JPS60193220A - Contact material for vacuum breaker - Google Patents

Contact material for vacuum breaker

Info

Publication number
JPS60193220A
JPS60193220A JP4757584A JP4757584A JPS60193220A JP S60193220 A JPS60193220 A JP S60193220A JP 4757584 A JP4757584 A JP 4757584A JP 4757584 A JP4757584 A JP 4757584A JP S60193220 A JPS60193220 A JP S60193220A
Authority
JP
Japan
Prior art keywords
alloy
vacuum
current
contact material
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4757584A
Other languages
Japanese (ja)
Other versions
JPH041448B2 (en
Inventor
浩造 松本
永山 一彦
椎名 利枝
吉ケ江 清久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4757584A priority Critical patent/JPS60193220A/en
Publication of JPS60193220A publication Critical patent/JPS60193220A/en
Publication of JPH041448B2 publication Critical patent/JPH041448B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は真空しゃ断器に用いられるCu −Cr接点の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to improvements in Cu--Cr contacts used in vacuum circuit breakers.

〔従来技術とその問題点〕[Prior art and its problems]

一般に真空しゃ断器は次のような特徴を有している。 Generally, a vacuum breaker has the following characteristics.

1、電流しゃ断を真空容器内で行い、電流自然零値時に
おける消イオン作用が、高真空中の電子の拡散によるた
め、他の消弧原理のものに比べて著しぐ大きく、すぐれ
たしゃ断性能を示す。
1. The current is cut off in a vacuum chamber, and the ionization effect at the natural zero value of the current is due to the diffusion of electrons in a high vacuum, resulting in a significantly larger and better cutoff than those using other arc-extinguishing principles. Demonstrate performance.

2、シゃ断時にアークが露出しないので、火災や爆発の
危険性がなく安全である。
2. Since the arc is not exposed when shutting off, there is no risk of fire or explosion, making it safe.

3、小型、軽量にでき保守点検の省力化に役立つ。3. It can be made small and lightweight, which helps save labor in maintenance and inspection.

4、シゃ断時の騒音が少い。4. Less noise when shutting off.

5、接点が真空中に密封されでいるので雰囲気の影響を
受けず保守の必要がない。
5. Since the contacts are sealed in a vacuum, they are not affected by the atmosphere and do not require maintenance.

6、接点を開閉する機器以外は特に補助装置や付属品を
必要としない。
6. No special auxiliary equipment or accessories are required other than the equipment that opens and closes the contacts.

以上のような幾多の特徴を備えているために1真空し中
断器は、一般産業、ビルや工場の受配電設備への需要が
増加しており、さらに利用範囲の拡大が図られている。
Because of the many features mentioned above, vacuum interrupters are increasingly in demand for power receiving and distribution equipment in general industries, buildings, and factories, and the scope of their use is being further expanded.

この真空し中断器に使用される接点材料の選定は重要で
あり、通常接点材料としては次のような特性が要求され
ている。
Selection of the contact material used in this vacuum interrupter is important, and contact materials are usually required to have the following characteristics.

(11十分に脱ガスされていること。(11) The gas must be sufficiently degassed.

(2)電気伝導、熱伝導が良いこと。(2) Good electrical and thermal conductivity.

(3)消耗が少なく溶着なしないこと。(3) Low wear and tear and no welding.

(4)シゃ断性能がすぐれていること。(4) Excellent breaking performance.

(5)接触抵抗が小さく通電容量が大きいこと。(5) Low contact resistance and large current carrying capacity.

(6)耐圧が高いこと。(6) High pressure resistance.

(7)さい断電流が小さいこと。(7) The cutting current is small.

