JPS60192974A - Recording medium - Google Patents

Recording medium

Info

Publication number
JPS60192974A
JPS60192974A JP59047188A JP4718884A JPS60192974A JP S60192974 A JPS60192974 A JP S60192974A JP 59047188 A JP59047188 A JP 59047188A JP 4718884 A JP4718884 A JP 4718884A JP S60192974 A JPS60192974 A JP S60192974A
Authority
JP
Japan
Prior art keywords
recording medium
film
substrate
layer
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59047188A
Other languages
Japanese (ja)
Inventor
Masahiro Haruta
春田 昌宏
Hiroshi Matsuda
宏 松田
Hirohide Munakata
博英 棟方
Yukio Nishimura
征生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59047188A priority Critical patent/JPS60192974A/en
Publication of JPS60192974A publication Critical patent/JPS60192974A/en
Priority to US07/027,050 priority patent/US4818665A/en
Priority to US07/221,638 priority patent/US5006446A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • G03C1/735Organo-metallic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2532Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising metals

Abstract

PURPOSE:To obtain a recording medium having high sensitivity to an energy signal by providing a photoconductive layer, a monomolecular film or accumulated monomolecular film of a metallic chelate compd. and a transparent base having a transparent electrode on a substrate. CONSTITUTION:When rays 9 having adequate light intensity are irradiated on a recording medium formed by laminating a photoconductive layer 6, a metallic chelate compd. 3, an electrode 7 and a base 8 on a conductive substrate 1, only the photoconductive layer of the irradiated part is made conductive. When an electric field is applied between the substrate 1 and the electrode 7, a strong electric field is impressed between the photoconductive layer which is made conducting and the electrode 7 to have an extreme difference in the intensity of the electric field from the part where the rays are not irradiated. The metallic ions in the monomolecular film or accumulated monomolecular film of the compd. 3 only in the part where the strong electric field is impressed, i.e., the part where the light is irradiated are reduced, by which the metal 10 is freed and the recording image consisting of the metal atoms is formed.

Description

【発明の詳細な説明】 [技術分野] 本発明は、新規な画像記録媒体に関し、よりitTしく
は支持体[二に、光導電層、金属キレ−1・化合物の巾
分−r膜又は単分子累積膜、および透り17(?極を有
する透明支持体を順次設けてなる画像記録媒体に関する
Detailed Description of the Invention [Technical Field] The present invention relates to a novel image recording medium, and more particularly, it relates to a novel image recording medium, and more particularly, to The present invention relates to an image recording medium in which a molecular cumulative film and a transparent support having a transparency 17 (?) are sequentially provided.

[従来技術] 従来より、光、熱、電気等のエネルギー信吐を付り°、
することにより画像を記録する記録媒体あるいは記録方
法としては、種々の記録媒体や記録方法が知られており
、そのうちの幾つがのものが実用化されている(例えば
「印写L7Ir、IIIJ(共立山版FJ)#照)。そ
の中でも金属キレート化合物を用いた記録媒体及び記録
方法に関しては数多くの研究例がある。この−例として
、例えばJl、Robillard、 Potogra
fie 5ience and Engine−eri
ng、 8.(19f14) 18.に開示された記録
媒体は、高電界を印加した状態で像露光を実施すること
により可視画像を形成するもので、この記録媒体は、露
光によって触媒イオンを発生する化合物粒子(例えばC
uSCN )の周囲に発色物質(例えばNa (Co(
CsH702)+(NO+)2) +7)ような金属キ
レート化合物)を吸着させたものを結着剤中に混合分散
し、これを導電性基体トに数戸の膜厚に塗布して構成さ
れている。画像の形成は、透明な5n02蒸着電極を設
けたガラス等の透明板を該記録媒体層の形成された導′
屯性基体1−に重ねて設ダし、5n07電極と導電性基
体との間に高電界を印加しつつ露光することにより金属
コバルトによる発色画像を形成するものである。
[Prior art] Conventionally, energy sources such as light, heat, and electricity have been used.
Various recording media and recording methods are known as recording media and recording methods for recording images by recording images, and some of them have been put into practical use (for example, "Printing L7Ir, IIIJ (Common)"). Among them, there are many research examples regarding recording media and recording methods using metal chelate compounds. Examples of this include Jl, Robillard, Potogra.
fie 5ience and Engine-eri
ng, 8. (19f14) 18. The recording medium disclosed in 2003 forms a visible image by performing imagewise exposure while applying a high electric field, and this recording medium contains compound particles (for example, C
uSCN) is surrounded by a color-forming substance (e.g. Na(Co(
A metal chelate compound such as CsH702)+(NO+)2)+7) is mixed and dispersed in a binder, and this is applied to a conductive substrate to a thickness of several coats. There is. To form an image, a transparent plate made of glass or the like provided with a transparent 5N02 vapor-deposited electrode is placed on the conductor on which the recording medium layer is formed.
It is placed over the conductive substrate 1-, and is exposed to light while applying a high electric field between the 5n07 electrode and the conductive substrate, thereby forming a colored image of metallic cobalt.

また、特開昭50−45822号および特開昭51−1
30218号に開示された記録媒体は、テルルの金属キ
レート化合物(例えばジクロロテルロビスアセトフェノ
ン)と光増感剤(例えばピレンキノン)とを結着剤中に
混合分散し、支持体1−に塗布して構成されるもので、
像露光後、該記録媒体を加熱することにより金属テルル
の発色画像を得るものである。これと同様に、露光−加
熱処理により金属の記録画像を得るものとしては、特開
昭50−109720号(’)β−ジケトナイト金属キ
レ−1・化合物と光増感剤とからなる記録媒体が知られ
ている。
Also, JP-A-50-45822 and JP-A-51-1
The recording medium disclosed in No. 30218 is prepared by mixing and dispersing a tellurium metal chelate compound (e.g. dichlorotellurobisacetophenone) and a photosensitizer (e.g. pyrenequinone) in a binder and coating the mixture on a support 1-. It consists of
After imagewise exposure, the recording medium is heated to obtain a colored image of metallic tellurium. Similarly, as a method for obtaining a recorded metal image by exposure and heat treatment, a recording medium made of a β-diketonite metal chelate-1 compound and a photosensitizer is disclosed in JP-A-50-109720 ('). Are known.

