JPS60193501A - High-pressure crystallizer - Google Patents

High-pressure crystallizer

Info

Publication number
JPS60193501A
JPS60193501A JP59050108A JP5010884A JPS60193501A JP S60193501 A JPS60193501 A JP S60193501A JP 59050108 A JP59050108 A JP 59050108A JP 5010884 A JP5010884 A JP 5010884A JP S60193501 A JPS60193501 A JP S60193501A
Authority
JP
Japan
Prior art keywords
filter
pressure
ring
liquid
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59050108A
Other languages
Japanese (ja)
Other versions
JPS6134845B2 (en
Inventor
Masato Moritoki
正人 守時
Kazuo Kitagawa
北川 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59050108A priority Critical patent/JPS60193501A/en
Publication of JPS60193501A publication Critical patent/JPS60193501A/en
Publication of JPS6134845B2 publication Critical patent/JPS6134845B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of removing liquid material in a high- pressure crystallizer and to prevent the deterioration of a filter as far as possible by improving the structure for attaching the filter. CONSTITUTION:An end ring 9 is fixed to the top end of a filter 2 and a cylindrical reinforcing member 10 is disposed via a heat insulating material 3 on the rear side of the filter 2. Said member 10 is mounted between the circumferential edge on the top surface of a feed and discharge side block 5 and the bottom surface of the ring 9 by adjusting the length thereof according to the axial length of the cylindrical filter 2 so that said ring 9 can be positioned. As a result the nearly the designed filtration function is provided and the component captured to high purity is obtd. at a high yield. Since the damage of the filter 2 is suppressed, the frequency of exchanging the filter is decreased.

Description

【発明の詳細な説明】 本発明は高圧晶析装置に関し、殊にフィルターの取付構
造を改善し液状物の除去効率を高めると共にフィルター
の劣化を可及的に防止すると2のできる高圧晶析装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-pressure crystallizer, and particularly to a high-pressure crystallizer that improves the mounting structure of a filter, increases the removal efficiency of liquid substances, and prevents deterioration of the filter as much as possible. It is related to.

高圧晶析法とは、高圧容器内に複数成分からなる液相又
はスラリーからなる原料を導入し、液の排出管路を閉鎖
した状態で該原料に高圧力を加えて特定成分の晶析を促
進させる方法であシ、この操作によって特定成分(以下
捕集成分と言うこともある)、の結晶と残留液(以下除
去成分と言うこともある)が混在した状態が得られる。
The high-pressure crystallization method involves introducing a raw material consisting of a liquid phase or slurry consisting of multiple components into a high-pressure container, and applying high pressure to the raw material with the liquid discharge pipe closed to crystallize specific components. This is a method of acceleration, and by this operation, a state is obtained in which crystals of a specific component (hereinafter sometimes referred to as a captured component) and residual liquid (hereinafter sometimes referred to as a removed component) are mixed.

そこで排液管路の閉鎖を解除して前記固液共存状態にピ
ストン圧力を加えながら液状の除去成分をフィルタ経由
で系外に排出し、残った同相を圧搾しなから固液を分離
すると、高純度の特定成分を得ることができる。即ち第
1図はこの種の高圧晶析に用いられる装置を例示する要
部縦断面図であシ、図中1は高圧容器、2はフィルタ、
3は断熱材、4はピストン、5は給・排出側ブロック、
6は原料供給管路、7は除去成分排出管路を示し、この
装置を用いた高圧晶析の手順の基本を簡単に説明すると
次の通シである。
Therefore, by unblocking the drain pipe, applying piston pressure to the solid-liquid coexistence state, and discharging the liquid removed component out of the system via the filter, and separating the solid-liquid without squeezing the remaining same phase, High purity specific components can be obtained. That is, FIG. 1 is a vertical cross-sectional view of the main parts illustrating an apparatus used for this type of high-pressure crystallization, in which 1 is a high-pressure vessel, 2 is a filter,
3 is the insulation material, 4 is the piston, 5 is the supply/discharge side block,
Reference numeral 6 indicates a raw material supply pipe, and 7 indicates a removed component discharge pipe.The following is a brief explanation of the basics of the high-pressure crystallization procedure using this apparatus.

