JPS6019323B2 - Organic polylithium polymerization initiator composition - Google Patents

Organic polylithium polymerization initiator composition

Info

Publication number
JPS6019323B2
JPS6019323B2 JP10720676A JP10720676A JPS6019323B2 JP S6019323 B2 JPS6019323 B2 JP S6019323B2 JP 10720676 A JP10720676 A JP 10720676A JP 10720676 A JP10720676 A JP 10720676A JP S6019323 B2 JPS6019323 B2 JP S6019323B2
Authority
JP
Japan
Prior art keywords
solution
compound
organic polylithium
polar solvent
polymerization initiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10720676A
Other languages
Japanese (ja)
Other versions
JPS5332893A (en
Inventor
昌之 遠藤
泰彦 竹村
都弘 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP10720676A priority Critical patent/JPS6019323B2/en
Publication of JPS5332893A publication Critical patent/JPS5332893A/en
Publication of JPS6019323B2 publication Critical patent/JPS6019323B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、有機ポリリチウム系重合開始剤組成物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an organic polylithium polymerization initiator composition.

1分子当り2個以上のIJチウムを含有する有機ポリリ
チゥム化合物は、リチウム系の開始剤として工業的に非
常に有用である。
Organic polylithium compounds containing two or more IJ thium per molecule are industrially very useful as lithium-based initiators.

例えば共役ジェンを重合させ、しかる後にエチレンオキ
シド、二酸化炭素またはエチレンスルフィドなどを付加
して末端官能性ポリジェンを得る際に、ジリチウム開始
剤を用いると両末端ヒドロキシ、カルボキシあるいはチ
オールなどの重合体が得られ、これらは弾性体材料とし
て非常に有用である。また有機ポリリチゥム開始剤は共
役ジェンとアクリル酸ェステルよりテレブロックポリマ
ーを得る際にも有用で、通常のモノリチウム開始剤では
これらのテレブロックポリマーは得られない。さらにま
た、共役ジェンとビニル置換芳香族化合物を共重合させ
テレブロツクポリマ…を得る際にも、通常のモノリチウ
ム開始剤を用いると、まずビニル置換芳香族化合物を重
合し、次いでジェンを導入重合し、さらにその後にまた
芳香族化合物を重合するという三段階の重合を行なう必
要があるが、ジリチウム開始剤を用いると二段で済み工
業的なテレフロツクポリマ‐−の製造に対して非常に有
利である。このように工業的に有用な有機ポリリチウム
化合物は一般に非樋性溶媒には鍵溶性であり、エーテル
や第3級アミンなどの極性溶媒を用いた溶液の形で用い
られるのが通常である。しかしながらエーテルや第3級
アミンなどの極性溶媒が多量存在する系で1,3一共役
ジェンを重合すると弾性体材料として有用な1,4−構
造含有率の高い重合体を得ることは難しい。特にポリウ
レタン原料として有用な両末端官能性低分子量ジェン重
合体ないいま共重合体中のジェン部の1,4一様造舎量
を高く保つことは至難である。上記の問題を解決するた
めには、極性溶媒中の有機ポリリチゥム化合物の濃度を
高くし、重合系中への極性溶媒の混入量を少なくする方
法が考えられるが、有機ポリリチウム化合物は極性溶媒
中でもあまり高濃度となると不安定となり、貯蔵中に結
晶が析出したり、粘度が高すぎて取り扱い困難となるた
め、上記の方法を実施することは難しい。
For example, when a dilithium initiator is used to polymerize a conjugated gene and then add ethylene oxide, carbon dioxide, or ethylene sulfide to obtain a terminally functional polygen, a polymer with terminals such as hydroxy, carboxy, or thiol can be obtained. , these are very useful as elastic materials. Organic polylithium initiators are also useful in obtaining teleblock polymers from conjugated genes and acrylate esters, and these teleblock polymers cannot be obtained with ordinary monolithium initiators. Furthermore, when copolymerizing a conjugated diene and a vinyl-substituted aromatic compound to obtain a teleblock polymer, if a normal monolithium initiator is used, the vinyl-substituted aromatic compound is first polymerized, and then the diene is introduced and polymerized. However, using a dilithium initiator requires only two steps, which is very advantageous for the production of industrial telefloc polymers. It is. As described above, industrially useful organic polylithium compounds are generally soluble in non-drainage solvents, and are usually used in the form of a solution using a polar solvent such as ether or tertiary amine. However, when 1,3-conjugated diene is polymerized in a system in which a large amount of polar solvent such as ether or tertiary amine is present, it is difficult to obtain a polymer with a high 1,4-structure content useful as an elastic material. In particular, it is extremely difficult to maintain a high level of 1,4 homogeneous structure of the gene moiety in a low molecular weight polymer or copolymer with both terminal functionalities which is useful as a raw material for polyurethane. In order to solve the above problem, it is possible to increase the concentration of the organic polylithium compound in the polar solvent and reduce the amount of polar solvent mixed into the polymerization system. If the concentration is too high, it becomes unstable, crystals may precipitate during storage, and the viscosity is too high, making it difficult to handle, so it is difficult to carry out the above method.