他の例として、コタツク社の開発したコバルト錯体を用
いた記録媒体があり、この場合の画像の形成プロセスは
前記のものと同様で、露光−加熱処理によりコバルトの
有色キレ−I・画像を(1tている。この変形例として
、加熱現像時に該記録媒体から発生するアンモニアガス
を利用してシアン紙を発色させる方法が提案されている
。L記の記録媒体は、よりδTL<はヘキサアミン」バ
ルト (m)錯体((CO(NH3)6)”3CI−)
と光増感剤(例えばキノン)及びコバルトイオンと有色
キレートを形成する化合物(例えば1−(2−ピリジル
アゾ)−2−ナフトール、以下PANと略記)とを結着
剤中に混合分散し、支持体Hに塗布して構成される。該
記録媒体は露光後加熱すると、露光部ではコバルトが三
価から二価に還元され、これがPANとキレートを形成
する。このキレートは、ヘキサアミンコバルト(■)錯
体と配位子交換反応を起し、三価コバルトのPANによ
る有色キレートを生じ、二価のコバルトイオンは全くフ
リーのPANとキレ−1・化する反応を繰り返して連鎖
的に有色のコバルト三価PANキレートを生成し、可視
画像が形成される。
Another example is a recording medium using a cobalt complex developed by Kotatsu Co., Ltd. The image formation process in this case is the same as that described above, and a colored clear I image of cobalt is formed by exposure and heat treatment ( As a modification of this, a method has been proposed in which cyan paper is colored using ammonia gas generated from the recording medium during heat development. (m) Complex ((CO(NH3)6)"3CI-)
A photosensitizer (e.g., quinone) and a compound (e.g., 1-(2-pyridylazo)-2-naphthol, hereinafter abbreviated as PAN) that forms a colored chelate with cobalt ions are mixed and dispersed in a binder and supported. It is composed by applying it to the body H. When the recording medium is heated after exposure, cobalt is reduced from trivalent to divalent in the exposed area, and this forms a chelate with PAN. This chelate undergoes a ligand exchange reaction with the hexamine cobalt (■) complex, producing a colored chelate of trivalent cobalt with PAN, and the divalent cobalt ion reacts with completely free PAN to form a chelate. By repeating this process, a colored cobalt trivalent PAN chelate is produced in a chain, and a visible image is formed.

更に他の例として、高級脂肪酸の金属塩と核用の金属と
有色のキレートを形成する化合物とを結着剤中に混合分
散し、あるいはこれら化合物を別々に含有する二つの層
にして支持体1−に塗布して構成したもので、記録画像
に応して加熱することにより、該金属塩とキレート化剤
とを溶融接触させて発色させるものが知られており、例
えばステアリン酪亜鉛とジフェニルカルパランとのMl
み合わせにより赤色の画像が得られ、またステアリン酩
第−鉄と没食子酸との組み合わせにより黒紫色の画像が
得られる。
As another example, a metal salt of a higher fatty acid, a metal for the core, and a compound forming a colored chelate are mixed and dispersed in a binder, or two layers containing these compounds separately are formed on a support. It is known that the metal salt and the chelating agent are applied in a molten contact with a chelating agent to form a color by heating according to the recorded image.For example, stearin butyzinc and diphenyl Ml with Kalparan
A red image is obtained by the combination, and a black-purple image is obtained by the combination of ferric stearate and gallic acid.

しかしながら、これらの従来技術に於い−Cは、いずれ
も記録媒体が数μ程度の厚さをイiする膜として形成さ
れているため、画像のにじみが大きかったり、画像の鮮
明さに欠けるといった問題点かあった。また、記録媒体
として用いる化合物を結着剤等と混合して膜を形成する
場合には、溶剤を使用して塗布するという一■=程が必
要となり、該]程に於いて発色反応が一部生しることに
よる所謂カブリを生じやすいという欠点をイ1する。ま
た、このような不都合な反応を抑制するために、各化合
物を別の層にそれぞれ汗加して多層構成にすると、各化
合物間の反応効率か著しく低1・″し、更に画像の解像
度や感度も低ドするという欠点があった。また、記録層
の間に電界を印加する必要かある場合には、記録層の膜
厚が厚いために、高い1し圧(例えば数百ポルト)を印
加しなければならなかった。
However, in these conventional technologies, since the recording medium is formed as a film with a thickness of about several micrometers, there are problems such as large image blurring and lack of image clarity. There were some problems. In addition, when forming a film by mixing a compound used as a recording medium with a binder, etc., a step of coating using a solvent is required, and the coloring reaction slows down during the step. The drawback is that it is easy to cause so-called fogging due to the unevenness of the parts. In addition, in order to suppress such undesirable reactions, if each compound is added to a separate layer to create a multilayer structure, the reaction efficiency between each compound will be significantly lowered by 1.'', and the resolution of the image will be lowered. It also had the disadvantage of low sensitivity.Also, when it is necessary to apply an electric field between the recording layers, a high voltage (for example, several hundred ports) must be applied because the recording layer is thick. had to be applied.

L発明の目的] 本発明の1」的は、エネルギー信号に対して高感度な記
録媒体を提供することにある。
OBJECT OF THE INVENTION] An object of the present invention is to provide a recording medium that is highly sensitive to energy signals.

本発明の他の目的は、画像にカブリやノイズのない晶品
質、高解像度の記録画像の得られる新規な記録媒体を提
供することにある。
Another object of the present invention is to provide a new recording medium that can provide recorded images with crystal quality and high resolution without fogging or noise.

