JPS60193375A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPS60193375A
JPS60193375A JP59050500A JP5050084A JPS60193375A JP S60193375 A JPS60193375 A JP S60193375A JP 59050500 A JP59050500 A JP 59050500A JP 5050084 A JP5050084 A JP 5050084A JP S60193375 A JPS60193375 A JP S60193375A
Authority
JP
Japan
Prior art keywords
type
electrodes
charge
substrate
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59050500A
Other languages
Japanese (ja)
Inventor
Tomoshi Ueda
知史 上田
Hiroshi Takigawa
宏 瀧川
Mitsuo Yoshikawa
吉河 満男
Michiharu Ito
伊藤 道春
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59050500A priority Critical patent/JPS60193375A/en
Publication of JPS60193375A publication Critical patent/JPS60193375A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14875Infrared CCD or CID imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To enable to obtain an infrared charge injection element having a high-speed light-receiving characteristic by a method wherein P type conductive films, each having an energy gap smaller than that of an N type epitaxial layer provided on the substrate, are formed on the substrate corresponding to the positions of charge accumulation electrodes. CONSTITUTION:An N type Hg-Cd-Te epitaxial film 11 has been provided on an N type Hg-Cd substrate 10. Before this film 11 is formed, P type Hg-Cd-Te conductive films 12, each having an energy gap smaller than that of the film 11, are formed corresponding to the positions of charge accumulation electrodes 13. The incident lights of infrared rays are incided from the back surface side of the substrate 10 and a positive charge, which responded to an optical signal, is accumulated in potential wells 14 formed on the lower surfaces of the electrodes 13 whereon a negative charge is being impressed. This accumulated positive charge is injected in the direction of the substrate 10 from the electrodes 13 by impressing low voltage on charge injection electrodes 15 from the electrodes 13 and a signal is read. Lastly, a reset is performed. The positive charge is recombined in the films 12 right under the electrodes 15 at high speed at this time.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体素子の構造に係り、特に赤外線検知器に
使用される半導体素子の読み取りの高速度化に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to the structure of a semiconductor device, and particularly to increasing the reading speed of a semiconductor device used in an infrared detector.

(bl 技術の背景 近年、赤外線放射の検知技術が発達して、窩部の物体で
もその微少な温度分布の計測が可能になっている。
Background of the Technology In recent years, infrared radiation detection technology has developed, making it possible to measure the minute temperature distribution of objects even in cavities.

特に其の応用の代表的なものとして、医用、産業用、科
学用、環境管理用のガス努析等の赤外線検知器や、又赤
外線を検知した信号を影像とする赤外線影像装置が開発
されている。
In particular, representative applications include infrared detectors for gas analysis for medical, industrial, scientific, and environmental management purposes, and infrared imaging devices that use the detected infrared signals as images. There is.

これらの赤外線検知器や赤外線影像装置では、物体が放
射する赤外線を赤外線検知素子で受光して、これを電流
に変換して微少温度を検知する。
In these infrared detectors and infrared imaging devices, an infrared detection element receives infrared rays emitted by an object, converts this into an electric current, and detects minute temperatures.

特に赤外線の影像装置の場合は、画像のスキャンニング
の関係で、投射される赤外線を、赤外線検知素子で受光
し、これを電流に変換して微細な温度を読み取る際の高
速度化が赤外線影像装置の精度向上に必要であり、この
実現化が要望されている。
Particularly in the case of infrared imaging devices, in the context of image scanning, infrared imaging requires an infrared sensing element to receive the projected infrared rays, convert it into an electric current, and read minute temperatures at high speed. This is necessary to improve the accuracy of the device, and its realization is desired.

tc+ 従来技術と問題点。tc+ Conventional technology and problems.

赤外線検知素子の種類にはインジューム(In)アンチ
モン(Sb)の結晶からなるIn−5b赤外線検知器と
か、10μm付近の波長に対して高い感度を有する、カ
ドミューム(Cd) 、水銀(Hg) 、テルル(Te
)の結晶を赤外線検知素子とするCd−1Cd−1l赤
外線検知器などが使用される。
Types of infrared detection elements include In-5b infrared detectors made of indium (In) antimony (Sb) crystals, cadmium (Cd), mercury (Hg), and mercury (Hg), which have high sensitivity to wavelengths around 10 μm. Tellurium (Te
A Cd-1Cd-1l infrared detector using a crystal of ) as an infrared detection element is used.

