JPS60192615A - Vacuum-molding method of both surfaces of container - Google Patents

Vacuum-molding method of both surfaces of container

Info

Publication number
JPS60192615A
JPS60192615A JP22719784A JP22719784A JPS60192615A JP S60192615 A JPS60192615 A JP S60192615A JP 22719784 A JP22719784 A JP 22719784A JP 22719784 A JP22719784 A JP 22719784A JP S60192615 A JPS60192615 A JP S60192615A
Authority
JP
Japan
Prior art keywords
mold
sheet
vacuum
container
molds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22719784A
Other languages
Japanese (ja)
Other versions
JPS6365491B2 (en
Inventor
Kazuya Senuma
瀬沼 一也
Kenji Yamaguchi
健二 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP22719784A priority Critical patent/JPS60192615A/en
Publication of JPS60192615A publication Critical patent/JPS60192615A/en
Publication of JPS6365491B2 publication Critical patent/JPS6365491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a molded container having the highest strength within the limit height heaped by the given base material by taking the limited free blowing structure accomplished by keeping the space between molds in a vacuum atmosphere. CONSTITUTION:Plasticized, softened, expanded and heated sheet is guided to a forming station, and stretched by the molds 2, 3. When air tightness is made by mold clamping between the circumference of the mold and an expansible sheet, vacuum pressure is applied by a vacuum pump to the expansible sheet through the piping 5 and the fine pores 4 perforating both surfaces of each mold. Therefore, the stretched sheet which is kept still in a plasticized state is expanded between the molds under balanced tension caused by the gas pressure in independent foams and the viscoelastic force of thermoplastic resin forming foams and the viscoelastic force of thermoplastic resin forming foams and finally the resin heat is taken from the mold surfaces 2, 3 and the resin is cooled and hardened to obtain a molded body.

Description

【発明の詳細な説明】 ポリスチレン、スチレンを主体としスチレンと共重合し
得るブタジェン、メチルアクリレート等の共重合体樹脂
にプロパン、ブタン、フレオン停の低沸点有機物質を保
有せしめて製造される発泡倍率8〜18倍程度の熱可塑
性発泡樹脂シート、又はこれ等の片面もしくは両面にポ
リスチレン(p s ) #ハイインパクトポリスチレ
ン(RIP8)を不延伸ポリプロピレン(○pp)、ポ
リエチレン(pg)などからなる非発泡熱可塑性フィル
ムを積層加工した発泡性複合シートを基材とした成形品
容器には一般にその品質特性としてシャープな寸法形状
が達成されていることに加え安定的な積重ね高さの維持
と曲げタワミ変形を与えた時の十分な反発性強度が要求
されるものである。
Detailed Description of the Invention: Expansion ratio produced by incorporating low-boiling point organic substances such as propane, butane, and Freon in a copolymer resin such as polystyrene or styrene-based copolymer resin such as butadiene or methyl acrylate that can be copolymerized with styrene. A thermoplastic foam resin sheet of about 8 to 18 times the size, or a non-foamed sheet made of polystyrene (ps) #high-impact polystyrene (RIP8) on one or both sides of the same, unstretched polypropylene (○pp), polyethylene (pg), etc. Molded product containers based on foamed composite sheets made by laminating thermoplastic films generally have sharp dimensions and shapes as quality characteristics, as well as stable stacking height maintenance and bending deflection deformation. sufficient repulsion strength is required.

通常の成形品容器は形状デザイン面よシ、必らずその側
壁部立上〕角度が規定されるものであるが、此の場合に
は積重ね特に側壁部が互に接触する構造とするか否かに
拘わらず、単純に積重ね高さは側壁部肉厚の影響に依っ
て決定される。即ち、側壁部肉厚を厚くとれば積重ね高
さは高く維持する必要が生じ、又逆に側壁部肉厚を薄く
とれば積重ね高さは低く維持し得る。
Ordinary molded containers have a defined angle of sidewall rise due to their shape design, but in this case, it is important to have a structure in which the sidewalls are in contact with each other when stacked. Regardless, the stacking height is simply determined by the influence of the side wall thickness. That is, if the side wall thickness is made thick, the stacking height must be maintained high, and conversely, if the side wall thickness is made thin, the stacking height can be maintained low.

