JPS60193008A - Feedforward control method for oscillation or the like of floating matter using incident wave signal - Google Patents

Feedforward control method for oscillation or the like of floating matter using incident wave signal

Info

Publication number
JPS60193008A
JPS60193008A JP59049649A JP4964984A JPS60193008A JP S60193008 A JPS60193008 A JP S60193008A JP 59049649 A JP59049649 A JP 59049649A JP 4964984 A JP4964984 A JP 4964984A JP S60193008 A JPS60193008 A JP S60193008A
Authority
JP
Japan
Prior art keywords
wave
matter
waves
incident
floating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59049649A
Other languages
Japanese (ja)
Inventor
Shoichi Nakamura
彰一 中村
Hayashi Naito
内藤 林
Minoru Sakao
坂尾 稔
Kenichi Hirabayashi
健一 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59049649A priority Critical patent/JPS60193008A/en
Publication of JPS60193008A publication Critical patent/JPS60193008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To control properly the oscillations of a fixed matter or a floating matter by detecting an incident wave signal at the front of a matter set at the wave incident side and using the detected incident wave signal to change the parameter of an external dynamic system. CONSTITUTION:For a wave absorbing energy device E, an air pass port 3 is formed at the upper part of a fixed matter 1 set on waves together with a variable nozzle 2 and a duct 4 set at the lower and upper end parts of the port 3 respectively. A Wales turbine 5 is provided within the duct 4, and the power of the turbine 5 is transmitted to an energy absorber main body G of a generator 8, etc. via a belt 7, etc. In addition, a detection device such as a wave motion measurement device, etc. is provided to the device E at the front of a matter set at the wave incident side. The detection value of said detection device undergoes the arithmetic processing through an arithmetic device to control the size of a variable nozzle 2 as well as the capacity value of a variable capacitor of an electric circuit. Thus the flowing speed of the air passing through the turbine 5 is kept at an optimum state. At the same time, the revolutions of the generator 8 are changed to obtain synchronization with a wave cycle to obtain the highest absorption efficiency of energy.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、波浪エネルギー吸収装置、船舶の動揺防1
ヒ装置、消波・造波装置等の利用分野に適用されるもの
で、入射波信号を使って、波浪による固定物体の状態あ
るいは浮体の動揺を制御する、フィードフォワード制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a wave energy absorption device, a vibration prevention device for ships,
It is applied to fields such as wave-dissipating and wave-making devices, and relates to a feedforward control method that uses incident wave signals to control the state of a fixed object or the movement of a floating body due to waves.

(従来技術) 古来から波浪の制御、即ち波浪の影響の回避あるいは波
浪の有効利用に関する研究が数多くなされている。前者
は波浪の影響による、船舶等の動揺を減少あるいは無く
ずことを目的とし、後者は波浪エネルギーの有効利用を
目的としたものである。波浪エネルギーの吸収を行うに
は、何らかの形で固定物体あるいは浮体の動揺の制御を
行う必要があるが、規則波中の場合の制御方法について
は、理論的にも実験的にも確立されている。しかし、不
規則波中のものについては、E記固定物体あるいは浮体
に付加された(あるいは浮体自体が具備する)外部力学
系(付加力学系)のパラメータ(減衰力係数、あるいは
復元力係数等をいう。以下同じ)を、不規則波スペクト
ルの特定の代表周波数で液適効率を示すような値に固定
して(以下、固定係数系システムという)、検討されて
きた。ところが、実際の海(湖等も含む。以下同じ)に
おける波長(波浪周期)はかなりの変動幅で絶えず変化
し、このような固定係数系システムでは、その特定の波
長以外では十分な制御効果を得ることができない。
(Prior Art) Many studies have been conducted since ancient times on wave control, that is, on avoiding the influence of waves or on effectively utilizing waves. The former aims to reduce or eliminate the movement of ships, etc. due to the influence of waves, and the latter aims to effectively utilize wave energy. In order to absorb wave energy, it is necessary to control the motion of a fixed object or floating object in some way, but the control method for regular waves has been established both theoretically and experimentally. . However, for irregular waves, the parameters (damping force coefficient, restoring force coefficient, etc.) of the external dynamical system (additional dynamical system) added to the E fixed object or floating body (or included in the floating body itself) (hereinafter the same) has been studied by fixing it to a value that indicates the liquid efficiency at a specific representative frequency of the irregular wave spectrum (hereinafter referred to as a fixed coefficient system). However, the wavelength (wave period) in the actual ocean (including lakes, etc.; the same applies hereinafter) constantly changes with a considerable range of fluctuation, and such a fixed coefficient system cannot achieve sufficient control effects at wavelengths other than that specific one. can't get it.