これらのうちとくにさい断電流は真空しゃ断器の特徴的
現象として短所ともなっているものであって、小電流を
しゃ断するとき電流が自然零点となる以前にアークを安
定に維持することができずに急激に消滅するという問題
があるために、真空しゃ断器を用いた誘導性回路などで
は異常電圧が発生して機器の絶縁劣化を生じ、機器損傷
の原因となるので、この種の用途ではさい断電流値の小
さいことが要求されるが、この特性は殆ど接点材料によ
って左右される。
Among these, the breaking current is a characteristic phenomenon of vacuum circuit breakers, which is also a drawback.When breaking a small current, the arc cannot be maintained stably before the current reaches its natural zero point. Due to the problem of sudden dissipation, abnormal voltage is generated in inductive circuits using vacuum breakers, deteriorating the insulation of equipment, and causing equipment damage. A small current value is required, but this characteristic is mostly determined by the contact material.

以上のことから大電流しゃ断性能を有し、耐溶着、さい
断電流特性にすぐれた真空しゃ断器用接点の適切な材料
選定が望まれているがこれら要求特性は相反関係をなす
ものもあるので全てを満足する接点材料を得ることはむ
づかしく、それぞれの用途に応じてとくに重要な特性を
満たし、その他の特性は若干犠牲にする使用例が多い。
From the above, it is desired to select an appropriate material for vacuum breaker contacts that has large current breaking performance and excellent welding resistance and cutting current characteristics, but these required properties may be contradictory, so It is difficult to obtain a contact material that satisfies the above requirements, and there are many applications in which the material satisfies particularly important characteristics depending on the application, while sacrificing some other characteristics.

例えば従来用いられているこの種の接点材料の代表的な
ものとしてCu−B1系合金やCu−Cr系合金などが
よく知られているうこれらのうちCu −Bi系合金は
しゃ断性能、耐溶着性などの点ですぐれているが、この
合金中に含まれているBiが真空し中断器の耐電圧特性
を劣化させる要因になりやすく、またさい断電流値も低
いが、大電流しゃ断を繰り返すことによりBiの浸み出
しや蒸発が盛んになって次第にさい断電流特性が悪化す
るようになるなどの欠点をもっている。一方Cu −C
r系合金は元来CuとCrが互に溶融し難いために、C
r粉末の焼結体に溶融Cuを浸透させて得られるもので
あり、この合金中に占めるCrの割合は20〜60重量
係が普通である。このCu−Cr系合金はし中断性能、
耐電圧特性、さい断電流特性が相対的にすぐれ、しかも
この合金の構成元素となっているCrがガスを吸収する
ゲッター作用を有するため、真空しゃ断器用接点として
有効であることが一般に認められている。しかしながら
Cu−Cr系合金の耐溶着性はCu−B1系合金より劣
るという欠点がある。
For example, Cu-B1 alloys and Cu-Cr alloys are well known as typical contact materials of this type that have been used in the past.Among these, Cu-Bi alloys have excellent breaking performance and welding resistance. Although the Bi contained in this alloy tends to deteriorate the withstand voltage characteristics of the interrupter in a vacuum, and the interrupter has a low interrupting current value, it repeatedly interrupts large currents. As a result, the leaching and evaporation of Bi becomes more active, resulting in the deterioration of the cutting current characteristics. On the other hand, Cu-C
In r-based alloys, Cu and Cr are originally difficult to melt together, so C
It is obtained by infiltrating molten Cu into a sintered body of r powder, and the proportion of Cr in this alloy is usually 20 to 60% by weight. This Cu-Cr alloy chopstick breaking performance,
It is generally recognized that it is effective as a contact for vacuum circuit breakers because it has relatively excellent withstand voltage characteristics and cutting current characteristics, and Cr, which is a constituent element of this alloy, has a getter action that absorbs gas. There is. However, the Cu-Cr alloy has a disadvantage in that the welding resistance is inferior to the Cu-B1 alloy.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり、その目
的は耐溶着性とさい断電流特性にすぐれた真空しゃ断器
用Cu−Cr接点材料を提供することにある。
The present invention has been made in view of the above-mentioned points, and its object is to provide a Cu--Cr contact material for a vacuum breaker that has excellent welding resistance and cutting current characteristics.