例えば1.4ージリチオブタンのジェチルェーテル溶液
は1〜1.3mol/そ以上の濃度になると貯蔵中に結
晶が析出してくる。また、2mol/〆近くになると溶
液は非常に高粘度となり取り扱いが困難となる。そこで
前述の問題解決のため種々の工夫がなされてきた。
For example, when a solution of 1.4-dilithiobutane in diethyl ether reaches a concentration of 1 to 1.3 mol/more, crystals will precipitate during storage. Further, when the concentration is close to 2 mol/〆, the solution becomes very viscous and difficult to handle. Therefore, various efforts have been made to solve the above-mentioned problems.

例えば極性溶媒(例えばジェチルェーテル)中で低分子
量有機ポリリチゥム化合物(例えば1,4−ジリチオブ
タン)を合成し、該化合物溶液中で共役ジェンを低重合
させ、非適性溶媒に可溶のオリゴジェンポリリチゥム(
例えばQ,山一ジリチオオリゴプタジェン)とした後、
極性溶媒は減圧下で蒸留除去し非犠牲溶媒を加える方法
(USP3377404)、オリゴジヱンポリリチウム
の極性溶媒中に流動パラフィンなどの高沸点化合物を添
加した後、極性溶媒を減圧下で蒸留除去し、ついで非極
性溶媒を加えてその溶液とする方法(特開昭50−29
485)などがある。しかしながらこれらの方法は、極
性溶媒を除去する操作が必要である、極性溶媒除去時に
オリゴジェンポリリチゥムはその末端の会合により固化
し非樋性溶媒に均一に溶解し難くなり、重合開始剤とし
ての触媒効率が低下するなど重合にバラツキを生じ易い
、或いは添加した高沸点化合物がポリマー中に残留して
くるなど、工業的に使用するには不利な点を有している
。本発明者らは、上記の点を考慮しながら、前述の問題
について鋭意検討を加えた結果、有機ポリリチゥム化合
物溶液に徴量の共役ジェンおよび/またはアルケニル芳
香族化合物を介在させることにより有機ポリリチゥム化
合物溶液が非常に安定化されることを見し、出し、本発
明に到達した。
For example, a low molecular weight organopolylithium compound (e.g. 1,4-dilithiobutane) is synthesized in a polar solvent (e.g. diethyl ether), a conjugated diene is underpolymerized in the compound solution, and an oligogen polylithium compound soluble in an incompatible solvent is synthesized. Mu (
For example, after setting Q, Yamaichi dilithiooligoptadiene),
The polar solvent is removed by distillation under reduced pressure and a non-sacrificial solvent is added (USP 3377404). After adding a high boiling point compound such as liquid paraffin to the polar solvent of oligodiene polylithium, the polar solvent is removed by distillation under reduced pressure. and then add a nonpolar solvent to form a solution (Japanese Unexamined Patent Publication No. 50-29
485) etc. However, these methods require an operation to remove the polar solvent. When the polar solvent is removed, the oligogen polylithium solidifies due to association of its ends, making it difficult to dissolve uniformly in a non-gutter solvent, and the polymerization initiator It has disadvantages for industrial use, such as the tendency to cause variations in polymerization, such as a decrease in catalyst efficiency, and the fact that the added high-boiling point compound remains in the polymer. The present inventors have conducted extensive studies on the above-mentioned problems while taking the above points into consideration. As a result, the present inventors have found that an organic polylithium compound can be produced by interposing a certain amount of conjugated diene and/or alkenyl aromatic compound in an organic polylithium compound solution. It was found that the solution was highly stabilized, and the present invention was achieved.