本発明の更に他の目的は、再使用の1−1丁能な新規な
記録媒体を提供することにある。
Still another object of the present invention is to provide a novel recording medium that is reusable.

[発明の構成] すなわち、本発明の記録媒体は、支持体トに、光導電層
、金属キレート化合物の単分子膜又は中分子累積膜、お
よび透明電極を有する透明支持体を順次設けて構成され
る。
[Structure of the Invention] That is, the recording medium of the present invention is constituted by sequentially providing a photoconductive layer, a monomolecular film or a medium molecule cumulative film of a metal chelate compound, and a transparent support having a transparent electrode on a support. Ru.

本発明の記録媒体の支持体として使用することのできる
ものには、カラス、アルミニウムなどの金属、セラミッ
ク、プラスチック等からなる板やフィルム富が挙げられ
る。これら支持体が絶縁性材才lから構成されるもので
ある場合には、その表面を、例えば金JarsのZ4着
、ラミネート等により導電化処理したものであることか
必要である。
Examples of materials that can be used as the support for the recording medium of the present invention include plates and films made of metals such as glass and aluminum, ceramics, plastics, and the like. When these supports are made of insulating materials, their surfaces must be made conductive by, for example, gold jar Z4 coating or lamination.

本発明の記録+y体に於いては、1−記支特体の導電性
を有する表面りに、光導電層が形成される。
In the recording +y body of the present invention, a photoconductive layer is formed on the conductive surface of the 1- support body.

光導電層を構成する材料としては、例えばポリビニル力
ルハンール/トリニトロフルオレンに代表される有機光
導電材ネ4 ; ZnO、Ti07、CdS 、 Zn
S等の顔料をアルキンド樹脂、ポリカーボネート樹脂秀
の樹脂に分散した顔料−樹脂分散系光導電材才=l ;
アモルファスシリコン等のアモルファス光導電材料;等
の従来公知の材ネ・Iが、塗布あるいはプラズマCVD
等の手段により形成される。光・4重層の層厚としては
、そのJ−に積層される金属キレ−1・化合物の単分子
11り又は弔分イ累積膜の膜厚と少なくとも同等以にの
層厚であることが必要であり、通常はIJLIn以トと
される。
Examples of materials constituting the photoconductive layer include organic photoconductive materials such as polyvinyl chloride/trinitrofluorene; ZnO, Ti07, CdS, and Zn.
Pigment-resin dispersion system photoconductive material in which pigments such as S are dispersed in alkynd resins and polycarbonate resins = l;
Conventionally known materials such as amorphous photoconductive materials such as amorphous silicon can be coated or plasma-enhanced by plasma CVD.
It is formed by means such as. The layer thickness of the optical quadruple layer must be at least equal to or greater than the thickness of the single molecule or cumulative film of the metal layer or compound that is laminated on the J- layer. , and is usually set after IJLIn.

金属キレ−1・化合物の中分子膜又1オ巾分子累植膜か
その表面に形成される[−記先導電層の表面は、界面化
学的に十分清浄された状態のものでなければならない。
Formed on the surface of a medium-molecular film or a one-molecular-thick molecular-grained film of a metallic conductor compound [-The surface of the conductive layer must be sufficiently clean from an interfacial chemical point of view. .

光導電層表面の洗浄が部分Cない場合には、単分子層を
水面から移しとる時に、中分子膜が乱れ良好な中分子膜
または申分子一層累積膜ができなかったり、膜の剥がれ
が生Lrat分子−膜又は中分子累積膜の形成が困難と
なる。
If the surface of the photoconductive layer is not cleaned in part C, the middle molecule film will be disturbed when the monomolecular layer is transferred from the water surface, and a good middle molecule film or monolayer cumulative film may not be formed, or the film may peel off. It becomes difficult to form an Lrat molecule-film or a middle molecule cumulative film.