〔発明の要点〕[Key points of the invention]

本発明の接点材料はCuが45〜60チ Teが0.0
5〜4チ、残部がCrからなるCu −Cr−Te合金
であり、Cr焼結体にCu−Te合金を溶浸することに
より得られるものである。
The contact material of the present invention has Cu of 45 to 60 and Te of 0.0.
It is a Cu-Cr-Te alloy consisting of 5 to 4 pieces and the remainder Cr, and is obtained by infiltrating a Cu-Te alloy into a Cr sintered body.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

通常Cu−Cr合金を製造するには前述したように焼結
溶洗法が用いられ、例えばまずCr粉末を黒鉛鋳型に充
てんし、これを1200〜1350℃で数時間真空焼結
してCr焼結体とし、このCr焼結体に真空中1100
〜1250℃でCuを溶浸する。本発明の合金を得るた
めには基本的にはこの方法と変らないがTeを添加する
ためにCuの代りにCu −Te合金を用いた。Teを
添加したのはCu−Cr合金の中に脆弱なTeを均一微
細に分散させることにより接点の溶着現象が起りにくく
なることと、TeがCuやCrに比べて蒸気圧が高いの
で電流しゃ断時のアークを持続させるためにさい断電流
値を低くする効果が得られることが別途実験結果かられ
かっていたからである。本発明ではまず1o。
Normally, to manufacture Cu-Cr alloys, the sintering and washing method is used as mentioned above. For example, Cr powder is first filled into a graphite mold, and this is vacuum sintered at 1200 to 1350°C for several hours to sinter the Cr. This Cr sintered body was heated at 1100°C in vacuum.
Infiltrate Cu at ~1250°C. In order to obtain the alloy of the present invention, the method was basically the same as this, but a Cu--Te alloy was used instead of Cu to add Te. The reason for adding Te is that by uniformly and finely dispersing the brittle Te in the Cu-Cr alloy, welding of contacts is less likely to occur, and because Te has a higher vapor pressure than Cu or Cr, it can be used to interrupt current. This is because separate experimental results showed that it is effective to lower the cutting current value in order to sustain the arc for a long time. In the present invention, first, 1o.

メツシー以下325メツシー以上の粒径を有する針粉末
を内径657111!〆、深さ25 mmの黒鉛鋳型に
振動を与えながら充填し、これを1250’0で1時間
真空焼結して空孔率50 tl)のCr焼結体を得、こ
のCr焼結体に前もって真空溶解により作製しておいた
Cu−0,11Te 、 Cu−1%Te 、 Cu−
3%Te 、 Cu−5%Te 、 Cu−8%Teの
Te含有量の異なる5種のCu−Te合金をそれぞれ真
空雰囲気中1200″Cで溶浸させTeの最適含有量を
めた。この際Cr焼結体の空孔率はCr粉末の焼結温度
を1100〜1400℃の範囲で設定することにより4
5〜55チの範囲とすることができ、この範囲の空孔率
で前述の5種類のCu−Te合金を溶浸するとCu−C
r合金に対するCuの含有量も決められ45〜60 %
となる。
Needle powder with a particle size of less than 325 Metsu and more than Metsu with an inner diameter of 657111! Finally, it was filled into a graphite mold with a depth of 25 mm while being vibrated, and vacuum sintered at 1250'0 for 1 hour to obtain a Cr sintered body with a porosity of 50 tl). Cu-0,11Te, Cu-1%Te, Cu- which had been prepared in advance by vacuum melting
Five types of Cu-Te alloys with different Te contents, 3%Te, Cu-5%Te, and Cu-8%Te, were each infiltrated at 1200''C in a vacuum atmosphere to determine the optimal content of Te. The porosity of the Cr sintered body can be adjusted to 4 by setting the sintering temperature of the Cr powder in the range of 1100 to 1400°C.
The porosity can be in the range of 5 to 55 cm, and when the five types of Cu-Te alloys mentioned above are infiltrated with the porosity in this range, Cu-C
The content of Cu in the r-alloy is also determined to be 45-60%.
becomes.