そこで、波浪を効果的に制御するため、外部力学系自体
に検知手段を設けて波の変化を検知して、その波の波長
状態に応じて、外部力学系のパラメータを変化させて制
御する、所謂可変係数系制御システムの導入が考えられ
る。
Therefore, in order to effectively control waves, a detection means is provided in the external dynamical system itself to detect changes in the waves, and the parameters of the external dynamical system are changed and controlled according to the wavelength state of the waves. It is possible to introduce a so-called variable coefficient control system.

しかし、L記制御方法では、ハード(機械的、電気的等
の物理的機構をいう。)の反応速度に時間を要するとう
いう欠陥がある。
However, the L control method has a drawback in that the reaction speed of hardware (physical mechanisms such as mechanical, electrical, etc.) requires time.

(発明の目的) この発明は、上記現況に鑑みなされたもので、不規則波
中における波浪を効果的に制御するため、−1;記波の
入射する側の一体前方において入射波信号を検知し、こ
の信号を使って、固定物体の状態あるいは浮体の動揺(
換言すれば、反射波、透過波等)の制御方法を提供する
ことを目的とする。
(Objective of the invention) This invention was made in view of the above-mentioned current situation, and in order to effectively control waves in irregular waves, -1; This signal is then used to determine the state of a fixed object or the movement of a floating body (
In other words, it is an object of the present invention to provide a method for controlling reflected waves, transmitted waves, etc.).

(発明の構成、作用) この発明は、波、ヒにおかれた固定物体あるいは浮体に
付加された外部力学糸の減衰力係数あるいは復元力係数
等のパラメータを変化させる可変係数系制御システムに
おいて、波の入射する例の物体前方に検知手段を設け、
この検知手段で検知した入射波信号を用いて、外部力学
系のパラメータを変化させることにより、不規則波の波
長の変動に対し、固定物体の状態あるいは浮体の動揺を
常に適切に制御できるようにしたことを特徴とするフィ
ードフォワード制御方法からなる。
(Structure and operation of the invention) The present invention provides a variable coefficient control system for changing parameters such as a damping force coefficient or a restoring force coefficient of an external dynamic string attached to a fixed object or a floating body placed in a wave or fire. A detection means is provided in front of the object where the waves are incident,
By changing the parameters of the external dynamical system using the incident wave signal detected by this detection means, it is possible to always appropriately control the state of a fixed object or the movement of a floating body in response to fluctuations in the wavelength of irregular waves. It consists of a feedforward control method characterized by the following.

以下、この発明の実施例について説明する。Examples of the present invention will be described below.