本発明の記録媒体に於いて使用する中分子膜又は中分子
累積11りを形成することのできる金属キレ−1・化合
物は、その化学構造として、親水性部分と疎水性部分と
をその分−r−内に併有する、所謂界面活性剤に類似し
た構造を有する化合物である。親木性部分として最も代
表的なものとしては、カルボキシル基およびその金属若
しくはアミンfig、スルポス酸基およびその金属若し
くはアミン塩、スルホンアミF基、アミド基、アミノ基
、イミノ基、ヒドロキシル基、第四級アミ7基、オギシ
アミ7基、オキシイミノ基、シアジニウム基、グアニジ
ン基、ヒドラジン基、リン酸基、ケイ酸基、アルミン酸
基等がある。一方、疎水性部分として最も代表的なもの
としては、長鎖アルキル基であって、一般に炭素原f−
数か5〜30程度のもの、より好ましくは炭素原子数が
10〜25程度のものである。また、アルキル鎖の長さ
が適当であれば、直鎖、分岐鎖のいずれでもよい。その
他のものとしては、例えばビニレン、ビニリデン、アセ
チレン等のオレフィン系炭化水素基、フェニル、ナフチ
ル、アントラニル等の縮合多環芳香族)1(、ヒフェニ
ル、ターフェニル等のm t 多10 ’)′J’ M
族基等がある。これら親木性部分と疎水性部分とは、各
々中独または複数の組み合わせによる場合や、分子の両
端に位置したり、あるいは分子−の中央部に位置するこ
ともある。しかしながら、分子内に親木性部分と疎水性
部分の任意の組み合わせを有する金属キレート化合物が
常に申分子−11’J又は中分子累積膜を形成すること
ができるとは限らない。すなわち、中分子累積法により
11分子膜又は単分子累積膜を得るためにlれその製造
1−稈I−必ず水面りに申分子1模を形成することが必
要であるが、疎水性よりも親水性が強い場合には、該金
属キレート化合物は水に溶解して水溶液を形成し、逆に
疎水性の方が勝る場合には、該金属キレ−1・化合物は
水とは二相に分離する。したかっ(”、水面J、に中分
子膜を形成することができるのは、分子−内の親木性と
疎水性とが適度に釣り合う時である。このとき、該金属
キレート化合物は、分子全体として親水性部分を水相に
向け、気水界面に吸着されて申分子n@が形成される。
The chemical structure of the metal compound capable of forming the middle molecule film or middle molecule accumulation 11 used in the recording medium of the present invention is that it has a hydrophilic part and a hydrophobic part. It is a compound having a structure similar to a so-called surfactant, which is also present in r-. The most typical wood-philic moieties include a carboxyl group and its metal or amine fig, a sulposic acid group and its metal or amine salt, a sulfonamide F group, an amide group, an amino group, an imino group, a hydroxyl group, and a quaternary group. Examples include 7 class amine groups, 7 oxyamino groups, oximino groups, cyazinium groups, guanidine groups, hydrazine groups, phosphoric acid groups, silicic acid groups, and aluminic acid groups. On the other hand, the most typical hydrophobic moiety is a long-chain alkyl group, which is generally a carbon atom f-
The number of carbon atoms is about 5 to 30, more preferably about 10 to 25. Further, as long as the alkyl chain length is appropriate, either a straight chain or a branched chain may be used. Other examples include olefinic hydrocarbon groups such as vinylene, vinylidene, and acetylene, and condensed polycyclic aromatic groups such as phenyl, naphthyl, and anthranyl)1(, m t poly10' such as hypohenyl and terphenyl)'J ' M
There are group groups, etc. These lignophilic portions and hydrophobic portions may each be Chinese-German or a combination of two or more, may be located at both ends of the molecule, or may be located at the center of the molecule. However, metal chelate compounds having arbitrary combinations of lignophilic moieties and hydrophobic moieties within the molecule are not always capable of forming a monomolecule-11'J or intermediate molecule cumulative film. That is, in order to obtain an 11-molecular film or a monomolecular cumulative film by the middle molecule accumulation method, it is necessary to form one molecule on the water surface. When hydrophilicity is strong, the metal chelate compound dissolves in water to form an aqueous solution; on the other hand, when hydrophobicity is superior, the metal chelate compound separates into two phases from water. do. It is possible to form a medium molecular film on the water surface when the molecule's phyllophilicity and hydrophobicity are appropriately balanced. At this time, the metal chelate compound As a whole, the hydrophilic portion is directed toward the aqueous phase, and is adsorbed at the air-water interface to form a monkey molecule n@.

したがって、該金属キレ−I・化合物としては、親木性
部分と疎水性部分とが適度にバランスしたものであるこ
とが要求される。
Therefore, it is required that the metal chelate-I compound has a suitable balance between the wood-philic part and the hydrophobic part.

更に本発明の記録媒体に使用することのできる金属キレ
ート化合物には、活性エネルギーを作用させることによ
り、金属キレート化合物中の金属イオンが還元され、金
属を遊離することができるものであることが要請される
Furthermore, the metal chelate compound that can be used in the recording medium of the present invention is required to be capable of reducing the metal ion in the metal chelate compound and liberating the metal by applying activation energy. be done.

Pd++、Rは炭素原子数が10〜3oのアルキル基。Pd++ and R are alkyl groups having 10 to 3 carbon atoms.

但し、L式に於いて、HはAg”、 Cu+またはpa
++、R1は水素原子、メチル基またはエチル基、R2
は炭素原子数がlO〜30のアルキル若しくはアシル基
、XはNO3−1CI−1、SOニー7ノ陰イオンを示
す。
However, in the L formula, H is Ag'', Cu+ or pa
++, R1 is a hydrogen atom, methyl group or ethyl group, R2
represents an alkyl or acyl group having 10 to 30 carbon atoms, and X represents an anion of NO3-1CI-1 or SO2-7.

(C) 但し、1一式に於いて、Xは一価の、Cu、Co。(C) However, in set 1, X is monovalent, Cu, Co.

Fe、Mn、Ni、Zn、PbまたはPd、 R’は水
素原r。
Fe, Mn, Ni, Zn, Pb or Pd, R' is a hydrogen atom r.

メチル基またはエチル基 R2は炭素原Y−数がlθ〜
30のアルキル若しくはアルキルカルボン酸ノS、×は
NO,−1CI−1、SOイ″等の陰イオンを示す。
Methyl group or ethyl group R2 is carbon atom Y-number lθ ~
30 alkyl or alkylcarboxylic acid NoS, x represents an anion such as NO, -1CI-1, SOi'', etc.

これらの金属キレート化合物を、1−記ノフ板1−に単
分子膜又は単分子累積膜として積層し、本発明の記録媒
体を製造するには、例えば1.LangIIlu i 
rらの開発したラングミュア・ブロジエ・ントJ)、(
LB法)を用いる。ラングミュア中ブロジェット法は、
分子内に親木基と疎水基を有する構造の分子において、
両者のバランス(両親媒性のバランス)が適度に保たれ
ているとき、分子は水面]二で親木基を下に向けて中分
子の層になることを利用して単分子膜または弔分F層の
累積膜を作成する方法である。水面1−の単分子層は二
次元系の特徴をもつ。分子がまばらに散開しているとき
は、一分子当り面積Aと表面圧■との間に二次元理想気
体の式、 nA=kT が成り立ち、°゛気体膜パとなる。ここに、kはボルツ
マン定数、Tは絶対温度である。Aを十分小さくすれば
分子間相W作用が強まり二次元固体の°°凝縮11斐(
または固体膜)パになる。凝縮膜はカラスなどの基板の
表面へ一層ずつ移すことができる。この方法を用いて、
単分子膜または単分子層累積膜は例えば次にようにして
製造する。
In order to produce the recording medium of the present invention by laminating these metal chelate compounds as a monomolecular film or a monomolecular cumulative film on the rough plate 1-, for example, 1. Lang IIlu i
Langmuir-Brosier-Nt J), (developed by R et al.
LB method) is used. The Langmuir-Blodgett method is
In molecules with a structure that has a parent wood group and a hydrophobic group in the molecule,
When the balance between the two (balance of amphiphilic properties) is maintained appropriately, the molecules form a monolayer or a monomolecular layer by turning the parent group downward at the water surface and forming a layer of middle molecules. This is a method for creating a cumulative film of F layers. The monomolecular layer on the water surface 1- has the characteristics of a two-dimensional system. When the molecules are sparsely dispersed, the two-dimensional ideal gas equation, nA=kT, holds between the area per molecule A and the surface pressure (2), resulting in a gas film. Here, k is Boltzmann's constant and T is absolute temperature. If A is made small enough, the intermolecular phase W action will become stronger and the two-dimensional solid will condense 11 degrees (
or solid film). The condensed film can be transferred layer by layer to the surface of a substrate such as a glass. Using this method,
A monomolecular film or a monomolecular layer stack is manufactured, for example, as follows.