このようにして得られた5種類のCu −Cr −Te
合金の化学成分と物理的性質を第1表に示す。第1表に
は比較のためCr焼結体に真空溶解したCuを溶浸して
得られる従来合金についても併記しであるが、ml−1
&L5は本発明合金でありl&16が従来合金である。
Five types of Cu-Cr-Te obtained in this way
The chemical composition and physical properties of the alloy are shown in Table 1. For comparison, Table 1 also lists conventional alloys obtained by infiltrating Cr sintered bodies with vacuum-melted Cu, but ml-1
&L5 is an alloy of the present invention, and l&16 is a conventional alloy.

第1表 第1表から本発明のCu −Cr −Te合金は従来の
Cu−Cr合金と比べて物理的性質は導電率がやや低目
であるがほぼ同等と見做すことができる。
Table 1 From Table 1, the physical properties of the Cu-Cr-Te alloy of the present invention can be considered to be almost the same as those of the conventional Cu-Cr alloy, although the electrical conductivity is slightly lower.

次にこれらの合金から直径15 mm 、高さIQ m
tn 、先端径が100Rの溶着試験片を採取し、溶着
試験機を用いて溶着力を測定した。試験条件は試験片の
接触力8 Kf +真空度5X10 torr、通電電
流は2kAから1 kAのステップで順次上昇させ通電
後の10 kAまでの溶着力を測定したものであり、そ
の結果を第1図に示す。第1メは溶着力と試験電流値と
の関係を表わした線図であり、第1表に示した隊と第1
図の各曲線に付した随とが対応している。第1図にも従
来合金Na6をプロットしであるが、本発明の合金は溶
着力に犬山な差がないので試験電流10 kAにおける
最大の溶着力を示す曵1と最低の溶着力を示す随4およ
びその中間的な値を示す−3の3本の曲線のみをあげ、
階2と高5は曲線が錯そうして判別しにくい部分が生ず
るので省略しである。第1図は本発明の合金が従来合金
に比べて溶着力は著しく低く、接点が溶着しても容易に
開離するのに対し、従来合金は電流増加とともに増々強
固に溶着することを示しており、第2図から本発明の合
金が耐溶着性に勝ることがわかる。
Next, from these alloys a diameter of 15 mm and a height of IQ m
A welding test piece with a tip diameter of 100R was taken, and the welding force was measured using a welding tester. The test conditions were a contact force of 8 Kf on the test piece + a vacuum level of 5 x 10 torr, and the applied current was increased in steps from 2 kA to 1 kA, and the welding force was measured up to 10 kA after energization. As shown in the figure. The first chart is a diagram showing the relationship between welding force and test current value.
The labels attached to each curve in the figure correspond to each other. Fig. 1 also plots the conventional alloy Na6, but since the alloy of the present invention has no significant difference in welding force, 1 shows the maximum welding force at a test current of 10 kA, and 4 shows the lowest welding force at a test current of 10 kA. Only three curves, 4 and -3, which represent intermediate values, are shown.
Floors 2 and 5 have been omitted because their curves tend to intersect, making it difficult to distinguish between them. Figure 1 shows that the welding force of the alloy of the present invention is significantly lower than that of conventional alloys, and even if the contacts are welded, they open easily, whereas the conventional alloys weld more and more firmly as the current increases. It can be seen from FIG. 2 that the alloy of the present invention has superior welding resistance.

次にさい断電流値は定格7.2 kV/8 kAの真空
パルプに組込んで測定し本発明合金と従来合金を比較し
た。接点寸法は外径25酩、内径13龍であり、接点間
隙は6關、接触荷重は20紛、真空度は10 torr
でありて試験条件は試験電圧AC300V、t、中断電
流30.5Aビーク、開極位相90°とした。試験回数
はいずれも(資)回行りたがさい断電流値の最大、最小
および平均値で示すと第2表の結果を得た。第2表に示
す胤は第1表の蝿と対応している。第2第 2 表 表かられかるようにさい断電流値についても本発明の合
金は従来合金より改善されている。
Next, the cutting current value was measured by incorporating the alloy into a vacuum pulp with a rating of 7.2 kV/8 kA, and the alloy of the present invention was compared with the conventional alloy. Contact dimensions are outer diameter 25 mm, inner diameter 13 mm, contact gap 6 mm, contact load 20 mm, vacuum degree 10 torr.
The test conditions were a test voltage of 300 VAC, t, an interruption current of 30.5 A peak, and an opening phase of 90°. Although the tests were conducted several times, the results shown in Table 2 were obtained when the maximum, minimum, and average values of the cutting current values were expressed. The seeds shown in Table 2 correspond to the flies in Table 1. As can be seen from Table 2, the cutting current value of the alloy of the present invention is also improved over the conventional alloy.