この実施例は、波浪吸収エネルギー装置にこの制御方法
を適用したものである。第1図は波浪エネルギー吸収装
置の側断面図で、■は波−ヒに装置された固定物体で、
この固定物体1の上部には空気流出入口3が付設され、
この空気流出入口3の下端部には可変ノズル2が、上端
部にダクト4が形成されている。そして、上記ダクト4
内にはそのダクト4の内径よりやや小さい直径を有する
ウェルズタービン5が装置されている。このウェルズタ
ービン5は、プーリ6、ベルト7等の伝達機構を介して
、波浪の制御においてバネ系を構成する可変コンデンサ
16等からなる電気回路15 (第2図参照)を具備す
る発電機8等のエネルギー吸収装置本体Gに回転を伝達
するような構成になっている。しかして、この波浪エネ
ルギー吸収装置Eは、この装置Eと海面により囲まれた
下部空間部分9に存する空気の量が、を記波の上下方向
の波動により変化するようになっている。即ち、海面が
下がる場合、−上記空間部分9が負圧状態になり、その
空間部分9に空気流出入口3より外部の空気が流入する
。また、海面が上昇すると上記空間部分9の空気は圧縮
されるた゛め、上記空気流出入口3より外部に流出しよ
うとする。かかる空気の流入あるいは流出の際の空気の
流れに伴い、上記空気流出入口3のダクト4部分に装置
されたウェルズタービン5を回転させるような構成とな
っ°ζいる。さらに、上記波浪エネルギー吸収装置Eに
は、第3図に示すように、その波の入射する例の物体前
方に検出手段、即ち波動測定器等よりなる検出装置Fが
、付設されている。
In this embodiment, this control method is applied to a wave absorption energy device. Figure 1 is a side sectional view of the wave energy absorption device, and ■ is a fixed object installed on the wave.
An air inlet 3 is attached to the upper part of this fixed object 1,
A variable nozzle 2 is formed at the lower end of the air inlet/outlet 3, and a duct 4 is formed at the upper end. And the above duct 4
A Wells turbine 5 having a diameter slightly smaller than the inner diameter of the duct 4 is installed inside. This Wells turbine 5 is connected to a generator 8, etc., which is equipped with an electric circuit 15 (see FIG. 2) consisting of a variable capacitor 16, etc., which constitutes a spring system in wave control, via a transmission mechanism such as a pulley 6, a belt 7, etc. The structure is such that rotation is transmitted to the energy absorbing device main body G of. Thus, in this wave energy absorbing device E, the amount of air existing in the lower space portion 9 surrounded by this device E and the sea surface is changed by the wave movement in the vertical direction of the waves. That is, when the sea level falls, the space 9 becomes under negative pressure, and external air flows into the space 9 from the air inlet/outlet 3. Furthermore, when the sea level rises, the air in the space 9 is compressed and tends to flow out from the air inlet 3. The Wells turbine 5 installed in the duct 4 of the air inlet/outlet 3 is rotated as the air flows in or out. Furthermore, as shown in FIG. 3, the wave energy absorbing device E is provided with a detecting means, that is, a detecting device F consisting of a wave measuring device or the like in front of the object on which the waves are incident.

そして、」二記検出装置Fで検出した値は、演算装置に
伝達され、そごで所定の演算処理がなされて、その結果
に基づいて、上記空気流出入口3の可変ノズル2のノズ
ル径の大きさ及び電気回路15の可変コンデンサ16の
容量の値を制御する。即ち、かかるノズル径の制御によ
り、上記波浪エネルギー吸収装置Eの固定物体lの空間
部分9から外部に流出する、あるいは外部から空間部分
9に流入する空気の流体抵抗(ダンパー系二減装力係数
)を変化させて、ヒ記つェルズタービン5部分を通過す
る空気の流速を常に最適な状態に維持する。また、−上
記可変コンデン号16の容量の値を制御することにより
、上記波浪エネルギー吸収装置Eの発電機8の回転(バ
ネ系:復元力係数)を変化せしめることにより、ウェル
ズタービン5の回転を変化させて、」〕記ウつルズター
ビン5部分を通過する空気の流鮒を雷に最適な状態(波
浪と上記空間部分の一ト方海面の昇降が同調する状態)
に維持する。
Then, the value detected by the detection device F mentioned above is transmitted to a calculation device, where a predetermined calculation process is performed, and based on the result, the nozzle diameter of the variable nozzle 2 of the air inlet/outlet 3 is determined. The size and value of the capacitance of the variable capacitor 16 of the electric circuit 15 are controlled. That is, by controlling the nozzle diameter, the fluid resistance (damper system reduction force coefficient) of air flowing out from the space 9 of the fixed object 1 of the wave energy absorbing device E or flowing into the space 9 from the outside is reduced. ) to maintain the flow rate of air passing through the 5 parts of the Wells turbine always at an optimum state. - By controlling the value of the capacity of the variable condenser 16, the rotation of the generator 8 (spring system: restoring force coefficient) of the wave energy absorption device E is changed, thereby controlling the rotation of the Wells turbine 5. By changing the flow of air passing through the 5th section of the Uturzu turbine, the condition is optimal for lightning (a condition in which the waves and the rise and fall of the sea level on one side of the above space are synchronized).
to be maintained.

即ち、−上記空間部下方の海面の昇降を波浪の周期に同
期させ、波浪エネルギーの吸収効率を最高の状態に保つ
ことができる。
That is, - the rise and fall of the sea surface below the space can be synchronized with the cycle of waves, and the wave energy absorption efficiency can be maintained at the highest level.

