前縁フラップの作動角度0°、すなわち外
舷エルロンも外舷前縁フラップも作動していない時の捩
りモーメントン示す曲線、鎖線すは、外舷エルロンの作
動角度−30’−外舷前縁フラップの作動角Ifo’、
すなわち外舷エルロンだけをg後縁上げに操作した時の
捩りモーメントを示す曲線、点線Cは、外舷エルロンの
作動角度−30−外舷前縁フラップの作動角度I0、す
なわち外舷エルロンー1730’後繰上げに操作すると
ともに、外舷前縁フラップも算顎縁下げに操作した時の
捩りモーメン)Y示す曲線である、この第4図から分る
ように、外舷エルロンだけを作動させた場合(鎖線b1
には、舵面操作なしの場合(実線α)に比して捩りモー
メントは大きくなるが、外舷エルロンの作動とともに外
舷前縁フラップも作動させると(点線C)、捩りモーメ
ントは舵面操作なしの場合とほぼ同等の値まで低減し、
特に−外舷前縁フラップが存在する外側部分では、捩り
モーメントは大さく減少して舵面操作なしの場合以下に
なる・ 第5図は縦軸に曲げモーメントYとった第4区1と同様
な線図である。第5図から分るように、外舷エルロンだ
けを作動させることにより(鎖線b)、舵面操作なしの
場合(実線α)に比し曲げモーメントは大葉〈低下し、
主翼付根における曲げモーメントの低減効果が得られる
が、外舷前縁フラップも作動させれば(点線C1、わず
かではあるがさらに曲げモーメントが減少する。
Figure 4 shows the results of a mathematical simulation based on the quasi-steady lift surface theory, where the horizontal axis is the length Y in the Boshin direction from the root of the main wing.
The vertical axis represents the torsional moment of each part of the main wing. This simulation includes engine inertia load', B&! This is the engine mounting position. In the figure, solid line a is a curve showing the torsional moment when the operating angle of the outboard aileron is 0° and the outboard leading edge flap is operating angle 0°, that is, neither the outboard aileron nor the outboard leading edge flap is in operation, and the chain line is a curve showing the torsional moment. is the operating angle of the outboard aileron - 30' - the operating angle Ifo' of the outboard leading edge flap,
In other words, the curve showing the torsional moment when only the outboard aileron is operated to raise the g trailing edge, the dotted line C, is the operating angle of the outboard aileron - 30 - the operating angle of the outboard leading edge flap I0, that is, the outboard aileron - 1730' As can be seen from Figure 4, the torsional moment when the outboard leading edge flap is also operated to lower the chin edge as well as to raise the rear aileron. (Dashed line b1
, the torsional moment becomes larger compared to the case without control surface operation (solid line α), but when the outboard leading edge flap is also activated in conjunction with the operation of the outboard aileron (dotted line C), the torsional moment increases due to control surface operation. reduced to almost the same value as without,
In particular, in the outer part where the outboard leading edge flap exists, the torsional moment decreases significantly and becomes less than that without control surface operation. Figure 5 is similar to section 4, section 1, where the bending moment Y is taken on the vertical axis. It is a line diagram. As can be seen from Fig. 5, by operating only the outboard aileron (dashed line b), the bending moment is significantly reduced compared to the case without control surface operation (solid line α).
The effect of reducing the bending moment at the root of the main wing can be obtained, but if the outboard leading edge flap is also activated (dotted line C1, the bending moment is further reduced, albeit slightly).

以上、本実施例の作用効果乞突風荷重軽減動作に関して
説明したが、その他運動荷重制御、プラッタ抑制等のた
めに外舷エルロンン作動させる際にも同様な効果か得ら
れることは言うまでもない。
The effects and effects of this embodiment have been described above regarding the gust wind load reduction operation, but it goes without saying that similar effects can be obtained when operating the outboard ailerons for other purposes such as motion load control and platter suppression.