即ち本発明は、有機ポリリチウム化合物、その極性溶媒
または極性溶媒と非極性溶媒の混合溶媒、および上記有
機ポリリチウム化合物lmolに対し2×10‐3mo
l〜2×10−lmolの共役ジェンおよび/またはァ
ルケニル芳香族化合物とからなる、共役ジェンまたは共
役ジェンとアルケニル芳香族化合物の(共)重合用有機
ポリリチウム系重合開始剤組成物を提供するものである
。本発明の重合開始剤組成物は非常に優れた貯蔵安定性
を示し、またこれを用いて共役ジェンを重合ないいま共
役ジェンとアルケニル芳香族化合物を共重合させた場合
は、極性溶媒の使用量が少なくて済むので共役ジェン部
のミクロ構造が1,4一構造含有率の高い重合体が得ら
れる。
That is, the present invention provides an organic polylithium compound, its polar solvent or a mixed solvent of a polar solvent and a non-polar solvent, and 2×10-3 mol per mol of the organic polylithium compound.
Provided is an organic polylithium polymerization initiator composition for (co)polymerization of a conjugated diene or a conjugated diene and an alkenyl aromatic compound, which comprises l to 2×10 −1 mol of a conjugated diene and/or an alkenyl aromatic compound. It is. The polymerization initiator composition of the present invention exhibits excellent storage stability, and when it is used to polymerize a conjugated diene or copolymerize a conjugated diene and an alkenyl aromatic compound, the amount of polar solvent used is Since only a small amount is required, a polymer having a high content of 1,4-structure in the microstructure of the conjugated gene moiety can be obtained.

本発明において用いられる有機ポリリチゥム化合物とし
ては、1,4ージリチオブタン、1,5ージリチオベン
タン、1,10−ジリチオデカン、1,4ージリチオー
2−ブテン、ジリチオナフタレン、ジリチオメチルナフ
タレン、ビス(1−リチオ−3−メチルベンチル)ベン
ゼンなどがあり、添加する共役ジェンには1,3−ブタ
ジェン、イソプレン、2,3ージメチルブタジエンなど
が、アルケニル芳香族化合物にはスチレン、ピニルトル
エン、Qーメチルスチレンなどがある。
The organic polylithium compounds used in the present invention include 1,4-dilithiobutane, 1,5-dilithiobentane, 1,10-dilithiodecane, 1,4-dilithio-2-butene, dilithionaphthalene, dilithiomethylnaphthalene, bis(1 -lithio-3-methylbentyl)benzene, etc., conjugated dienes to be added include 1,3-butadiene, isoprene, 2,3-dimethylbutadiene, etc., and alkenyl aromatic compounds include styrene, pinyltoluene, Q-methylstyrene, etc. There is.

極性溶媒にはジェチルェーテル、ジィソプロピルエーテ
ル、テトラヒドロフラン、ジオキサン、エチレングリコ
ールジメチルエーテル、アニソールのようなエーテル類
、トリメチルアミン、ジメチルアニリンのような第三級
アミン類が用いられる。非犠牲溶媒としては、ヘキサン
、ヘプタン、ベンゼン、トルエン、キシレン、シクロヘ
キサンなどの炭化水素溶媒が用いられる。
Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, and anisole, and tertiary amines such as trimethylamine and dimethylaniline are used as the polar solvent. Hydrocarbon solvents such as hexane, heptane, benzene, toluene, xylene, and cyclohexane are used as the non-sacrificial solvent.

上記の極性溶媒、非樋性溶媒、共役ジェン、有機ポリリ
チゥム化合物は単独でもまた二種以上組合わせても用い
ることができる。
The above polar solvents, non-polar solvents, conjugated compounds, and organic polylithium compounds can be used alone or in combination of two or more.

本発明で用いられる有機ポリリチゥム化合物は有機ポリ
ハロゲン化炭化水素化合物とりチウムとを極性溶媒中で
反応させるなど通常の方法により合成される。
The organic polylithium compound used in the present invention is synthesized by a conventional method such as reacting an organic polyhalogenated hydrocarbon compound with lithium in a polar solvent.