次に、上記、検出の値から可変ノズルのノズル径等の外
部力学糸のパラメータを制御する置体的手法について説
明する。いま、説明の都合」二、第4図に図示されるよ
うに、外部力学系のパラメータとして可変バネ10と可
変ダンパ11を用いた、二次元モデル化されたものにつ
いての制御方法について説明する。尚、制御手段の一つ
であるバネ糸手段には、上記実施例において可変コンデ
ンサに該当する、可変バネIOが用いられている。ダン
パー系手段に1よ、上記実施例の可変ノズルに該当する
、可変ダンパー11が用いられている。下記の本制御の
説明は、専らバネ糸のもの(バネ系の制御)について述
べる。そして、浮体14は上記実施例において、前記空
間部分9(第1図参照)に相当する。即ち、浮体の1−
下動の変動は、空間部分下方の氷山の十下動の変動に相
当する。
Next, a stationary method for controlling the parameters of the external mechanical thread, such as the nozzle diameter of the variable nozzle, from the above-mentioned detected values will be described. For the sake of explanation, we will now explain a control method for a two-dimensional model using a variable spring 10 and a variable damper 11 as parameters of the external dynamic system, as shown in FIG. The spring string means, which is one of the control means, uses a variable spring IO, which corresponds to the variable capacitor in the above embodiment. As the damper system means, a variable damper 11, which corresponds to the variable nozzle of the above embodiment, is used. The following explanation of this control will be exclusively about the spring thread (spring system control). The floating body 14 corresponds to the space portion 9 (see FIG. 1) in the above embodiment. That is, 1- of the floating body
The fluctuation in the downward motion corresponds to the fluctuation in the downward motion of the iceberg in the downward space.

第4図において、A点に検出手段Fを設け、このA点で
の入射波信号(波浪情報ともいう。
In FIG. 4, a detection means F is provided at point A, and detects an incident wave signal (also called wave information) at point A.

以下同じ。)をζA(t)とすると、B点での波浪ζa
(t)は、 ここで、 ζ八、ζBは波浪情報を時間領域表現で表したもので、 4A8(T、)= a ((J53ニア、 +((+ノ
ル)、”’ +112 ”C多層)Jト−−−−−−−
(1)かかるB点での波浪に、浮体が瞬時瞬時に同調す
るためには、外部力学系のパラメータ即ちバネ特性を以
下のような数式で表される値にすればよい。
same as below. ) is ζA(t), the wave ζa at point B
(t) is, Here, ζ8, ζB represent wave information in time domain expression, 4A8(T,) = a ((J53 near, +((+nor), "' +112 "C multilayer ) J to---------
(1) In order for the floating body to synchronize instantaneously with the waves at point B, the parameters of the external dynamic system, that is, the spring characteristics, may be set to values expressed by the following formula.

ここで、上記式におけるK(τ)は、A点での入射波信
号に、瞬時瞬時に同調するための外部力学系のパラメー
タのタイムヒストリー、即ら可変バネを制御する時の、
バネ係数のインパルス応答を示し、それは以下のような
式で表される。
Here, K(τ) in the above equation is the time history of the parameters of the external dynamical system for instantaneous tuning to the incident wave signal at point A, that is, when controlling the variable spring.
It shows the impulse response of the spring coefficient, which is expressed by the following equation.

る浮体の付加質量、 また、上記式におけるA)l は発散波振巾比で、h(
τ2)はA点での波浪の入射波信号に浮体を同調させる
ハネ特性を満足する場合の、浮体の波浪に対するインパ
ルス応答である。
In addition, A)l in the above formula is the divergent wave amplitude ratio, and h(
τ2) is the impulse response of the floating body to the waves when the floating body is tuned to the incident wave signal of the waves at point A, when the wave characteristics are satisfied.

即ち、この二次ycモデル(第4図参照)における、外
部力学系である、浮体と固定側(岸壁等)を連結するバ
ネのパネカを上記M (t)の値となるように制御すれ
ばよい。
That is, in this quadratic yc model (see Figure 4), if we control the force of the spring that connects the floating body and the fixed side (pier, etc.), which is the external dynamic system, to the value of M (t) above, then good.