■排液弁V、を閉とじ給液弁v0を開いて原料供給管路
6から高圧容器1内へ原料を供給する。
(2) Close the liquid drain valve V and open the liquid supply valve v0 to supply the raw material from the raw material supply pipe line 6 into the high-pressure container 1;

■給液が終わる−と給液弁V6を閉じ、ピストン4を降
下させて容器1内の原料に高圧力を作用させ、特定成分
の晶析を促進させる。
(2) When the liquid supply is finished, the liquid supply valve V6 is closed, and the piston 4 is lowered to apply high pressure to the raw material in the container 1, thereby promoting crystallization of a specific component.

■晶析が終わると排液弁V、を開いて濾過・圧搾工程に
移る。この工程では、容器1内に存在する液状物を圧搾
しフィルタ2を通して排出させるが、液状物はフィルタ
2の背面側に設けた隙間から給・排出側ブロック5の排
液通路8を経て排出管路に至シ、排液弁V、から排出さ
れる。
- When the crystallization is finished, open the drain valve V and move on to the filtration/squeezing process. In this step, the liquid present in the container 1 is squeezed and discharged through the filter 2, and the liquid passes through the gap provided on the back side of the filter 2, through the drain passage 8 of the supply/discharge side block 5, and into the discharge pipe. When the liquid reaches the waterway, it is discharged from the drain valve V.

■濾過・圧搾が終了した後は、高圧容器1を開放してケ
ーキ状に固まった捕集成分を大気圧下に取出すか、或は
液状に融解して高圧容器から取出す。
(2) After filtration and squeezing are completed, the high-pressure container 1 is opened and the cake-shaped collected component is taken out under atmospheric pressure, or it is melted into a liquid and taken out from the high-pressure container.

ところで上記■の濾過・圧搾工程では、フィルターは数
百気圧から数千気圧という高圧力の差圧作用を受ける。
By the way, in the above filtration/squeezing step (2), the filter is subjected to a high pressure differential action of several hundred to several thousand atmospheres.

さらにフィルターは固体の圧搾に伴う摩擦力を受けてお
シ、その上へ上端リング2a上面にかかる内圧と該リン
グ2aの下面が大気圧になったときの差圧による影響を
受けるので矢印←)方向に圧縮変形し易い。殊に単純な
構造の焼結金属(SUS系等)フィルター夢では、上記
の諸応力による圧縮変形によって液体通過用の細孔が押
しつぶされ、濾過機能を喪失してしまうことがある。又
円筒状フィルター2が拡径方向に変形し易いことも勿論
である。この様なところから従来の高圧晶析装置では、
フィルターの局部破損による回収率の低下、或は圧縮変
形による細孔の閉塞(ひいては捕集物純度の低下)#の
問題があった。
Furthermore, the filter is affected by the frictional force associated with squeezing the solid, and is also affected by the internal pressure applied to the top surface of the upper end ring 2a and the differential pressure when the bottom surface of the ring 2a reaches atmospheric pressure (arrow ←) It is easy to compress and deform in the direction. In particular, in the case of a sintered metal (SUS, etc.) filter with a simple structure, the pores for liquid passage may be crushed by compressive deformation due to the above-mentioned stresses, and the filter function may be lost. It goes without saying that the cylindrical filter 2 is easily deformed in the direction of diameter expansion. Because of this, conventional high-pressure crystallizers
There were problems such as a decrease in the recovery rate due to local damage to the filter, or blockage of pores due to compressive deformation (resulting in a decrease in the purity of the collected material).