尚、発泡性シートによって作られる成形品容器の積重ね
高さは一般的に非発泡シートによって作られるものに比
較して格段に大きいものであるが、辷れは軽量厚肉化発
泡シート成形品の特質からして避は得られないものであ
る。
Although the stacking height of molded product containers made from foamed sheets is generally much larger than those made from non-foamed sheets, the sag is greater than that of lightweight, thickened foamed sheet molded products. Due to its nature, it cannot be avoided.

しかし乍ら、積重ね高さそのものを輸送面及び在庫面か
ら見た場合には出来るだけ低く維持した方が積載個数が
増えること及び同一個数に対しては在庫スペースをよシ
小さく保てるととなどから経済的によシ有利に作用する
であろうことは容易にうかがわれるも、一方、成形品容
器に要求されるタワミ変形強度を考えた場合には、基材
の種類及び目付量、発泡度等が同様なものでは単純に出
来るだけ厚肉形状とし走力が全体の剛性度を高く維持で
きることから逆な面で有利となυ、結局、両者は相反す
る方向での優劣性を呈するものとなる。その様な状況下
にあって、本発明は成形品容器の口部周辺で作用するタ
ワミ変形強度は全体の厚肉形状の影響によることもさる
ことながら口部周辺の肉厚と底部立上シ周辺部の肉厚に
特に多大な相関性を有し、その傾向はミート・Fレイ或
は弁当箱と云った比較的延伸倍率の低い、しかも角型形
状の容器に殊に顕著に作用するものであるととを発見し
てこの発明に到達した。即ち、厚肉化の手段として、成
形延伸シート厚みょシも大なる空隙を有し、且つその周
囲線クッンプでエアタイト可能とした構造で基材両表面
よ、9−509−5O0ゲージ圧)以上の真空圧例えば
−600mHf(ゲージ圧)、−650smT1f(ゲ
ージ圧)を適用し、且つ雄金型については50〜60℃
に温調された型内発泡を可能とした雄雌嵌合の成形金型
に加熱シートを導りて、これを成形する際補強の対象を
積重ね高さに影響を及ぼす側壁部分を除いた範囲、即ち
、口部周辺、底部、及び底部立上シ部周辺の一部又は全
部に限定して此の部分を更に高発泡厚肉状とすべく、金
型内を真空雰囲気下に維持することよシ達成される限界
的自由発泡構造とした形状にすることによシ、与えられ
た基材でもって積重ね高さの制限範囲内で最高の強度体
を有する成形容器を得るべく成形方法の改良を行ったも
のである。
However, from the viewpoint of transportation and inventory, it is better to keep the stacking height as low as possible because the number of items loaded will increase and the inventory space will be kept smaller for the same number of items. Although it is easy to see that it will have a favorable effect economically, on the other hand, when considering the deflection deformation strength required for molded product containers, it is important to consider the type and area weight of the base material, and the foaming degree. etc., it is advantageous in the opposite aspect because it is possible to simply make the shape as thick as possible so that the overall rigidity can be maintained high, but in the end, the two exhibit superiority and inferiority in opposite directions. Become. Under such circumstances, the present invention has been developed to solve the problem that the deflection deformation strength acting around the mouth of a molded product container is not only affected by the overall thick-walled shape, but also depends on the wall thickness around the mouth and the bottom riser. There is a particularly strong correlation with the wall thickness at the periphery, and this tendency is especially noticeable for containers with a relatively low stretching ratio and rectangular shapes, such as meat F-rays and lunch boxes. This invention was achieved by discovering that. That is, as a means of increasing the thickness, the thickness of the formed stretched sheet also has large voids, and the structure allows for air tightness at the peripheral line, so that both surfaces of the base material are coated with a pressure of 9-509-5O0 gauge pressure or more. Apply a vacuum pressure of, for example, -600mHf (gauge pressure), -650smT1f (gauge pressure), and apply a vacuum pressure of 50 to 60°C for the male mold.
The heated sheet is introduced into a molding mold with a male and female mating mold that enables foaming inside the mold with a controlled temperature.When molding this, the area to be reinforced is the area excluding the side wall part that affects the stacking height. In other words, the inside of the mold is maintained under a vacuum atmosphere in order to make the parts around the mouth part, the bottom part, and the part or all around the bottom rising part more highly foamed and thick. Improvements in the molding process to obtain molded containers with the highest strength within stacking height limitations for a given substrate by shaping the material into a marginally free-foamed structure. This is what was done.