これらの反応は室温以下の低温で行なうことが望ましい
。反応終了後、過剰のりチウムや生成したハロゲン化リ
チウムなどの沈殿物、浮遊物を除去して有機ポリリチゥ
ム化合物の極性溶媒均一溶液を得るが、従来この有機ポ
リリチウム化合物の極性溶媒溶液中の有機ポリリチウム
化合物濃度が高くなると貯蔵中に結晶が析出するなど安
定性が悪くなるため、低濃度で用いられてきた。しかし
ながら、有機ポリリチゥム化合物の極性溶媒溶液に徴量
の共役ジェン或いはアルケニル芳香族炭化水素を添加し
た本発明の組成物は、驚くべきことに、高濃度でも非常
に優れた貯蔵安定性を示す。特に有機ポリリチゥム化合
物の高濃度極性溶媒溶液は粘度が高いため、これを非磁
性溶媒で希釈し取扱い容易にした場合の安定性は共役ジ
ェン或いはアルケニル芳香族化合物を含まない従来の有
機ポリリチウム化合物溶液に比し著しく優れている。有
機ポリリチウム化合物溶液に添加される共役ジェン或い
はアルケニル芳香族化合物の量は、有機ポリリチゥム化
合物lmolに対し2×10‐3mol〜2×10‐l
molが適当で、好ましくは7×10‐3〜1.5×1
0‐lmolが用いられ、就中ブチジェンのような共役
ジェンの使用が好ましい。
These reactions are desirably carried out at a low temperature below room temperature. After the reaction is completed, precipitates and floating substances such as excess lithium and generated lithium halide are removed to obtain a homogeneous solution of an organic polylithium compound in a polar solvent. If the concentration of lithium compounds becomes high, stability deteriorates, such as crystals precipitating during storage, so they have been used at low concentrations. However, the composition of the present invention, in which a certain amount of conjugated diene or alkenyl aromatic hydrocarbon is added to a solution of an organic polylithium compound in a polar solvent, surprisingly exhibits very good storage stability even at high concentrations. In particular, a highly concentrated polar solvent solution of an organic polylithium compound has a high viscosity, so when it is diluted with a non-magnetic solvent to make it easier to handle, the stability is lower than that of a conventional organic polylithium compound solution that does not contain conjugated genes or alkenyl aromatic compounds. It is significantly superior to . The amount of the conjugated diene or alkenyl aromatic compound added to the organic polylithium compound solution is 2 x 10-3 mol to 2 x 10-1 per 1 mol of the organic polylithium compound.
The mol is appropriate, preferably 7×10-3 to 1.5×1
0-1 mol is used, especially the use of conjugated genes such as butidene is preferred.

共役ジヱン或いはァルケニル芳香族化合物の量が2×1
0‐乳olより少ないと、安定性が不十分であり、2×
10‐lmolより多いと結晶が析出したり、溶液粘度
が高くなったりするので適当でない。共役ジェンあるい
はアルケニル芳香族化合物は、有機ポリリチゥム化合物
重合開始剤の高濃度極性溶媒溶液に、例えば窒素あるい
はアルゴンなどの不活性ガス雰囲気下、縄拝しながら室
温もしくは室温より低い温度で加える。
The amount of conjugated diene or alkenyl aromatic compound is 2×1
If it is less than 0-milk ol, the stability is insufficient and 2×
If the amount is more than 10-lmol, crystals will precipitate or the solution viscosity will increase, so it is not suitable. The conjugated diene or alkenyl aromatic compound is added to a highly concentrated polar solvent solution of an organopolylithium compound polymerization initiator at room temperature or lower than room temperature, for example, under an atmosphere of an inert gas such as nitrogen or argon.

これらモノマーの添加は、そのままもしくは例えばシク
ロヘキサンなどの不活性溶媒に希釈して、一度に、もし
くは数回にわけて添加する。本発明の有機ポリリチウム
系重合開始剤組成物を用いると、非極・性溶媒中で共役
ジェンを単独で重合あるいはアルケニル芳香族化合物と
共重合させる時系中の適性溶媒含量が少なくて済む(高
濃度溶液として使用できる)ため、生成重合体のミクロ
構造中の1,2−ビニル含量を通常の低濃度溶液を用い
る時より大中に減少させることができる。
These monomers may be added as they are or diluted with an inert solvent such as cyclohexane, either all at once or in several portions. When the organic polylithium polymerization initiator composition of the present invention is used, the content of a suitable solvent can be reduced during polymerization of a conjugated gene alone or copolymerization with an alkenyl aromatic compound in a nonpolar solvent ( (can be used as a highly concentrated solution), the 1,2-vinyl content in the microstructure of the resulting polymer can be significantly reduced compared to when conventional low concentration solutions are used.

本発明の有機ポリリチウム系重合開始剤組成物を適用す
るモノマーとしては、1,3−プタジェン、イソプレン
、2,3ージメチルブタジエンなどの共役ジェンがあり
、このほかこれらと共重合可能なスチレン、Qーメチル
スチレン、ビニルトルェンなどのアルケニル芳香族化合
物もコモノマーとして用いることができる。
Monomers to which the organic polylithium polymerization initiator composition of the present invention can be applied include conjugated compounds such as 1,3-ptadiene, isoprene, and 2,3-dimethylbutadiene, and in addition to these, styrene, which can be copolymerized with these, Alkenyl aromatic compounds such as Q-methylstyrene and vinyltoluene can also be used as comonomers.

本発明の有機ポリリチウム系重合開始剤組成物を用いる
場合の重合溶媒としては炭化水素溶媒、例えばへキサン
、ヘプタン、ベンゼン、トルェン、シクロヘキサンなど
が好ましい。
When using the organic polylithium polymerization initiator composition of the present invention, hydrocarbon solvents such as hexane, heptane, benzene, toluene, and cyclohexane are preferred as the polymerization solvent.