本発明では、Cd−1Cd−1lの三元結晶の場合で赤
外線検知素子が数百個で配列されてなる多素子赤外線検
知器の場合について説明する。
In the present invention, a multi-element infrared detector in which several hundred infrared detecting elements are arranged in the case of a Cd-1Cd-1l ternary crystal will be described.

第1図は、従来の赤外線検知素子の断面図である。FIG. 1 is a sectional view of a conventional infrared sensing element.

図において、1はCd−Teの基板であり、此のCd−
Teは赤外線に対して透過性であり、2は基板電極端子
、3はN型の半導体の膜を構成するCd−Hg−Teで
あり、6は硫化亜鉛(ZnS )膜で、このZnS膜は
電気的に絶縁体であり、その上面には電荷蓄積電極4と
電荷注入電極5が配置されている。
In the figure, 1 is a Cd-Te substrate;
Te is transparent to infrared rays, 2 is a substrate electrode terminal, 3 is Cd-Hg-Te that constitutes an N-type semiconductor film, and 6 is a zinc sulfide (ZnS) film. It is an electrical insulator, and a charge storage electrode 4 and a charge injection electrode 5 are arranged on its upper surface.

多素子の場合は、この電荷蓄積電極4はそれぞれの素子
の電荷蓄積電極が相互に接続回路7によって連結されて
いる。同様に電荷注入電極5もそれぞれの素子の電荷注
入電極が相互に接続回路8によって連結されている。
In the case of multiple elements, the charge storage electrodes 4 of the respective elements are interconnected by a connection circuit 7. Similarly, the charge injection electrodes 5 of each element are connected to each other by a connection circuit 8.

図において赤外線は赤外線検知素子の基板1の背面側で
あるA方向から投射される。
In the figure, infrared rays are projected from the direction A, which is the back side of the substrate 1 of the infrared sensing element.

いま赤外線検知素子の動作を説明すると、基板は接地さ
れ、電荷蓄積電極には負の電圧を印加する。
To explain the operation of the infrared sensing element now, the substrate is grounded and a negative voltage is applied to the charge storage electrode.

この電荷蓄積電極の下側には、負電圧のため絶縁膜6を
通してN型のHg−Cd−Teの膜内にはキャリアの電
子が追い出されて空乏層を生ずる。
Under this charge storage electrode, carrier electrons are expelled through the insulating film 6 into the N-type Hg-Cd-Te film to form a depletion layer due to the negative voltage.

この空乏層は電気的に接地電圧のN型のHg−Cd−T
eの膜内では、負電圧となって、所謂ポテンシャル、ウ
ェルが形成される。
This depletion layer is electrically ground voltage N-type Hg-Cd-T
In the film of e, a negative voltage is applied, and a so-called potential well is formed.

このポテンシャル、ウェルには適当な手段で、例えば、
赤外線を投射するような方法によって、正電荷のホール
を導入して、蓄積することができる部分である。
This potential can be applied to the well by any suitable means, e.g.
This is a part where positively charged holes can be introduced and accumulated by methods such as emitting infrared rays.

従来の背面入射型の電荷注入素子では、電荷蓄積電極に
負電圧を印加して、ポテンシャル、ウェルを形成してお
き、この部分に赤外線を投射して光信号により、ポテン
シャル、ウェルに正電荷のホールを蓄積した後に、電荷
注入電極に適当な電圧を印加することによって、ポテン
シャル、ウェルにI!77箱された正電荷のボールをN
型のHg−Cd−Teの膜内に注入する。
In conventional back-illuminated charge injection devices, a negative voltage is applied to the charge storage electrode to form a potential and a well, and infrared rays are projected onto this part and an optical signal is used to fill the potential and well with positive charges. After accumulating holes, the potential I! is applied to the well by applying an appropriate voltage to the charge injection electrode. 77 boxes of positively charged balls are N
Inject into the Hg-Cd-Te film of the mold.

この際、注入電荷が移動して生ずる電流を検知すること
で投射される赤外線が検知されることになる。
At this time, the projected infrared rays are detected by detecting the current generated by the movement of the injected charges.