まず金属キレート化合物を溶剤に溶解し、これを水相中
に展開し、金属キレート化合物をHり状に析出させる。
First, a metal chelate compound is dissolved in a solvent, and this is expanded into an aqueous phase to precipitate the metal chelate compound in an H shape.

次にこの析出物が水相1−を自由に拡散して拡がりすぎ
ないように仕切板(または浮r−)を設けて展開面積を
制限して膜物質の集合状f匙を制御し、その集合状態に
比例した表面圧【Iを得る。この仕切板を動かし、展開
面積を縮少して膜物質の集合状態を制御し、表面J1:
を徐々に1−シ1させ、累積膜の製造に適する表面圧■
を設定することができる。この表面圧を維持しなから静
かに清浄な基板を垂直にトドさせることにより金属キレ
ート化合物の中分子膜が基板1−に移しとられる。単分
子膜はこのようにして製造されるか、単分子層累積膜は
、前記の操作を繰り返すことにより所望の累積度の単分
子層累積11りが形成される。
Next, to prevent this precipitate from freely diffusing into the aqueous phase 1- and spreading too much, a partition plate (or a float) is provided to limit the area of development and control the agglomeration of the membrane substance. Obtain the surface pressure [I] which is proportional to the aggregate state. By moving this partition plate, the developed area is reduced to control the state of collection of the film material, and the surface J1:
gradually increase the surface pressure to 1 - 1 to obtain a surface pressure suitable for producing a cumulative film.
can be set. By gently moving the clean substrate vertically while maintaining this surface pressure, the middle molecular film of the metal chelate compound is transferred onto the substrate 1-. A monomolecular film can be produced in this manner, or a monomolecular layer stack 11 can be formed by repeating the above-mentioned operations to form a monomolecular layer stack 11 with a desired degree of accumulation.

中分子膜を基板l−に移すには、上述した屯直侵漬法の
他、水平付着法、回転円筒D;などの方法による。水平
付着法は基板を水面に水=liに接触させて移しとる方
法で、回転円筒法は、円筒型のノル体を水面ヒを回転さ
せて単分子層を基体表面に移しとる方法である。前述し
た垂直浸漬法では、水面を横切る方向に基板をおろすと
一層目は親木基が基板側に向いた中分子層が基板1−に
形成される。
In order to transfer the middle molecule film to the substrate l-, in addition to the above-mentioned vertical dipping method, a method such as a horizontal adhesion method or a rotating cylinder D; can be used. The horizontal deposition method is a method in which the substrate is brought into contact with water = li and transferred, and the rotating cylinder method is a method in which a cylindrical nor body is rotated on the water surface to transfer a monomolecular layer onto the substrate surface. In the vertical immersion method described above, when the substrate is lowered in a direction across the water surface, a middle molecular layer is formed on the substrate 1- in which the first layer has parent wood groups facing the substrate side.

前述のように基板をヒトさせると、各行程ごとに1枚ず
つ単分子層が重なっていく。成膜分子の向きが引」−げ
行程と浸漬行程で逆になるので、この方法によると、各
層間は親木基と親木基、@来県と疎水基が向かい合うY
型膜が形成される。
When the substrate is heated as described above, one monolayer is added to the other at each step. Since the direction of the film-forming molecules is reversed in the pulling process and the dipping process, according to this method, between each layer, the parent wood group and the parent wood group, and the
A mold film is formed.

これに対し、水平付着法は、基板を水面に水47−に接
触させて移しとる方法で、疎水基が基板側に向いた単分
子層が基板上に形成される。この方1ノ:では、累積し
ても、成11り分子の向きの交代はなく全ての層におい
て、疎水基が基板側に向いたX型膜が形成される。反対
に全ての層において親木基が基板側に向いた累積膜はZ
型膜と呼ばれる。
On the other hand, the horizontal deposition method is a method in which the substrate is brought into contact with water 47- and transferred, and a monomolecular layer with hydrophobic groups facing the substrate is formed on the substrate. In this case, even if accumulated, there is no change in the direction of the molecules, and an X-shaped film is formed in which the hydrophobic groups face the substrate side in all layers. On the other hand, a cumulative film in which all the layers have parent wood groups facing the substrate side is Z.
It is called a mold membrane.

回転円筒法は、円筒型の基体を水面上を回転させてtg
分子層を基体表面に移しとる方法である。
The rotating cylinder method rotates a cylindrical base on the water surface to generate tg.
This is a method in which a molecular layer is transferred to the surface of a substrate.

単分子層を基板J−に移す方法は、これらに限定される
わけではなく、大面積基板を用いる時には、基板ロール
から水相中に基板を押し出していく方法などもとり得る
。また、前述した親木基、疎水基の基板への向きは原則
であり、基板の表面処理等によって変えることもできる
The method of transferring the monomolecular layer to the substrate J- is not limited to these methods, and when a large-area substrate is used, a method of extruding the substrate from a substrate roll into an aqueous phase may also be used. Furthermore, the orientation of the aforementioned parent wood group and hydrophobic group toward the substrate is a general rule, and can be changed by surface treatment of the substrate, etc.