以上のように第1表、第2表、第1図の結果を総合して
考察すると、従来の真空しゃ断器用接点材料であるCu
7Cr系合金にTeを添加することにより接点の重要な
特性である耐溶着性およびさい断電流値が改善され、’
reの含有量は0.05〜4チ。
Considering the results shown in Table 1, Table 2, and Figure 1 as above, it is clear that Cu, the conventional contact material for vacuum breaker
By adding Te to 7Cr alloy, welding resistance and shear current value, which are important properties of contacts, are improved.
The content of re is 0.05 to 4 chi.

Cuの含有量は45〜60チ残部Crとする範囲が好適
である。・、・− またTeが0.05%未満ではその添加効果がなくCu
−Cr系合金の耐溶着性を改善することができず、’r
eが4チを超えるとCu−Cr系合金の耐溶着性とさい
断電流特性は極めて良好となるが耐圧性能が著しく劣化
し接触抵抗も増大して温度特性に悪影響を及ぼすので上
限は4%であることを別途実験により確認している。
The content of Cu is preferably in the range of 45 to 60% with the remainder being Cr.・,・− Also, if Te is less than 0.05%, there is no effect of adding it and Cu
-It is not possible to improve the welding resistance of Cr-based alloys, and 'r
If e exceeds 4 inches, the welding resistance and shear current characteristics of the Cu-Cr alloy will be extremely good, but the pressure resistance will deteriorate significantly and the contact resistance will increase, which will have a negative effect on the temperature characteristics, so the upper limit is 4%. This has been confirmed through separate experiments.

なおCu −Cr −Te合金を製造するには上記実施
例で述べた方法の外にCu、 Cr、 Teのそれぞれ
の粉末を混合した後焼結する方法もあるが、空孔が多く
なりこの合金の理論密度に達することができないために
接点の特性を満足せず、またその他にCrとTaの粉末
を混合してこれを成形焼結したCr−Teの焼結体にC
uを溶浸してつくることもできるが、この方法はTeが
均一分散せず、しかもTeが蒸発飛散するので所期の合
金組成とするための制御が困難であり、本発明の合金を
得るためには実施例に述べたCr焼結体にCu−Te合
金を溶浸する方法が最も好ましい。
In addition to the method described in the above example, there is also a method for producing a Cu-Cr-Te alloy in which Cu, Cr, and Te powders are mixed and then sintered. In addition, the contact properties were not satisfied because the theoretical density of
It can also be made by infiltrating U, but this method does not uniformly disperse Te, and furthermore, Te evaporates and scatters, making it difficult to control to obtain the desired alloy composition. The most preferable method is to infiltrate a Cu--Te alloy into a Cr sintered body as described in the Examples.

〔発明の効果〕〔Effect of the invention〕

以上実施例で説明したように、本発明の真空しゃ断器用
接点材料は従来のCu−Cr系合金にTeを0.05〜
4%添加し、合金中にTeを微細均一に分散させCuを
45〜60%の範囲に設定することにより、導電率を損
うことなく耐溶着性と”さい断電流特性を改善すること
ができる。
As explained above in the examples, the contact material for a vacuum breaker of the present invention is a conventional Cu-Cr alloy with 0.05 to 0.05% of Te.
By adding 4% and finely and uniformly dispersing Te in the alloy and setting Cu in the range of 45 to 60%, it is possible to improve welding resistance and cutting current characteristics without impairing conductivity. can.