然しながら、このように注入電荷が移動して電流が生し
た後で、電荷が瞬時にして再結合して消滅することが好
ましいが、実際は読み出し後のりセントになっても、基
板に注入された注入電荷が高速度で再結合をすることが
出来ずに電荷が残留することになる。
However, after the injected charges move in this way and generate a current, it is preferable that the charges recombine and disappear instantly, but in reality, even if the charges become negative after readout, the injected charges injected into the substrate Charges cannot be recombined at a high speed, and charges remain.

このような場合には、高速度で読み出しがなされる赤外
線検知素子では、残留電荷が再度読みだされて誤差を生
ずるという欠点があった。
In such a case, an infrared sensing element that performs readout at a high speed has the disadvantage that the residual charge is read out again, resulting in an error.

(d+ 発明の目的 本発明は上記従来の欠点に鑑み、赤外線検知器におりる
、高速度の受光特性を有する赤外線電荷注入素子を提供
することを目的とする。
(d+ Object of the Invention In view of the above-mentioned drawbacks of the conventional art, an object of the present invention is to provide an infrared charge injection device having high-speed light receiving characteristics for use in an infrared detector.

lel 発明の構成 この目的は本発明によれば、化合物半導体の基板の上面
にN型のエピタキシャル膜があり、該N型のエピタキシ
ャル膜の上面には、電荷蓄積電極と電荷注入電極が配列
された背面光入射型電荷注入素子であって、上記化合物
半導体の基板と上記N型のエピタキシャル膜との中間に
、P型伝導性を有し、且つ上記N型のエピタキシャル膜
に比較してエネルギーギャップの小さいエピタキシャル
膜を上記電荷蓄積電極の配列位置に対応して設けたごと
を特徴とする半導体素子を提供することによって達成で
きる。
lel Structure of the Invention According to the present invention, an N-type epitaxial film is provided on the upper surface of a compound semiconductor substrate, and a charge storage electrode and a charge injection electrode are arranged on the upper surface of the N-type epitaxial film. A back-illuminated charge injection device, which has P-type conductivity between the compound semiconductor substrate and the N-type epitaxial film, and has a smaller energy gap than the N-type epitaxial film. This can be achieved by providing a semiconductor element characterized in that a small epitaxial film is provided corresponding to the arrangement position of the charge storage electrodes.

(fl 発明の実施例 以下本発明の実施例を図面によって説明する。(fl Embodiments of the invention Embodiments of the present invention will be described below with reference to the drawings.

第2図はl1g−Cd−Teのエピタキシャル結晶を用
いた赤外線電荷注入素子の断面図である。
FIG. 2 is a cross-sectional view of an infrared charge injection device using an 11g-Cd-Te epitaxial crystal.

赤外線電荷注入素子を形成するCd−Teの基板10が
あって、この上面にN型l1g−Cd−Teのエピタキ
シャル膜11があるが、本発明ではN型11g−Cd−
TeのエピタキシャルMrA11を形成する前に、この
N型11g−Cd−Teのエピタキシャル層よりエネル
ギーギャップの小さい、P型のl1g−Cd−Teの伝
導膜12を電荷蓄積電極の位置に対応して予め形成する
ことによってなされる。
There is a Cd-Te substrate 10 forming an infrared charge injection device, and an N-type 11g-Cd-Te epitaxial film 11 is provided on the upper surface of the substrate 10. In the present invention, an N-type 11g-Cd-Te substrate 10 is formed.
Before forming the Te epitaxial MrA11, a P-type l1g-Cd-Te conductive film 12, which has a smaller energy gap than this N-type l1g-Cd-Te epitaxial layer, is formed in advance in accordance with the position of the charge storage electrode. It is done by forming.

赤外線の入射光は、Cd−Te基板の背面側から入射さ
れるが、負の電圧が印加されている電荷蓄積電極13の
下面に形成されたポテンシャルウェル14の中に、光信
号に応じた正電荷が蓄積される。
Incident infrared light is incident from the back side of the Cd-Te substrate, and a positive voltage corresponding to the optical signal is generated in the potential well 14 formed on the lower surface of the charge storage electrode 13 to which a negative voltage is applied. Charge is accumulated.