これらの単分子膜の移し取り操作の詳細については既に
公知であり、例えば「新実験化学講座18界面とコロイ
ド」498〜507貫、丸善+41、に記載されている
The details of these monomolecular film transfer operations are already known and are described, for example, in "New Experimental Chemistry Course 18 Interfaces and Colloids", Volumes 498-507, Maruzen +41.

このようにして、単分子累積膜を形成する場合には、第
一層目の単分子−膜を形成した後、空気中で1分乾燥さ
せ水分、溶媒等を除去した後第1層目の単分子膜を形成
したほうが、累積膜の剥離が生ずることなく、累積操作
が順調に実施できる・:とが判明した。また、このよう
にして形成された単分子累積膜の膜厚は、金属キレート
化合物の分子−の長さに累積回数(単分子膜の暦数)を
乗じたものに等しいことが多くの実験により確認されて
いる。
In this way, when forming a monomolecular cumulative film, after forming the first layer of monomolecular film, dry it in air for 1 minute to remove moisture, solvent, etc. It has been found that by forming a monomolecular film, the accumulation operation can be carried out smoothly without peeling of the accumulated film. In addition, many experiments have shown that the thickness of the monomolecular cumulative film formed in this way is equal to the length of the metal chelate compound molecule multiplied by the number of cumulative times (the number of monomolecular films). Confirmed.

このようにして基板ヒに形成されたφ分子−膜又は単分
子累積膜は、基板及び膜相−I[間はi・分強く固定さ
れており、基板からの脱離、剥落を生ずることは殆どな
いが、単分子膜形成条件、例えば水槽の水素イオン儂度
、イオン種、あるいは表面圧の選択等によっても接着力
を強化することもできる。
The φ molecule film or monomolecular cumulative film thus formed on the substrate H is strongly fixed between the substrate and the film phase I by i Although this is rare, the adhesion force can also be strengthened by selecting the monomolecular film formation conditions, such as the hydrogen ion intensity of the water tank, the ionic species, or the surface pressure.

本発明の記録媒体に於いては、−ヒ記金属キレート化合
物の単分子膜又は単分子累積膜」二に、透明電極を有す
るL部透明支持体が設けられる。
In the recording medium of the present invention, an L-portion transparent support having a transparent electrode is provided on the monomolecular film or monomolecular cumulative film of the metal chelate compound described above.

透明電極を有する透明支持体とは、例えばSnO。The transparent support having a transparent electrode is, for example, SnO.

等の蒸着膜からなる透明電極そのものであってもよいし
、先に支持体として使用することのできるものとして挙
げたもののうち、カラス、プラスチック等からなる透明
な板やフィルム等の表面に5n07等の蒸着膜を形成し
たものが挙げられる。この透明支持体は、1−配信分子
膜又は単分子累積膜」−に圧着して設置してもよいし、
透明支持体ヒに単分子膜又は単分子−累積膜を形成し、
これを光導電層トに形成された単分子膜又は単分子累積
膜と圧着して一体化して形成してもよい。透明支持体に
設けられる透明電極は、金属キレート化合物の単分子膜
又は単分子累積膜と直に接して形成されることが望まし
い。
It may be a transparent electrode itself made of a vapor-deposited film such as 5n07, etc., or it may be a transparent electrode made of a vapor-deposited film such as 5n07 etc. on the surface of a transparent plate or film made of glass, plastic, etc. Examples include those in which a vapor-deposited film is formed. This transparent support may be placed by being pressure-bonded to the 1-distribution molecular film or monomolecular cumulative film, or
forming a monomolecular film or a monomolecular-cumulative film on a transparent support;
This may be integrally formed by pressure bonding with a monomolecular film or a monomolecular cumulative film formed on the photoconductive layer. The transparent electrode provided on the transparent support is preferably formed in direct contact with a monomolecular film or a monomolecular cumulative film of a metal chelate compound.

以下に、このような本発明の記録媒体を使用した記録原
理につき説明する。
The recording principle using such a recording medium of the present invention will be explained below.

先ず第1図は、従来の金属キレート化合物を用いた記録
媒体の構成を示す模式図であり、第1a図に於いては、
支持体11−に、金属ギレー 1・化合物3および該キ
レート化合物に発色反応等を活性エネルギーの作用によ
り生じさせる配位r−1還元剤等の反応物質4が、結着
剤5中に混合分散された記録媒体層2が形成されて構成
されている。また、第1b図に於いては、互いに反応す
る金属キレート化合物3と反応物質4とがそれぞれ別の
層に於いて結着剤5中に分散されて構成されている。こ
のような構成をとるため、層厚が大きくなったり、記録
画像の解像度に欠けたり、カブリが起るという前述した
問題点が生ずる。
First, FIG. 1 is a schematic diagram showing the structure of a recording medium using a conventional metal chelate compound, and in FIG. 1a,
A reactive substance 4 such as a coordination r-1 reducing agent that causes a coloring reaction or the like to occur in the metal gillet 1, compound 3, and the chelate compound by the action of active energy is mixed and dispersed in a binder 5 on a support 11-. A recording medium layer 2 is formed and configured. Further, in FIG. 1b, a metal chelate compound 3 and a reactant 4 which react with each other are dispersed in a binder 5 in separate layers. This configuration causes the aforementioned problems such as increased layer thickness, lack of resolution of recorded images, and fog.