以上の通り、本発明においては、主翼外舷部に2後縁の
外舷エルロンに対向して前縁に外舷前縁フラップン設け
、前記外舷エルロンと外舷前縁フラッグとを互いに上下
逆方向に作動させるよ5にしたので、外舷エルロンを作
動させて行う航空機の各種制御時に、主翼に発生する捩
りモーメントな外舷前縁フラップの作動により抑制して
、航空機にかかる荷重乞低減させることがでさる、
As described above, in the present invention, an outboard leading edge flap is provided on the leading edge of the main wing outboard portion opposite to the outboard ailerons of the two trailing edges, and the outboard ailerons and the outboard leading edge flag are turned upside down with respect to each other. 5, the torsional moment generated on the main wing is suppressed by the operation of the outboard leading edge flap, reducing the load on the aircraft when the outboard aileron is activated to perform various aircraft controls. That's a big deal,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である航空機の斜視図、第2
図は主翼の平面図、第3図は第2図の■−III線に沿
う断面図、第4図は主翼捩りモーメントの分布を示す線
図−第5図は主翼曲げモーメントの分布を示す線図であ
る、 1・・・胴体、2・・・主翼、3・・・尾翼、4・・・
エレベータ、5・・・エンジン、6・・・内舷エルロン
+7・・・外舷エルロン−8・・・加速度計、9・・・
外舷前縁フラップ。 代理人 弁理士 江 原 望 外2名 第1図 第2図
Fig. 1 is a perspective view of an aircraft that is an embodiment of the present invention;
The figure is a plan view of the main wing, Figure 3 is a sectional view taken along line ■-III in Figure 2, Figure 4 is a line diagram showing the distribution of the main wing torsional moment, and Figure 5 is a line diagram showing the distribution of the main wing bending moment. The diagram shows 1...fuselage, 2...main wings, 3...tail, 4...
Elevator, 5... Engine, 6... Inner aileron + 7... Outer aileron - 8... Accelerometer, 9...
Outboard leading edge flap. Agent: Patent Attorney Nozomi Ehara (2 people) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 主翼外舷部に、後縁の外舷エルロンに対向して前縁に外
舷前縁フラップン設け、前記外舷エルロンと外舷前縁フ
ラップとン互いに上下逆方向に作動させるようにしたこ
とビ特徴とする航空機。
An outboard leading edge flap is provided on the leading edge of the main wing outboard portion opposite to an outboard aileron at the trailing edge, and the outboard aileron and the outboard leading edge flap are operated in opposite directions to each other. Featured aircraft.
JP4808584A 1984-03-15 1984-03-15 Aircraft Pending JPS60193794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4808584A JPS60193794A (en) 1984-03-15 1984-03-15 Aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4808584A JPS60193794A (en) 1984-03-15 1984-03-15 Aircraft

Publications (1)

Publication Number Publication Date
JPS60193794A true JPS60193794A (en) 1985-10-02

Family

ID=12793481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4808584A Pending JPS60193794A (en) 1984-03-15 1984-03-15 Aircraft

Country Status (1)

Country Link
JP (1) JPS60193794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159737A (en) * 2015-02-27 2016-09-05 三菱重工業株式会社 Flutter control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159737A (en) * 2015-02-27 2016-09-05 三菱重工業株式会社 Flutter control device

Similar Documents

Publication Publication Date Title
US4108403A (en) Vortex reducing wing tip
US4124180A (en) Free wing assembly for an aircraft
US4776542A (en) Aircraft stall-spin entry deterrent system
EP1924493B1 (en) Wing tip device
JP6563644B2 (en) Adjustable lift correction wingtip
JP2633413B2 (en) Rotor blades of rotary wing aircraft
US4542868A (en) Trailing edge device for an airfoil
US5947422A (en) Tail for an aircraft
US4291853A (en) Airplane all-moving airfoil with moment reducing apex
US11084566B2 (en) Passively actuated fluid foil
US4227665A (en) Fixed leading edge slat spoiler for a horizontal stabilizer
JP3544711B2 (en) Rotor blades of rotary wing aircraft
RU2391253C2 (en) Aircraft
US4890803A (en) Airfoil with fixed and variable upper camber portions
JP3472799B2 (en) Airfoil for blade
JP2000238697A (en) Wing type for helicopter blade and helicopter blade
JPS60193794A (en) Aircraft
EP3670332A1 (en) An aerodynamic surface for an aircraft
JP3364720B2 (en) Aircraft vertical stabilizer and rudder
US6322024B1 (en) Lift multiplying device for aircraft
KR20220139863A (en) Helicopters, helicopter kits and related reconstruction methods
EP1538075B1 (en) An aircraft wing structure and a method for decreasing flight speed of the aircraft
JPH0710088A (en) High-lift aircraft
JP2852031B2 (en) Rotor blades for rotary wing aircraft
JP3241081B2 (en) Helicopter