また、1−記説明は、専らハネ糸の制御につい一ζ述べ
たが、実際の制御においては、ダンパー糸につい′(も
同様の手法で、瞬時瞬時の減衰力をめて制御する。即ち
、浮体の減衰力特性N(ω)をフーリエ逆変換して、瞬
時瞬時の減衰力n (t)をめて、この条件下でのイン
パルス応答り、(τ2)をめ、−上記(2)式のK(τ
) 、h (rx)に置き換えれば、最適な外部力学糸
の減衰特性の時間領域表現がまる。
In addition, although the explanation in item 1-1 was exclusively about the control of the spring thread, in actual control, the damper thread is also controlled using the same method based on the instantaneous damping force. That is, The damping force characteristic N(ω) of the floating body is inversely Fourier transformed, the instantaneous damping force n(t) is determined, and the impulse response under this condition is determined as (τ2), - Equation (2) above. K(τ
) , h (rx), the time-domain expression of the optimal damping characteristic of the external mechanical thread can be obtained.

そして、バネ系とダンパー系を有する制御対象(エネル
ギー吸収装置、船舶等)においては、」二記手法でめた
、バネ特性と減衰特性を加え、それらを満足するように
制御すればよい。
In a controlled object (energy absorption device, ship, etc.) that has a spring system and a damper system, the spring characteristics and damping characteristics determined using the method described in section 2 can be added and controlled to satisfy them.

以上説明のとおり、固体あるいは浮体の波浪進行方向油
力(第4図においてA点)に、検知手段F(波動測定器
)等を設け、この検知手段で検知した入射波信号を用い
て、予め演算装置に入力されているA点からB点までの
波の伝達関数HGS(ω)および浮体を波浪に同調させ
、かつ*aな外部減衰力を与えるためのバネ特性あるい
はタンパ−特性を満足した浮体の波浪に対するインパル
ス応答h(τ)、hバτ)ヲ基に、浮体の動揺を最適に
し、波浪エネルギーを最も効率的に吸収する。
As explained above, a detection means F (wave measuring device) etc. is provided on the wave propagation direction hydraulic force of a solid or floating body (point A in Fig. 4), and using the incident wave signal detected by this detection means, Satisfies the wave transfer function HGS (ω) from point A to point B that is input to the calculation device and the spring characteristics or tamper characteristics to synchronize the floating body with the waves and provide *a external damping force. Based on the impulse response h(τ) and hbaτ) of the floating body to waves, the motion of the floating body is optimized to absorb wave energy most efficiently.

これら、即ち本発明による可変係数糸システムと固定係
数系システムとの、同じ波浪状態における、浮体の垂直
方向への速度2、吸収パワーW(t)の模型レベルでの
数値シヱミレーション結果を第5図、第6図に示す。こ
れらは、明らかに可変係数系システムのエネルギー吸収
効率での優位性を表してい゛る。
Here are the numerical simulation results at the model level of the floating body's vertical velocity 2 and absorbed power W(t) for the variable coefficient yarn system and fixed coefficient system according to the present invention under the same wave conditions. Shown in Figures 5 and 6. These clearly represent the superiority of the variable coefficient system in terms of energy absorption efficiency.

上記においては、主として波浪エネルギーの空気式、浮
体式の発電装置等への応用に関して説明してきたが、第
7図に示すような波浪発電装置等においてフラップ17
を浮体の代わりとして用いたフラップ式のものにおいて
も、この発明の′#1m1l力法が適用できる。また、
この発明の制御方法を、第9図に示すように、浮体の代
わりに波浪造波・消波板18を用いた実験用水槽等にお
ける造波・消波装置にも応用できる。さらに、この発明
の制fit方法を、第8図に示すように、超音波式相対
水位測定機19、加速度計20等からなる検知装w、F
を船外に設け、船腹にフィン12を設けて、船舶13の
ピッチング及びローリング防iト装置の制il+に応用
することもできる。
In the above, we have mainly explained the application of wave energy to pneumatic and floating power generation devices, etc., but in the wave energy generation device etc. shown in FIG.
The '#1ml1l force method of the present invention can also be applied to a flap-type structure using a floating body instead of a floating body. Also,
As shown in FIG. 9, the control method of the present invention can also be applied to a wave-making/wave-dissipating device in an experimental water tank or the like using a wave-producing/wave-dissipating plate 18 instead of a floating body. Furthermore, as shown in FIG.
It is also possible to provide the fin 12 outside the ship and the fin 12 on the belly of the ship, and apply it to the pitching and rolling prevention device of the ship 13.