赤外線信号による正電荷は正孔によるものであり、この
蓄積された正電荷は、次ぎに電荷注入電極15に、電荷
蓄積電極13の電圧より更に低電圧を印加することによ
り、電荷注入電極の下面に形成されるポテンシャルウェ
ルに電荷の移動がなされた後に、蓄積された信号電荷は
、順次補足されたl絵素骨づつ電荷注入電極から基板方
向に注入されて信号が読み取られ、最後に再度初期の状
態に戻すためにリセットが行われる。
The positive charge caused by the infrared signal is due to holes, and this accumulated positive charge is then applied to the charge injection electrode 15 with a voltage lower than the voltage of the charge storage electrode 13, so that the lower surface of the charge injection electrode After the charge is transferred to the potential well formed in , the accumulated signal charge is sequentially injected from the charge injection electrode toward the substrate one by one captured pixel bone, the signal is read, and finally the initialization is performed again. A reset is performed to return to the previous state.

この信号読み出しとリセットの際に、基板に注入された
電荷が高速度で再結合して電荷が消滅すれば赤外線電荷
注入素子の高速度動作が可能になる。
During this signal reading and resetting, if the charges injected into the substrate recombine at high speed and disappear, the infrared charge injection device can operate at high speed.

本発明は、この蓄積された信号電荷を基板方向に注入し
て、読み取った後、信号電荷を高速度で再結合されるた
めにP型のl1g−Cd−Teの膜を設け、注入される
信号電荷が、電荷注入電極15の直下のP型のl1g−
Cd−Teの膜で高速度で再結合されるようにしたもの
である。
The present invention provides a P-type l1g-Cd-Te film to inject the accumulated signal charges toward the substrate, read them, and then recombine the signal charges at high speed. The signal charge is transferred to the P-type l1g- directly below the charge injection electrode 15.
It is designed to be recombined at high speed with a Cd-Te film.

このような方法によると電荷の消滅は従来に比較して約
1/lO程度になる。
According to such a method, the amount of charge disappearing is about 1/10 compared to the conventional method.

また、1)型のIIg−Cd−Teの膜12が配置され
たために、この部分が赤外線を透過しないため、入射さ
れる赤外線はよって発生する信号電荷は電荷蓄積電極1
3付近に入射される赤外線は電荷蓄積電極のみに限定さ
れる。
In addition, since the 1) type IIg-Cd-Te film 12 is arranged, this part does not transmit infrared rays, so the incident infrared rays and the generated signal charges are transferred to the charge storage electrode 1.
Infrared rays incident around 3 are limited only to the charge storage electrode.

尚、P型のHg−Cd−Teの膜12が赤外線を透過し
ない理由は、P型−11g−Cd−TeH’Jのエネル
ギーギャップがN型Hg−Cd−Teのエピタキシャル
層のエネルギーギャップより小さいために、この領域に
入射する赤外線がP型−11g−Cd−Te膜に吸収さ
れてしまいN型11g−Cd−Teのエピタキシャル膜
に到達出来ないという理由による。
The reason why the P-type Hg-Cd-Te film 12 does not transmit infrared rays is that the energy gap of P-type-11g-Cd-TeH'J is smaller than the energy gap of the N-type Hg-Cd-Te epitaxial layer. This is because the infrared rays incident on this region are absorbed by the P-type 11g-Cd-Te film and cannot reach the N-type 11g-Cd-Te epitaxial film.

エネルギーギャップについては、N型11g−Cd−T
eの場合が0.25e、vであり、P型のHg−Cd−
Teの膜は0’、15e、νであって、その差異は略0
.1e、v程度が最適である。
Regarding the energy gap, N-type 11g-Cd-T
In the case of e, it is 0.25e, v, and P-type Hg-Cd-
The Te film is 0', 15e, ν, and the difference is approximately 0.
.. Approximately 1e,v is optimal.