本発明の記j1媒体を用いた記録能方法は、光等を活性
エネルギー信号として記録媒体に作用させ、かつ該記録
媒体に電界を作用させることにより、活性エネルギー信
号の印加部の記録媒体内の金属キレート化合物に電解反
応を生じさせ、金属キレート化合物中の金属イオンを金
属原f−に還元して可視画像化することを利用する方法
であり、これを模式的に示したのが第2図および第3図
である。
The recordability method using a medium according to the present invention is to apply light or the like as an active energy signal to the recording medium and apply an electric field to the recording medium, thereby recording the information in the recording medium at the active energy signal applying part. This method involves causing an electrolytic reaction in a metal chelate compound, reducing the metal ion in the metal chelate compound to the metal original f-, and creating a visible image. This is schematically shown in Figure 2. and FIG.

先ず、第2図の場合について説明すると、導電性の支持
体l七に、光導電層6、金属キレート化合物3.透明電
極7、透明支持体8を順次積層してなる記録媒体に対し
て、適度な光強度の光線9を照射すると、光の照射され
た部分の光導電層のみが導電性となり、導電性支持体l
と透明電極7とのmlに電界を加えると(第2a図)、
導電化された光導電層と透明電極7との間に強い電界が
印加され、光線の照射を受けなかった部分とは電界の強
度が大幅に異り、この電界の強度の違いにより1強い電
界が印加される部分、すなわち光の照射された部分のみ
の金属キレート化合物3の中分子膜又は単分子累積膜中
の金属イオンが還元され、金属10がM離され、金属原
子による記録画像が形成される(第2b図)。
First, to explain the case shown in FIG. 2, a conductive support 17, a photoconductive layer 6, a metal chelate compound 3. When a recording medium formed by successively laminating a transparent electrode 7 and a transparent support 8 is irradiated with a light beam 9 of moderate light intensity, only the portion of the photoconductive layer irradiated with light becomes conductive, and the conductive support becomes conductive. body l
When an electric field is applied to the ml between and the transparent electrode 7 (Fig. 2a),
A strong electric field is applied between the conductive photoconductive layer and the transparent electrode 7, and the strength of the electric field is significantly different from the part that has not been irradiated with the light beam. The metal ions in the intermediate molecular film or monomolecular cumulative film of the metal chelate compound 3 in the portion where is applied, that is, the portion irradiated with light, are reduced, the metal 10 is separated by M, and a recorded image is formed by metal atoms. (Figure 2b).

第3図は、第2図で用いた記録媒体の変形例であり、支
持体lとして絶縁性の材ネ゛1を使用した代りに、支持
体lと光導電層6との間に電極+1を設けて構成したも
のである。記録画像の形成力法については、第2図の場
合と全く異るとごろはない。
FIG. 3 shows a modification of the recording medium used in FIG. It is configured by providing. The method of forming a recorded image is not completely different from that shown in FIG.

本発明の記録媒体の主要な特徴をまとめると次の通りで
ある。
The main features of the recording medium of the present invention are summarized as follows.

(1) エネルギー信号に対して極めて高感度な記録媒
体である。
(1) It is a recording medium that is extremely sensitive to energy signals.

(2)記録層が被記録物質である金属キレ−1・化合中
独から構成されているため1画像にカノリやノイズが加
わることなく、極めて高感度が達成される。
(2) Since the recording layer is composed of the recording material, ie, the metal Kiri-1 and the compound China-Chinese, extremely high sensitivity can be achieved without adding distortion or noise to one image.

(3) LB法を用いて中分子lり又はφ分子累積11
りを形成することができるので、記録媒体の人面精化が
容易である。
(3) Medium molecule reduction or φ molecule accumulation using LB method 11
Therefore, it is easy to refine the human aspect of the recording medium.

(4)記録媒体の構造が簡略であり、かつ使用する金属
キレート化合物の量も少なくてすむのでその生産性、経
済性にも優れている。
(4) Since the structure of the recording medium is simple and the amount of metal chelate compound used is small, it is excellent in productivity and economy.

以訃、本発明の記録媒体につき実施例により、紅り詳細
に説明する。
Hereinafter, the recording medium of the present invention will be described in detail with reference to Examples.

実施例1 L記構造式で表わされる金属キレート化合物のクロロホ
ルム溶液(濃度1×1O−3モル%)ヲ水の表面に展開
し、水面りに」−配化合物の中分子膜を形成した。この
中分子膜を水平刺着法により、その表面に5n07の透
明電極を形成したガラス板トにLB法によりチ8層の中
分子累積膜の形成を行った(表面圧35dyne/ c
m) 、一方、1−記と同様な5n07の透明電極を形
成したガラス板Hに光導電性ポリビニル力ルパンール/
トリニトロフルオレン膜を 5牌の厚さ積層したものを
作成し、これらガラス基板」二の単分子−累積膜層と光
導電性層とが川なるよう圧接することにより記録媒体を
形成した。この記#!媒体に対し、中介を累積膜層側の
電極をIFに、光導電性層側の電極を負にして、約10
0■の直流電圧を印加しつつ、所定のマスクを介して5
00Wの超高圧水銀灯により光照射(光強IHs、eコ
W/cm2)したところ、光の照射された部分だけに銀
原子による黒色の画像が発現した。イ1)られた画像は
非常にシャープで解像度に優れたものであった。
Example 1 A chloroform solution (concentration: 1 x 1 O-3 mol%) of a metal chelate compound represented by the structural formula L was spread on the surface of water to form a medium molecular film of the compound on the water surface. An 8-layer intermediate molecular cumulative film was formed using the LB method on a glass plate on which a 5n07 transparent electrode was formed using the horizontal pricking method (surface pressure: 35 dyne/c).
m) On the other hand, a photoconductive polyvinyl lupinol/
A recording medium was formed by laminating trinitrofluorene films to a thickness of 5 tiles, and pressing these two monomolecular cumulative film layers of the glass substrate and the photoconductive layer into contact with each other. This record #! For the medium, the electrode on the cumulative film layer side is set to IF, and the electrode on the photoconductive layer side is set as negative, for about 10 minutes.
While applying a DC voltage of 0,
When light was irradiated with a 00W ultra-high pressure mercury lamp (light intensity IHs, eCoW/cm2), a black image due to silver atoms appeared only in the areas irradiated with light. b1) The resulting images were extremely sharp and had excellent resolution.