本発明者等はこうした事情に着目し、フィルターの破損
及び圧縮変形を確実に防止することのできる様な取付構
造を開発しようとして種々研北を進めてきた。本発明は
こうした研究の結果完成されたものであって、その構成
は、液相混合物中の特定成分を加圧によシ固化析出せし
め、加圧下に固液を分離して特定成分を分離回収する高
圧J6゛1析装置において、高圧容器の内周壁部に配置
される円筒状フィルターの少なくとも上端部をリングに
固定すると共に、該リングは補強部材により軸方向の変
形を押え且つ高圧容器内の所定位置に61置決めする他
、該補強部材によって前記円筒状フィルターを背面側か
ら支持してなるところに要旨を有するものである。
The inventors of the present invention have focused on these circumstances and have conducted various research efforts in an attempt to develop a mounting structure that can reliably prevent damage and compressive deformation of the filter. The present invention was completed as a result of such research, and its structure is to solidify and precipitate a specific component in a liquid phase mixture under pressure, separate the solid and liquid under pressure, and separate and recover the specific component. In a high-pressure J6-1 analyzer, at least the upper end of a cylindrical filter disposed on the inner circumferential wall of a high-pressure container is fixed to a ring, and the ring is prevented from deforming in the axial direction by a reinforcing member, and the inside of the high-pressure container is The gist is that the cylindrical filter is supported from the back side by the reinforcing member in addition to being placed at a predetermined position 61.

以下実施例図面に沿って本発明の構成及び作用効果を詳
細に説萌する。第2図は本発明に係る高圧晶析装置のフ
ィルタ取付部を示す要部概略縦断面図であり、装置全体
の構成は第1図の例と実質的に変わら表い。本例ではフ
ィルタ2の上端に端部リング9を固定すると共に、フィ
ルタ2の背面側には断熱材3を介して筒状の補強部材1
0が配置されている。そして該補強部材10は、円筒状
フィルタ2の軸方向長さに応じて長さを調整し、給・排
出側ブロック5の上面周縁部と端部リング9下面との間
に装着されて該端部リング9を位置決めできる様にJI
J成している。尚この補強部材10は、フィルタ2との
間に断熱材3(該断熱材3は、フィルタ2を通過してき
た液体を下部の排出液通過隙間8方向へ流下させ得る材
料又は構造で構成すべきであることは当然である)を介
装する1場合は単なる円筒状のものでよく、゛或は着脱
の便宜の為第3図の様な縦割bs造のものとすることも
できるが、断熱材3を介装しない場合は、フィルタ2を
通過した液体の流アを許す様に例えば第4図に示す如き
縦方向のスリット(或は縦溝等)10aを設けておくべ
きである。このスリットの大きさは、軸方向、半径方向
の補強の目的を達成しうる範囲に止めることが必要であ
る。更にこの補強部材10は端部リング9と一体に形成
することも可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration and effects of the present invention will be explained in detail below with reference to the drawings. FIG. 2 is a schematic longitudinal cross-sectional view of a main part showing a filter attachment part of a high-pressure crystallizer according to the present invention, and the structure of the entire apparatus is substantially different from the example shown in FIG. 1. In this example, an end ring 9 is fixed to the upper end of the filter 2, and a cylindrical reinforcing member 1 is attached to the back side of the filter 2 via a heat insulating material 3.
0 is placed. The length of the reinforcing member 10 is adjusted according to the axial length of the cylindrical filter 2, and the reinforcing member 10 is installed between the upper peripheral edge of the supply/discharge side block 5 and the lower surface of the end ring 9. JI so that the ring 9 can be positioned.
J has been completed. Note that this reinforcing member 10 is provided with a heat insulating material 3 between it and the filter 2 (the insulating material 3 should be made of a material or structure that allows the liquid that has passed through the filter 2 to flow down in the direction of the discharged liquid passage gap 8 at the bottom). (Of course, it is natural that this is the case.) In the case of intervening a simple cylindrical one, it may be a simple cylindrical one.Alternatively, for convenience of attachment and detachment, it may be of a vertically split BS structure as shown in Fig. 3. If the heat insulating material 3 is not provided, a vertical slit (or vertical groove, etc.) 10a as shown in FIG. 4, for example, should be provided to allow the flow of the liquid that has passed through the filter 2. The size of this slit must be kept within a range that can achieve the purpose of reinforcement in the axial and radial directions. Furthermore, this reinforcing element 10 can also be formed integrally with the end ring 9.