(川 発明の効果 以上詳細に説明したように、本発明の半導体素子を使用
することにより、赤外線検知器の読み出し速度が高速度
化され、この赤外線検知器を精度の高い赤外線検知器の
影像器に供しうるという効果大なるものがある。
(Effects of the Invention As explained in detail above, by using the semiconductor element of the present invention, the readout speed of an infrared detector can be increased, and this infrared detector can be used as an imager of a highly accurate infrared detector. There is a great effect that it can be used for.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の赤外線検知器の説明図、第2図は本発明
の赤外線検知器の断面図である。 図において、1.10は化合物半導体の基板、2は基板
電極端子、3.11はN型のエピタキシャル膜、4.1
3は電荷蓄積電極、5.15は電荷注入電極、6は絶縁
膜、7.8ば接続回路、12はP型のHg−Cd−Te
の膜、14はポテンシャル、ウェルである。 第1図 第21!1
FIG. 1 is an explanatory diagram of a conventional infrared detector, and FIG. 2 is a sectional view of the infrared detector of the present invention. In the figure, 1.10 is a compound semiconductor substrate, 2 is a substrate electrode terminal, 3.11 is an N-type epitaxial film, and 4.1 is an N-type epitaxial film.
3 is a charge storage electrode, 5.15 is a charge injection electrode, 6 is an insulating film, 7.8 is a connection circuit, and 12 is P-type Hg-Cd-Te.
14 is a potential well. Figure 1 No. 21!1

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体の基板の上面にN型のエピタキシャル膜が
あり、該N型のエピタキシャル膜の上面には、電荷蓄積
電極と電荷注入電極が配列された背面光入射型電荷注入
素子であって、上記化合物半導体の基板と上記N型のエ
ピタキシャル膜との中間に、P型伝導性を有し、且つ上
記N型のエピタキシャル膜に比較してエネルギーギャッ
プの小さいエピタキシャル膜を上記電荷蓄積電極の配列
位置に対応し”ζ設けたことを特徴とする半導体素子。
An N-type epitaxial film is provided on the upper surface of a compound semiconductor substrate, and a charge storage electrode and a charge injection electrode are arranged on the upper surface of the N-type epitaxial film. An epitaxial film having P-type conductivity and having a smaller energy gap than the N-type epitaxial film is placed between the semiconductor substrate and the N-type epitaxial film corresponding to the arrangement position of the charge storage electrode. A semiconductor device characterized in that it is provided with a "ζ".
JP59050500A 1984-03-15 1984-03-15 Semiconductor element Pending JPS60193375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59050500A JPS60193375A (en) 1984-03-15 1984-03-15 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59050500A JPS60193375A (en) 1984-03-15 1984-03-15 Semiconductor element

Publications (1)

Publication Number Publication Date
JPS60193375A true JPS60193375A (en) 1985-10-01

Family

ID=12860662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59050500A Pending JPS60193375A (en) 1984-03-15 1984-03-15 Semiconductor element

Country Status (1)

Country Link
JP (1) JPS60193375A (en)

Similar Documents

Publication Publication Date Title
US6259085B1 (en) Fully depleted back illuminated CCD
CN102401906B (en) Radiation detector as well as imaging device, electrode structure and image acquiring method thereof
KR100451540B1 (en) Radiation detector
Crowell et al. BSTJ briefs: A camera tube with a silicon diode array target
US3378688A (en) Photosensitive diode array accessed by a metal oxide switch utilizing overlapping and traveling inversion regions
US20090026508A1 (en) Solid-state photosensor with electronic aperture control
US11736825B2 (en) Radiation detectors with high pixel concentrations
JP2002368205A (en) Input device for distance information
JPWO2018042785A1 (en) Distance sensor and distance image sensor
GB2592520A (en) Dual band photodetection system and method
US8071410B2 (en) Multi spectral sensor
Fry Silicon photodiode arrays
JPH0571889B2 (en)
US20090122173A1 (en) Low noise readout apparatus and method for cmos image sensors
JPS5846068B2 (en) charge-coupled device
JPS60193375A (en) Semiconductor element
GB2100511A (en) Detector for responding to light at a predetermined wavelength, and method of making the detector
JPS60180162A (en) Semiconductor element
US6969896B1 (en) Photodetector biasing scheme
JP2514924B2 (en) Image sensor
EP0151311B1 (en) Radiation detector
CN104425529A (en) Radiation detectors, methods of manufacturing the radiation detectors, and radiation imaging systems including the radiation detectors
JPS5846069B2 (en) Infrared charge transfer device
JPS6134263B2 (en)
US4005327A (en) Low beam velocity retina for Schottky infrared vidicons