炭化水素溶媒は単独あるいは混合して用いることができ
る。本発明の有機ポリリチウム系重合開始剤組成物を用
いて前記モノマーを(共)重合するとき、溶媒は通常モ
ノマー1重量部に対して1〜15重量部使用する。重合
は不活性ガス雰囲気下、反応温度は特に制限はないが通
常100qo以下で行なう。
Hydrocarbon solvents can be used alone or in combination. When (co)polymerizing the monomers using the organic polylithium polymerization initiator composition of the present invention, the solvent is usually used in an amount of 1 to 15 parts by weight per 1 part by weight of the monomer. The polymerization is carried out under an inert gas atmosphere and the reaction temperature is not particularly limited, but is usually 100 qo or less.

特に重合度が10以下の範囲では2000以下で重合さ
せることが望ましい。本発明の有機ポリリチゥム系重合
開始剤組成物は、ポリウレタン原料として非常に有用な
低分子量、テレケリックポリマ−である、分子量約2,
00現程度のポリブタジェングリコールの合成にも非常
に有用である。即ち、従来有機ポリリチウム化合物の低
濃度極性溶液を用いて、分子量分布が狭い1,2−ビニ
ル含量の少ないポリブタジェングリコールを合成するに
は、先ずブタジェンを重合度1明星度まで重合させ、次
いで溶媒である樋性溶媒を一部ないいま全て除き、しか
る後重合溶媒である非極・性溶媒とブタジェンを所定量
加え重合させ、さらにエチレンオキシドを反応させた後
鉱酸水溶液で処理するという工程が必要であった。しか
し本発明の有機ポリリチウム重合開始剤組成物を用いる
と樋性溶媒を除去する必要はなく、工業的に非常に有利
である。以下に実施例を挙げて本発明をさらに具体的に
説明するが、本発明はその要旨を超えない限りこれら実
施例によって制約されるものではない。
In particular, in a range where the degree of polymerization is 10 or less, it is desirable to polymerize at a degree of 2000 or less. The organic polylithium polymerization initiator composition of the present invention is a low molecular weight, telechelic polymer very useful as a raw material for polyurethane.
It is also very useful for the synthesis of polybutadiene glycol. That is, conventionally, in order to synthesize polybutadiene glycol with a narrow molecular weight distribution and a low content of 1,2-vinyl using a low concentration polar solution of an organic polylithium compound, first, butadiene was polymerized to a polymerization degree of 1 degree, Next, a part or all of the gutter solvent is removed, and then a predetermined amount of a non-polar solvent and butadiene, which are polymerization solvents, are added and polymerized, and after reacting with ethylene oxide, the process is treated with an aqueous mineral acid solution. was necessary. However, when the organic polylithium polymerization initiator composition of the present invention is used, there is no need to remove the gutter solvent, which is very advantageous industrially. The present invention will be described in more detail below with reference to Examples, but the present invention is not limited by these Examples unless the gist of the invention is exceeded.

なお、実施例においてポリブタジヱンのミクロ構造はD
.Morero(Chim.e.lndustria
91,758(1959))の方法により求めた。また
、ポリマー1分子当りのヒドロキシル基数は、ヒドロキ
シル基をトリメチルシリル化したのちNMRを測定して
得た官能基数を、ペーパープレッシャオスモメーターで
求めたポリマーの数で割って求めた(特関昭49−10
709度参照)。
In addition, in the examples, the microstructure of polybutadiene is D
.. Morero (Chim.e.lndustria
91,758 (1959)). In addition, the number of hydroxyl groups per polymer molecule was determined by dividing the number of functional groups obtained by trimethylsilylating the hydroxyl groups and measuring NMR by the number of polymers determined by a paper pressure osmometer (Tokusei Sho 49- 10
709 degrees).

比較例 1水分および酸素を充分に除去したアルゴンで
置換した容量300の‘の蝿梓器付き反応容器に、充分
脱水、乾燥したジェチルヱーテル140夕を入れ、次に
アルゴン気流中で市販の棒状リチウム金属を細かく切断
した光沢のある活性な表面をもつリチウム片を19夕を
加えた。
Comparative Example 1 140 ml of thoroughly dehydrated and dried jelly ether was placed in a 300 ml reaction vessel equipped with a 300 ml sieve, which had been replaced with argon from which moisture and oxygen had been sufficiently removed, and then commercially available rod-shaped lithium metal 19 pieces of finely cut lithium with a shiny active surface were added.