(発明の効果) この発明は、上記説明したように、不規則波中の固定物
体の状態あるいは浮体の動揺を効果的に制御できるため
、制御分野の発達を通じて、波浪エネルギー利用分野に
おいては、エネルギー吸収効率の向−トを通じてその実
用化の促進に、船舶等の動揺の防1トの分野においては
、船舶の安全航行に、寄与する優れた発明である。
(Effects of the Invention) As explained above, this invention can effectively control the state of a fixed object or the movement of a floating body in irregular waves. It is an excellent invention that contributes to the safe navigation of ships in the field of preventing vibrations of ships, etc. by promoting its practical application through the improvement of absorption efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は波浪エネルギー吸収装置本体の側断面図、第2
図はバネ系の制御手段である電気回路を示す回路図、第
3図は波浪エネルギー吸収装置の側面図、第4図はこの
発明にががる具体的制御方法を説明するための波浪エネ
ルギー吸収装置の二次元モデルの側面図、第5図は固定
係数糸システムのエネルギー吸収効率を表した図、第6
図は可変係数系システムのエネルギー吸収効率を表した
図、第7図、第8図、第9図は他の応用例を示す図であ
る。 E・・・波浪エネルギー吸収装置、F・・・検出装置、
G・・・エネルギー吸収装置本体、1・・・固定物体、
2・・・可変ノズル、3・・・空気流出入口、4・・・
ダクト、5・・・ウェルズタービン、6・・・プーリ、
7・・・ベルト、8・・・発電機、9・・・下部空間部
分、10・・・可変バネ、11・・・可変ダンパ、12
川フイン、13・・・船舶、工4・・・浮体、15・・
・電気“回路、16・・・可変コンデンサ、17・・・
フラップ、18・・・波浪造波・消波板、工9・・・超
音波測定機、2o・・・加速度針。 手続補正書(自発) 1.事件の表示 昭和59 作詩 許 願第49649
 号2、 発明の名称 入射波信号を使った浮体の動揺
等のフィードフォワード制御方法 3、補正をする者事件との関係 特 許 出願人代表者
 長谷用 謙浩 4、代 理 人 〒650 く、−二゛2
Figure 1 is a side sectional view of the main body of the wave energy absorption device, Figure 2
The figure is a circuit diagram showing an electric circuit that is a control means for the spring system, Figure 3 is a side view of the wave energy absorption device, and Figure 4 is a wave energy absorption diagram for explaining a specific control method according to the present invention. A side view of the two-dimensional model of the device, Figure 5 is a diagram showing the energy absorption efficiency of the fixed coefficient thread system, Figure 6
The figure shows the energy absorption efficiency of the variable coefficient system, and FIGS. 7, 8, and 9 show other application examples. E... Wave energy absorption device, F... Detection device,
G...Energy absorption device main body, 1...Fixed object,
2...Variable nozzle, 3...Air inlet/outlet, 4...
Duct, 5... Wells turbine, 6... Pulley,
7... Belt, 8... Generator, 9... Lower space portion, 10... Variable spring, 11... Variable damper, 12
River fin, 13...ship, engineering 4...floating body, 15...
・Electrical circuit, 16...variable capacitor, 17...
Flap, 18... Wave-making/wave-dissipating plate, Engineering 9... Ultrasonic measuring device, 2o... Acceleration needle. Procedural amendment (voluntary) 1. Indication of the incident 1978 Poetry written by permission number 49649
No. 2, Title of the invention Feedforward control method for the motion of a floating body, etc. using incident wave signals 3, Relationship with the case of the person making the amendment Patent Representative: Kenhiro Haseyo 4, Agent: 〒650〒 -2゛2

Claims (1)