この様にフィルタ2を端部リング9及び補強部材10で
位置決めし、且つ背面側から補強部材10で支持してお
けば、圧搾工程でフィルタ2に矢印(イ)方向の圧縮力
や矢印(ロ)方向の拡径力が作用しても、該フィルタ2
が変形して破損したシ、細孔が閉塞したり拡開する様な
恐れが女く、はは設肘通りのpi過機能を発揮し、高純
度の捕集成分を配6収率で得ることができる。しかもフ
ィルタ2の損傷が著し−く抑制されるので、その交換頻
度を極めて少な七することができる。
By positioning the filter 2 with the end ring 9 and the reinforcing member 10 in this way and supporting it from the back side with the reinforcing member 10, the compressive force in the direction of the arrow (a) and the arrow ( ) Even if a diameter expanding force is applied in the direction, the filter 2
If the pores are deformed and damaged, there is a risk that the pores may become clogged or enlarged, and the PI overfunctions as expected, resulting in highly pure collected components being obtained at a high yield of 6. be able to. Moreover, since damage to the filter 2 is significantly suppressed, the frequency of its replacement can be extremely reduced.

第5図は本発明の他の実施例を示す要部概略縦断面図で
あシ、フィルタ2の上端及び下端の両方を端部リング9
.9で固定し、該端部リング9゜9あ間に補強部材10
を装着したものであシ、この構成であればフィルタ2−
の両端が端部リング9゜9に支持されているので、圧縮
方向及び拡開方向の外力に対して更に優れた安定が保た
れ、補強効果を得ることができる。
FIG. 5 is a schematic longitudinal cross-sectional view of main parts showing another embodiment of the present invention, in which both the upper and lower ends of the filter 2 are connected to the end ring 9.
.. 9, and a reinforcing member 10 is attached between the end ring 9° and 9.
In this configuration, filter 2-
Since both ends of the ring are supported by the end rings 9°9, better stability is maintained against external forces in the compression direction and the expansion direction, and a reinforcing effect can be obtained.

第6図は本発明の更に他の実施例を示す要部概略縦断面
図であり、フィルタの損傷を一層効果的に防止すると共
に濾過効率を一段と高め、更にはフィルタ2等の着脱操
作性を高め得る様にしたものである。即ち本例では円筒
状フィルタ2として下方へ行くほど両次拡開する様なテ
ーパを有するものを゛使用し、断熱材3及び補強部材1
0も同様に形成して端部リング9,90間に装着し、更
にこれらの外周側には、断面がくさび状のスペーサー1
1が底入されている。
FIG. 6 is a schematic vertical cross-sectional view of a main part showing still another embodiment of the present invention, which more effectively prevents damage to the filter, further increases filtration efficiency, and further improves the ease of attaching and detaching the filter 2, etc. It was designed so that it could be improved. That is, in this example, a cylindrical filter 2 having a taper that expands in two directions as it goes downward is used, and the heat insulating material 3 and reinforcing member 1
0 is similarly formed and installed between the end rings 9 and 90, and a spacer 1 having a wedge-shaped cross section is further provided on the outer periphery of these rings.
1 has bottomed out.