実施例2 その表面に5n07の透明電極を形成したガラス板りに
、酸化チタン微粉末をポリビニルブチラール樹脂中に重
量比で、7:lの割合で分散さ+I′でなる光導電性の
樹脂被膜を5岬の厚さに形成した。
Example 2 A photoconductive resin coating consisting of titanium oxide fine powder dispersed in polyvinyl butyral resin at a weight ratio of 7:l +I' was applied to a glass plate on which a 5n07 transparent electrode was formed. was formed to a thickness of 5 capes.

また、L記構造式で表わされる金属キレ−1・化合のク
ロロホルム溶液(濃度5X10”モル%)を水の表面に
15(間し、水面1−にL配化合物の中分子−膜を形成
した。この中分子膜を水11i−伺着法により、I−記
ガラス板の光導電性樹脂被膜ににLB法により中層の単
分子累積膜の形成を行った(表面圧30dyne/ c
m)。この単分子累積膜の積層表面に、L記と同様な5
n02の透明電極を形成したガラス板の電極面とが重な
るよう圧接することにより記録媒体を形成した。この記
録媒体に対し、実施例1と同様にして約100Vの直流
電圧を印加しつつ光照射極を正に、光導電性層側の電極
を負にして、光を照射したところ、光の照射された部分
だけに銀原子による黒色の画像が発現した。得られた画
像は非常にシャープで解像度に優れたものであった。
In addition, a chloroform solution (concentration 5 x 10" mol%) of a metal compound represented by the structural formula L was placed on the surface of the water to form a medium molecule film of the L compound on the water surface. A monomolecular cumulative film of the middle layer was formed on the photoconductive resin coating of the glass plate I by the LB method using the water 11i adhesion method (surface pressure 30 dyne/c).
m). On the laminated surface of this monomolecular cumulative film, 5
A recording medium was formed by press-contacting a glass plate on which a transparent electrode of n02 was formed so that the electrode surface overlapped with the glass plate. This recording medium was irradiated with light while applying a DC voltage of approximately 100 V in the same manner as in Example 1, with the light irradiation electrode set to positive and the electrode on the photoconductive layer side set to negative. A black image due to silver atoms appeared only in the exposed areas. The images obtained were extremely sharp and had excellent resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、全1バキレート化合物を用いた従来の記録媒
体の構成を示す模式図である。第2図および第3図は、
本発明の記録媒体の構成と、この記録媒体を用いた記録
原理を示す模式図である。 1:支持体 2:記録媒体層 3:金属キレ−1・化合物4:反応物質5・結着剤 6
:光導電層 7:透明電極 8:透明支持体 9:光線 10:金属 11・電極 第1a図 第1b図 第2a図 第2b図 第3a図 第3b図
FIG. 1 is a schematic diagram showing the structure of a conventional recording medium using all bachelate compounds. Figures 2 and 3 are
1 is a schematic diagram showing the configuration of a recording medium of the present invention and the recording principle using this recording medium. 1: Support 2: Recording medium layer 3: Metal layer 1/Compound 4: Reactant 5/Binder 6
: Photoconductive layer 7: Transparent electrode 8: Transparent support 9: Light rays 10: Metal 11/electrode Figure 1a Figure 1b Figure 2a Figure 2b Figure 3a Figure 3b

Claims (1)

【特許請求の範囲】[Claims] l)支持体(−に、光導電層、金属キレート化合物の中
分子膜又は申分イ累積膜、および透明電極を右する透明
支持体を順次設けてなる記録媒体。
l) Support (-) A recording medium comprising a transparent support supporting a photoconductive layer, a medium molecular film of a metal chelate compound or a transparent electrode, and a transparent electrode.
JP59047188A 1984-03-14 1984-03-14 Recording medium Pending JPS60192974A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59047188A JPS60192974A (en) 1984-03-14 1984-03-14 Recording medium
US07/027,050 US4818665A (en) 1984-03-14 1987-03-23 Medium and process for image formation
US07/221,638 US5006446A (en) 1984-03-14 1988-07-20 Medium and process for image formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59047188A JPS60192974A (en) 1984-03-14 1984-03-14 Recording medium

Publications (1)

Publication Number Publication Date
JPS60192974A true JPS60192974A (en) 1985-10-01

Family

ID=12768128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59047188A Pending JPS60192974A (en) 1984-03-14 1984-03-14 Recording medium

Country Status (1)

Country Link
JP (1) JPS60192974A (en)

Similar Documents

Publication Publication Date Title
JPH0452939B2 (en)
CA2063116C (en) Image-forming method, and ink ribbon and a printing sheet used for the method
JPS61180427A (en) Integrated circuit substrate
JPS60192974A (en) Recording medium
US4830903A (en) Catalytic deposition of metals in solid matrices
JPS6245539B2 (en)
US3363556A (en) Electrophotographic imaging and copying process
JPS60121442A (en) Photosensitive record memory medium and recording/ reproducing method
JPS60192973A (en) Recording medium
JPS60192972A (en) Image recording method
JPH0427960B2 (en)
US5006446A (en) Medium and process for image formation
JPH0452934B2 (en)
US3748135A (en) Photoimaging processes and compositions
JPS60192685A (en) Image-recording method
JPS60192977A (en) Display medium
US3492206A (en) Printing method utilizing electrolysis
JPH0458615B2 (en)
JPH0585063A (en) Ink ribbon and image forming method using the same
JPS6085448A (en) Optical recordidng medium
JPS6166693A (en) Energized recording sheet and recording method thereof
JPS58209741A (en) Photographic recording material
JPS61143190A (en) Recording medium
JP2001047751A (en) Ink ribbon
JPS60239282A (en) Recording medium