この結果本発明の合金を用いた真空しゃ断器はさい断電
流に起因する異常電圧の発生による機器損傷を防ぐため
のサージアブソーバの付設などを必要とせず、また耐溶
着性にすぐれることから操作機などの小型軽量化も可能
であり、Cu−Cr接点の適用範囲の拡大とともに経済
的効果も太きい。
As a result, the vacuum breaker using the alloy of the present invention does not require the installation of a surge absorber to prevent damage to equipment due to the generation of abnormal voltage caused by the cutting current, and has excellent welding resistance, making it easy to operate. It is also possible to reduce the size and weight of machines, etc., expand the range of application of Cu-Cr contacts, and have great economic effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の接点材料の俗着力と電流の関係を示す
線図である。
FIG. 1 is a diagram showing the relationship between the bonding force and current of the contact material of the present invention.

Claims (1)

【特許請求の範囲】 1)Teが0.05〜4 % p Cuが45〜60 
% 、残部がCrからなることを特徴とする真空しゃ断
器用接点材料。 2、特許請求の範囲第1項記載の接点材料においてCr
焼結体にCu−Te合金を溶浸することを特徴とする真
空しゃ断器用接点材料。
[Claims] 1) Te: 0.05-4% p Cu: 45-60
%, the balance being Cr. 2. In the contact material according to claim 1, Cr
A contact material for a vacuum breaker, characterized in that a sintered body is infiltrated with a Cu-Te alloy.
JP4757584A 1984-03-13 1984-03-13 Contact material for vacuum breaker Granted JPS60193220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4757584A JPS60193220A (en) 1984-03-13 1984-03-13 Contact material for vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4757584A JPS60193220A (en) 1984-03-13 1984-03-13 Contact material for vacuum breaker

Publications (2)

Publication Number Publication Date
JPS60193220A true JPS60193220A (en) 1985-10-01
JPH041448B2 JPH041448B2 (en) 1992-01-13

Family

ID=12779038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4757584A Granted JPS60193220A (en) 1984-03-13 1984-03-13 Contact material for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS60193220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332429A (en) * 2006-06-16 2007-12-27 Mitsubishi Electric Corp Contact material and production method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086690A (en) * 1973-12-06 1975-07-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086690A (en) * 1973-12-06 1975-07-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332429A (en) * 2006-06-16 2007-12-27 Mitsubishi Electric Corp Contact material and production method therefor

Also Published As

Publication number Publication date
JPH041448B2 (en) 1992-01-13

Similar Documents

Publication Publication Date Title
US3818163A (en) Vacuum type circuit interrupting device with contacts of infiltrated matrix material
Slade Advances in material development for high power, vacuum interrupter contacts
US2975256A (en) Vacuum type circuit interrupter
US4640999A (en) Contact material of vacuum interrupter and manufacturing process therefor
Slade Contact materials for vacuum interrupters
US3551622A (en) Alloy materials for electrodes of vacuum circuit breakers
JP2766441B2 (en) Contact material for vacuum valve
JPS58165225A (en) Vacuum breaker
US6027821A (en) Contact material for vacuum interrupter and method for producing the same
JPS6359217B2 (en)
JPS60193220A (en) Contact material for vacuum breaker
US3548135A (en) Contacts for vacuum interrupters
JPS62264526A (en) Contact for vacuum breaker
EP0178796B1 (en) Manufacture of vacuum interrupter contacts
JPH04132127A (en) Contact point for vacuum bulb
CA1082268A (en) Contact alloy for a vacuum circuit breaker
JPS59119625A (en) Electrode for vacuum interrupter
JP3150516B2 (en) Contact material for vacuum valve
JPH04206122A (en) Vacuum value
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JP2003183749A (en) Vacuum circuit-breaker and contact material for this
JP2006302613A (en) Contact material for vacuum valve and its manufacturing method
JPS60225317A (en) Contact material for vacuum switch
JPS635846B2 (en)
JPS60170122A (en) Contact material for vacuum breaker