反応容器を1000に冷却し後、1,4ージクロルブタ
ン63.5夕を1時間かけて徐々に滴下しながら鷹梓、
反応させた。1,4ージクロルブタン滴下終了後約2時
間蝿拝を続け反応を完結させた。
After cooling the reaction vessel to 1,000 ℃, 63.5 g of 1,4-dichlorobutane was gradually added dropwise over 1 hour while adding Takaazusa,
Made it react. After the completion of dropping 1,4-dichlorobutane, the reaction was continued for about 2 hours to complete the reaction.

なお、反応はすべてアルゴン雰囲気下で温度を100の
こコントロールしながら行なった。反応終了後静直し生
成した塩化リチウムを沈殿させた後、未反応リチウム片
を炉過しながら1,4−ジリチオブタンのエチルエーテ
ル溶液を得た。得られた溶液中の1,4ージリチオブタ
ン濃度は2.09hol/そであった。この1,4ージ
リチオブタンのエチルエーテル溶液を充分脱気、脱水し
たガラス製アンプルに入れて密栓し、6℃に保ちながら
貯蔵した。
All reactions were conducted under an argon atmosphere while controlling the temperature at 100°C. After the reaction was completed, the mixture was allowed to settle down, and the produced lithium chloride was precipitated, and unreacted lithium pieces were filtered through a furnace to obtain a solution of 1,4-dilithiobutane in ethyl ether. The concentration of 1,4-dilithiobutane in the obtained solution was 2.09 hol/sleeve. This ethyl ether solution of 1,4-dilithiobutane was placed in a glass ampoule that had been sufficiently degassed and dehydrated, the ampoule was tightly stoppered, and the ampoule was stored while being kept at 6°C.

貯蔵後3日目には透明な結晶がアンプル器壁にかなり析
出しており、その時の溶液中の1,4−ジリチオブタン
濃度は1.98hol/そであった。更に10日目には
結晶の析出は甚だしく、溶液中の1,4ージリチオブタ
ン濃度は1.78hol/そとなっていた。比較例 2
比較例1で得た1,4ージリチオブタンのエチルエーテ
ル溶液にシクロヘキサンを加え、1.靴ol/のこ希釈
したものを、比較例1と同様のガラス製アンプルに入れ
て密栓し、6℃に保ちながら貯蔵した。
On the third day after storage, a considerable amount of transparent crystals were deposited on the walls of the ampoule container, and the concentration of 1,4-dirithiobutane in the solution at that time was 1.98 hol/sleeve. Further, on the 10th day, the precipitation of crystals was severe, and the concentration of 1,4-dilithiobutane in the solution was 1.78 hol/sol. Comparative example 2
Cyclohexane was added to the ethyl ether solution of 1,4-dilithiobutane obtained in Comparative Example 1, and 1. The shoe ol/saw diluted product was placed in a glass ampoule similar to Comparative Example 1, sealed tightly, and stored while being maintained at 6°C.

貯蔵後3日目には多量の結晶がアンプル器壁に析出して
おり、その時のエーテル溶液中の1,4−ジリチオブタ
ン濃度は1.1則ol/そであった。実施例 1 比較例1の1,4−ジリチオブタンェチルエーテル溶液
に1,4−ジリチオブタンlmolに対し7×10‐3
molの1,3ーブタジェンを添加してものを比較例1
と同様にして貯蔵した。
On the third day after storage, a large amount of crystals was deposited on the wall of the ampoule, and the concentration of 1,4-dirithiobutane in the ether solution at that time was 1.1 ol/ml. Example 1 In the 1,4-dilithiobutane ethylether solution of Comparative Example 1, 7×10-3 was added to 1 mol of 1,4-dilithiobutane.
Comparative Example 1 was prepared by adding mol of 1,3-butadiene.
It was stored in the same way.

貯蔵後10日目になっても結晶の析出はなく、溶液中の
1,4‐ジリチオプタン濃度も2.0靴ol/〆と貯蔵
開始時の濃度と同様であった。実施例 2比較例2と同
一の1,4−ジリチオプタンのエチルエーテル・シクロ
ヘキサン混合溶媒溶液に1,3−ブタジェンを実施例1
と同機の量添加したものを、ガラス製アンプルに入れて
密栓し6℃で貯蔵した。
Even on the 10th day after storage, no crystals were precipitated, and the concentration of 1,4-dilithioptane in the solution was 2.0 ol/filtrate, which was the same as the concentration at the start of storage. Example 2 1,3-butadiene was added to the same ethyl ether/cyclohexane mixed solvent solution of 1,4-dilithioptane as in Comparative Example 2 in Example 1.
The same amount of the same amount was added into a glass ampoule, which was sealed and stored at 6°C.