しかしてフィルタ20周方向の変形を防止する為には、
フィルタ2の背面側に配置される断熱材3及び補強部材
10との間の隙間を極力小さくすることが望まれるが、
第2図や第5図に示した様にフィルタ2や補強部材10
等をテーパのない同径円筒状に形成したものでは、耐圧
容器1内への装着性を考慮した場合上記隙間を実質的に
零とすることはでき々い。しかし汝から第6図の構成で
あれば、テーパ状の補強部材10の外周側にくさ・び状
のスペーサ1iを底入することによシ、くさび効果で補
強部材10をフィルタ背面側へ圧接させることができる
ので上記隙間が実質的に零となシ、フィルタ2の拡径変
形を完全に阻止する仁とができる。しかもフィルタ2等
の離脱に当たっては、給・排出側ブロック5を下方に下
げてフィルタ2等を上方から押し下げることによシ簡単
に離脱することができる。又圧搾時においてはフィルタ
2の内周面に下向きの摩擦力が作用するが、第7図(実
繍は圧搾前の状態、鎖線は圧搾進行中の状態)に略示す
る如く、ケーキ状固体の外周面は下向きに作用する圧搾
力によってフィルタ2の内周面からt[Lれる方向の力
を受けることになるから、フィルタ2との摩擦も少なく
なシ、フィルタ2の摩耗が抑制されると共に、圧搾力は
同相の下端部−まで伝達され易くなる。更にケーキ状固
体は、第7図の尖縁で示す状態から鎖線で示す状態にな
るとき座屈破壊をくり返しながら圧搾されることになり
、この座屈破壊時に、内部にとシ残された液状物の流出
通路が形成さ五るので、固液分離効率も著しく向上する
However, in order to prevent deformation of the filter 20 in the circumferential direction,
Although it is desirable to minimize the gap between the heat insulating material 3 and the reinforcing member 10 arranged on the back side of the filter 2,
As shown in FIGS. 2 and 5, the filter 2 and the reinforcing member 10
If the cylindrical parts are formed into the same diameter cylindrical shape without a taper, it is impossible to make the above-mentioned gap substantially zero when the ease of installation into the pressure-resistant container 1 is taken into account. However, if you have the configuration shown in FIG. 6, by bottom-fitting the wedge-shaped spacer 1i on the outer circumferential side of the tapered reinforcing member 10, the reinforcing member 10 can be pressed against the back side of the filter by the wedge effect. Since the gap can be reduced to substantially zero, the diameter expansion deformation of the filter 2 can be completely prevented. Furthermore, the filter 2 and the like can be easily removed by lowering the supply/discharge side block 5 and pushing down the filter 2 and the like from above. Also, during compression, a downward frictional force acts on the inner peripheral surface of the filter 2, but as shown schematically in FIG. Since the outer circumferential surface of the filter 2 receives a force in the direction t[L from the inner circumferential surface of the filter 2 due to the downward compressing force, there is less friction with the filter 2, and wear of the filter 2 is suppressed. At the same time, the squeezing force is easily transmitted to the lower end of the same phase. Furthermore, when the cake-like solid changes from the state shown by the pointed edge in Figure 7 to the state shown by the chain line, it is squeezed while repeating buckling failure, and at the time of this buckling failure, the liquid left inside Since a flow passage for substances is formed, the solid-liquid separation efficiency is also significantly improved.

以上の説明において、フィルタ材料としては焼結金属を
例示したが、使用するフィルタ材料は任意の材料が選定
される。例えば、単層、多層の金網、多孔板、あるいは
、それらの重ね合せ焼結体、帆布等との組み合せなど、
圧力および処理する対象拐料により、任意に選択できる
In the above description, sintered metal was used as an example of the filter material, but any filter material may be selected. For example, single-layer or multi-layer wire mesh, perforated plates, or combinations of these with stacked sintered bodies, canvas, etc.
It can be arbitrarily selected depending on the pressure and the target material to be treated.