【特許請求の範囲】[Claims] 波−ヒにおかれた固定物体あるいは浮体に付加された外
部力学系の減衰力係数あるいは復元力係数等のパラメー
タを変化させる可変係数系U〆制御システムにおい′(
、波の入射する側の物体前方に検知手段を設け、この検
知手段で検知した入射波信号を用いて、外部力学糸のパ
ラメータを変化させることにより、不規則波の波長の変
動に対し、固定物体の状態あるいは浮体の動揺を常に適
切に制御できるようにしたことを特徴とするフィードフ
ォワード制御方法。
In a variable coefficient system U〆 control system that changes parameters such as damping force coefficient or restoring force coefficient of an external dynamic system added to a fixed object or a floating body placed in a wave.
, by installing a detection means in front of the object on the side where the waves are incident, and using the incident wave signal detected by this detection means to change the parameters of the external mechanical thread, it can be fixed against fluctuations in the wavelength of irregular waves. A feedforward control method characterized in that the state of an object or the movement of a floating body can be appropriately controlled at all times.
JP59049649A 1984-03-14 1984-03-14 Feedforward control method for oscillation or the like of floating matter using incident wave signal Pending JPS60193008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049649A JPS60193008A (en) 1984-03-14 1984-03-14 Feedforward control method for oscillation or the like of floating matter using incident wave signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049649A JPS60193008A (en) 1984-03-14 1984-03-14 Feedforward control method for oscillation or the like of floating matter using incident wave signal

Publications (1)

Publication Number Publication Date
JPS60193008A true JPS60193008A (en) 1985-10-01

Family

ID=12837041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049649A Pending JPS60193008A (en) 1984-03-14 1984-03-14 Feedforward control method for oscillation or the like of floating matter using incident wave signal

Country Status (1)

Country Link
JP (1) JPS60193008A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190783A (en) * 1986-02-17 1987-08-20 Hitachi Metals Ltd Laminating type piezoelectric element
CN107084784A (en) * 2016-12-21 2017-08-22 中国船舶重工集团公司第七0研究所 A kind of body ship type underwater measurement platform of movable lifting four

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190783A (en) * 1986-02-17 1987-08-20 Hitachi Metals Ltd Laminating type piezoelectric element
CN107084784A (en) * 2016-12-21 2017-08-22 中国船舶重工集团公司第七0研究所 A kind of body ship type underwater measurement platform of movable lifting four
CN107084784B (en) * 2016-12-21 2019-08-23 中国船舶重工集团公司第七一0研究所 A kind of four body ship type underwater measurement platform of movable lifting

Similar Documents

Publication Publication Date Title
Dahl et al. Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces
Evans Maximum wave-power absorption under motion constraints
Troesch et al. Hydrodynamic forces acting on cylinders oscillating at small amplitudes
Sarpkaya et al. Hydrodynamic drag on bottom-mounted smooth and rough cylinders in periodic flow
Qiao et al. Analytical model of wave loads and motion responses for a floating breakwater system with attached dual porous side walls
JPS60193008A (en) Feedforward control method for oscillation or the like of floating matter using incident wave signal
Nagavinothini et al. Dynamic response of offshore triceratops with elliptical buoyant legs
Chen et al. CCP-WSI blind test series 3: OpenFOAM simulation of focused wave interaction with a simplified wave energy converter
Kong et al. Investigation on PTO control of a Combined Axisymmetric Buoy-WEC (CAB-WEC)
Wu et al. An experimental investigation of the characteristics of a cylinder interacting with waves and flow in the dominant-load regime
Sarpkaya In-line and transverse forces on cylinders near a wall in oscillatory flow at high Reynolds numbers
Lou Numerical Simulation, Laboratory and Field Experiments, Analysis and Design of Wave Energy Converter and Mooring System
Sakr et al. System frequency tuning for heaving buoy wave energy converters
Fung Added mass and damping of circular moonpools
Yin et al. Wave effects on vortex-induced vibrations of a top-tensioned riser
Yu et al. Experimental study on variation rules of damping with influential factors of tuned liquid column damper
Hegde et al. Hydrodynamic Response of Buoy Form Spar With Heave Plate Near Free Surface
Chen et al. Wave Attenuation by Submerged Oscillating Plates
Leont'ev Randomly breaking waves and surf-zone dynamics
Iseki Optimization Method for Oscillation Characteristics of a Spar-Buoy
Qin et al. Analytical and Numerical Study of Piston-Type Active Wave Absorbers with Different Draft Ratios
Iseki Dynamic control of oscillation characteristics of a spar-buoy
Borthwick Pressure and force measurements on a cylinder oscillated sinusoidally at low and intermediate Keulegan-Carpenter numbers
ZHOU et al. Vortex-induced vibration of cylinder under sub-critical Reynolds numbers
Mirauda et al. Influence of boundary conditions on the hydrodynamic forces of an oscillating sphere