貯蔵後3日目になっても結晶の析出は認められず、溶液
中の1,4−ジリチオブタン濃度は1.5molノその
ままであった。実施例3〜9および比較例3,4 比較例2の1,4ージリチオブタンのエチルエーテル・
シクロヘキサン混合溶媒溶液を表1のように処理し、一
20℃に保ちながら貯蔵した。
No crystal precipitation was observed even on the third day after storage, and the concentration of 1,4-dilithiobutane in the solution remained at 1.5 mol. Examples 3 to 9 and Comparative Examples 3 and 4 Ethyl ether of 1,4-dilithiobutane of Comparative Example 2
The cyclohexane mixed solvent solution was treated as shown in Table 1 and stored while being maintained at -20°C.

実験の操作はすべて比較例1に準じた。表 1 ブタジエン、イソプレン、スチレンを1,4−ジリチオ
プタンlmolに対し2×10‐3mol〜2×10‐
lmol添加した1,4−ジリチオブタン溶液は非常に
優れた貯蔵安定性を示した。
All experimental operations were conducted in accordance with Comparative Example 1. Table 1 Butadiene, isoprene, and styrene in amounts of 2 x 10-3 mol to 2 x 10-3 mol to 1 mol of 1,4-dilithioptane.
The 1,4-dirithiobutane solution to which 1 mol was added showed very good storage stability.

実施例 10 酸素および水分を充分に除去したアルゴンで置換した3
00の【反応容器に、実施例4の1,4−ジリチオブタ
ン溶液を10の上入れ、反応容器を10qoに保ち燈拝
しながらブタジェン8夕とシクロヘキサン10夕を徐々
に添加し反応させた。
Example 10 3 substituted with argon from which oxygen and moisture were sufficiently removed
Into a reaction vessel of 0.00, 10% of the 1,4-dirithiobutane solution of Example 4 was charged, and while the reaction vessel was kept at 10 qo, 8 quarts of butadiene and 10 quarts of cyclohexane were gradually added and reacted.

次いで反応容器にシクロヘキサン140夕を添加し、反
応容器を40ooとした後ブタジェン22夕を添加重合
させた。重合は反応容器内を4000に保ちながら3時
間行なった。重合転化率は100%であった。次に反応
容器内を1oo0に冷却した後、反応容器内にシクロヘ
キサン15夕で希釈したエチレンオキシド3.3夕を導
入し40時間反応させた。
Next, 140 tons of cyclohexane was added to the reaction vessel to make the reaction vessel 400 mm, and then 22 tons of butadiene was added for polymerization. Polymerization was carried out for 3 hours while maintaining the inside of the reaction vessel at 4,000 ℃. The polymerization conversion rate was 100%. Next, the inside of the reaction vessel was cooled to 100, and then 3.3 hours of ethylene oxide diluted with 15 hours of cyclohexane was introduced into the reaction vessel and reacted for 40 hours.

生成重合体は希塩酸水溶液500の‘に入れ充分縄拝し
、重合開始剤残澄であるリチウムを除き、次いで500
の【の蒸留水で3度洗浄後、ロータリーェバポレーター
で溶媒を除き、更に70ooで1昼夜乾燥した。得られ
た重合体のポリブタジェン部のミクロ構造中の1,2−
ビニル構造舎率は44.4%であった。また、ポリマー
1分子当りのヒドロキシル基数(官能度)は約2であっ
た。比較例 5 比較例1の1,4ージリチオプタン合成時にジェチルェ
ーテル量を増し、ブタジェンを添加しなくても安定な1
,4−ジリチオブタンのジェチルェーテル溶液(1,4
ージリチオブタン濃度lmol/そ)を得た。
The resulting polymer was thoroughly soaked in 500 g of a dilute aqueous hydrochloric acid solution to remove lithium, which was a polymerization initiator residue, and then diluted with 500 g of diluted hydrochloric acid solution.
After washing three times with distilled water, the solvent was removed using a rotary evaporator, and the product was further dried at 70°C for 1 day and night. 1,2- in the microstructure of the polybutadiene moiety of the obtained polymer
The vinyl structure rate was 44.4%. Further, the number of hydroxyl groups (functionality) per polymer molecule was about 2. Comparative Example 5 By increasing the amount of diethyl ether during the synthesis of 1,4-dilithioptane in Comparative Example 1, stable 1 was obtained without adding butadiene.
,4-dirithiobutane in diethyl ether solution (1,4
- dilithiobutane concentration 1 mol/s) was obtained.