本発明は以上の様に構成されておシ、高圧晶析における
固液分離効率を高めると共にフィルタの劣化を著しく抑
制し得ることになった。
The present invention is configured as described above, and it has become possible to increase solid-liquid separation efficiency in high-pressure crystallization and to significantly suppress deterioration of the filter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高圧晶析装置を例示する概略縦断面図、第2.
5.6図は本発明に係る高圧晶析装置のフィルタ取付構
造を例示する要部概略縦断面図、第3.4Mは本発明で
使用する補強部材を例示する見取シ図、第7図はケーキ
状固体の圧搾状況を示す説明図である。 1耐圧容器 2・・・フィルタ 3・・・断熱材 5・・・給・排出側ブロック10・・
・補強部材 11・・・スペーサー出願入 株式会社神
戸製鋼所
FIG. 1 is a schematic vertical cross-sectional view illustrating a high-pressure crystallizer, and FIG.
Figure 5.6 is a schematic vertical sectional view of the main part illustrating the filter mounting structure of the high-pressure crystallizer according to the present invention, Figure 3.4M is a sketch diagram illustrating the reinforcing member used in the present invention, and Figure 7 FIG. 2 is an explanatory diagram showing a state of squeezing a cake-like solid. 1 Pressure-resistant container 2... Filter 3... Insulating material 5... Supply/discharge side block 10...
・Reinforcement member 11... Spacer application submitted Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 液相混合物中の特定成分を加圧によシ固化析出せしめ、
加圧下に固液を分離して特定成分を分離回収する高圧晶
析装置において、高圧容器の内周壁部に配置される円筒
状フィルターの少なくとも上端部をリングに固定すると
共に、該リングは、補強部材により高圧容器内の所定位
置に固定する他、該補強部材によって前記円筒状フィル
ターを背面側から支持してなることを特徴とする高圧晶
析装置こto
A specific component in a liquid phase mixture is solidified and precipitated by applying pressure.
In a high-pressure crystallizer that separates solid and liquid under pressure to separate and recover specific components, at least the upper end of a cylindrical filter placed on the inner peripheral wall of a high-pressure container is fixed to a ring, and the ring is reinforced. A high-pressure crystallizer characterized in that the cylindrical filter is fixed at a predetermined position in the high-pressure container by a member, and the cylindrical filter is supported from the back side by the reinforcing member.
JP59050108A 1984-03-14 1984-03-14 High-pressure crystallizer Granted JPS60193501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59050108A JPS60193501A (en) 1984-03-14 1984-03-14 High-pressure crystallizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59050108A JPS60193501A (en) 1984-03-14 1984-03-14 High-pressure crystallizer

Publications (2)

Publication Number Publication Date
JPS60193501A true JPS60193501A (en) 1985-10-02
JPS6134845B2 JPS6134845B2 (en) 1986-08-09

Family

ID=12849886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59050108A Granted JPS60193501A (en) 1984-03-14 1984-03-14 High-pressure crystallizer

Country Status (1)

Country Link
JP (1) JPS60193501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001605A1 (en) * 1985-09-18 1987-03-26 Kabushiki Kaisha Kobe Seiko Sho High-pressure crystallizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001605A1 (en) * 1985-09-18 1987-03-26 Kabushiki Kaisha Kobe Seiko Sho High-pressure crystallizer

Also Published As

Publication number Publication date
JPS6134845B2 (en) 1986-08-09

Similar Documents

Publication Publication Date Title
US4552669A (en) Pneumatic hydro-pulse filter system and method of operation
EP0193226B1 (en) Apparatus and process for separating solid particles from a liquid suspension and/or for the purification or leaching of solid particles
US3900403A (en) Filtration apparatus
GB2429663A (en) A candle filter element assembly
SU1417788A3 (en) Filter for cleaning liquids
JPS60193501A (en) High-pressure crystallizer
EP1842577A1 (en) A solid-liquid separation process
EP0235289B1 (en) High-pressure crystallizer
JPS62241514A (en) Method and washing tower for separating solid particle and/or liquid form suspension
US3575842A (en) Recovering tar from tar sand
US4622144A (en) Pressure filter apparatus
US3190450A (en) Filter for a crystal purification column
JPS60193502A (en) High-pressure crystallizer
US20150360151A1 (en) Process for removing catalyst fines from a liquid stream from a fixed bed reactor
JP2012228647A (en) Continuous crystal purification equipment
EP0091822B1 (en) Filter method and apparatus
JPS6231961B2 (en)
JP3978661B2 (en) Gravity concentration dehydrator
FR2530482B1 (en) PROCESS FOR THE EXTRACTION OF A LIQUID PHASE CONTAINED IN MATERIAL SIMILAR TO A PULP
CN213760865U (en) Thick adipic acid thickening device
JPS5810121B2 (en) Substance separation and purification equipment
JPS60232201A (en) Pressing method in high pressure crystallization
JPS637802A (en) Filter for pressure crystallization device and its production
JP2018057294A (en) Method of concentrating algae-containing liquid, method of recovering algae, algae concentration system, and algae recovery system
JPS6112723B2 (en)