この1,4ージリチオプタンのエーテル溶液15のとを
実施例10の1,4−ジリチオブタン溶液の代りに用い
た以外は実施例10と同様にして重合体を得た。得られ
た重合体のポリブタジェン部のミクロ構造中の1,2ー
ビニル機造含率は56.9%であり、官能度は約2であ
った。
A polymer was obtained in the same manner as in Example 10, except that this 1,4-dilithiobutane ether solution 15 was used in place of the 1,4-dilithiobutane solution in Example 10. The 1,2-vinyl structural content in the microstructure of the polybutadiene portion of the obtained polymer was 56.9%, and the degree of functionality was about 2.

Claims (1)

【特許請求の範囲】[Claims] 1 有機ポリリチウム化合物、その極性溶媒または極性
溶媒と非極性溶媒の混合溶媒、および上記有機ポリリチ
ウム化合物1molに対し2×10^−^3mol〜2
×10^−^1molの共役ジエンおよび/またはアル
ケニル芳香族化合物とからなる、共役ジエンまたは共役
ジエンとアルケニル芳香族化合物の(共)重合用有機ポ
リリチウム系重合開始剤組成物。
1 Organic polylithium compound, its polar solvent or a mixed solvent of a polar solvent and a non-polar solvent, and 2 × 10^-^3 mol to 2 per mol of the above organic polylithium compound
An organic polylithium polymerization initiator composition for (co)polymerization of a conjugated diene or a conjugated diene and an alkenyl aromatic compound, which comprises x10^-^1 mol of a conjugated diene and/or an alkenyl aromatic compound.
JP10720676A 1976-09-09 1976-09-09 Organic polylithium polymerization initiator composition Expired JPS6019323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10720676A JPS6019323B2 (en) 1976-09-09 1976-09-09 Organic polylithium polymerization initiator composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10720676A JPS6019323B2 (en) 1976-09-09 1976-09-09 Organic polylithium polymerization initiator composition

Publications (2)

Publication Number Publication Date
JPS5332893A JPS5332893A (en) 1978-03-28
JPS6019323B2 true JPS6019323B2 (en) 1985-05-15

Family

ID=14453160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10720676A Expired JPS6019323B2 (en) 1976-09-09 1976-09-09 Organic polylithium polymerization initiator composition

Country Status (1)

Country Link
JP (1) JPS6019323B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550003A (en) * 1978-10-04 1980-04-11 Denki Kagaku Kogyo Kk Preparation of organo-lithium catalyst
JPS57119264U (en) * 1981-01-20 1982-07-24
JPS58124772U (en) * 1982-02-18 1983-08-25 三洋電機株式会社 absorption refrigerator

Also Published As

Publication number Publication date
JPS5332893A (en) 1978-03-28

Similar Documents

Publication Publication Date Title
US4089913A (en) Process for producing transparent block copolymer resin
JP3031566B2 (en) Polymerization of olefin-containing monomers using anionic initiators
US4524187A (en) Isobutylene-triene copolymers cross-linkable under ambient humidity conditions, a process for their preparation, and intermediate suitable for this purpose
US5600021A (en) Functionalized initiators for anionic polymerization
JPS60221412A (en) Manufacture of polydiene using organolithium compound
US3847883A (en) Method of preparing polymers utilizing as catalysts hydrocarbon-soluble complexes of an organomagnesium compound with a group i organometallic compound
JP3476823B2 (en) Butadiene polymer having a terminal silyl group
JPS6119610A (en) Catalyst system and polymerization
US4054616A (en) Process for producing transparent block copolymer resins
JP3485605B2 (en) Method for producing polymer
JP2619930B2 (en) Bifunctional alkali metal compound, method for producing the same, and polymerization initiator comprising the compound
US3959412A (en) Block polymer preparation
US5461116A (en) Core functionalized star block copolymers
US4311818A (en) Bi- and Trifunctional organolithium initiators and applications thereof
US6121429A (en) Catalytic complexes based on lanthanides for the (co) polymerization of conjugated dienes
US4052370A (en) Alkali metal aliphatic and aromatic hydrocarbon acetals and ketals and their use as polymerization initiators
JPH0338590A (en) Organoalkali metal compound and initiator for production of polymer
US4544711A (en) Process for making terminally functional polymers
JPS6019323B2 (en) Organic polylithium polymerization initiator composition
JPH02169527A (en) Novel stilbene compound, production thereof and use as
EP0192424A2 (en) Process for producing thermoplastic elastomeric block copolymers
JPH058924B2 (en)
JPH0551632B2 (en)
KR970009240B1 (en) Method for block copolymer of alkylene oxide with vinyl or diene monomers by anionic polymerization
JP5196699B2 (en) Polymers with high vinyl end segments