この発明は、熱可塑性発泡樹脂シート又は熱可塑性発泡
樹脂シートに非発泡熱可塑性樹脂層を積層した複合発泡
樹脂シートを加熱可塑化して真空成形する雄雌嵌合の金
型内にて容器を成形する方法において、容器の側壁部は
型内発泡にて達成される限界的自由発泡度肉厚以下とし
て成形品側壁肉厚寸法を金型表面で規制し、その他の部
分の一部又は全部は型内発泡の限界的自由発泡度肉厚以
上となるように雌雄金型の両面よJ−5001’jlH
g以上の真空圧を適用することによる両面真空成形法を
内容とする。
This invention molds a container in a male-female mold that heats and plasticizes a thermoplastic foamed resin sheet or a composite foamed resin sheet in which a non-foamed thermoplastic resin layer is laminated on a thermoplastic foamed resin sheet and vacuum-forms the same. In the method of J-5001'jlH on both sides of the male and female molds so that the critical free foaming degree of internal foaming is greater than the wall thickness.
The content includes a double-sided vacuum forming method by applying a vacuum pressure of more than g.

第1図は尚発明による金型例について成形品形状が最終
的に達成された状態での概略断面図を示すものであシ、
第五図は同じくその比較を行う意味から、従来通常の金
型で熱可塑性発泡樹脂シートに対する型内発泡を伴う成
形金型ではあるが、その成形品肉厚寸法は金型両表面で
規制を受ける場合の概略断面図を示している。
FIG. 1 shows a schematic cross-sectional view of an example of the mold according to the invention in a state where the shape of the molded product is finally achieved.
Figure 5 is also for the purpose of comparison, and although it is a conventional mold that involves in-mold foaming for a thermoplastic foamed resin sheet, the wall thickness of the molded product is regulated on both surfaces of the mold. A schematic cross-sectional view of the case where it is received is shown.

尚、各々には両者の具体的内容の差異を明示すべく、口
部周辺での加熱延伸発泡シートの型内発泡に伴う気泡形
状並びに−面形状の拡大図を示しているが、以下にこれ
等について説明する。
In order to clearly show the difference in specific content between the two, enlarged views of the bubble shape and negative surface shape of the heat-stretched foam sheet around the mouth are shown below. etc. will be explained.

一般に成形操作そのものは可塑化と軟化、発泡が行われ
た加熱シートを成形ステーションに導くと同時に金型2
及び3(2′及び3′)でまず延伸成形を行い、金型口
部周辺と発泡シートとの間で型締めによるエアタイトが
なされた状態で真空ポンプよシ配管5t5′を介して、
金型両表面に通じる細孔4,4′よυ真空圧を適用する
ことから朱だ可塑化状態に保たれている延伸V−) i
 、 1’は独立気泡内ガス圧力と気泡を形成する熱可
塑性樹脂の粘弾性力に起因する張力のバランスの下に型
内発泡を生じ、最終的には金型面2,3(2’、3’)
よシ樹脂温を奪われて、冷却固化されることから成形形
状が達成されるものであシ、成形の操作そのものとして
は殊に両者の間で差異を有するものではない。
Generally, the molding operation itself involves leading the heated sheet, which has been plasticized, softened, and foamed, to the molding station and at the same time
and 3 (2' and 3'), stretch molding is first performed, and with air tightness created between the mold mouth area and the foamed sheet by mold clamping,
By applying vacuum pressure to the pores 4 and 4' that communicate with both surfaces of the mold, the stretched material is maintained in a vermilion plasticized state (V-) i
, 1' causes foaming within the mold under the balance between the gas pressure within the closed cells and the tension caused by the viscoelastic force of the thermoplastic resin forming the bubbles, and finally mold surfaces 2, 3 (2', 3')
The molded shape is achieved by removing the resin temperature and cooling and solidifying, and there is no particular difference between the two in terms of the molding operation itself.

しかし乍ら、第1図に於いて示されている通シ、熱可塑
性発泡樹脂シートに対する此の場合の成形法とは、マツ
チド・モールドと呼称されているもので雄雌両金型の嵌
合時、間隙形状が目標とする成形品断面形状と同一とな
るべく設計されておシ、その場合の成形品各部の肉厚は
型内発泡にて達成される限界的発泡度肉厚以下とするこ
とから、即ち成形品内外面形状とその肉厚寸法は金型表
面で完全に規制を受けるものであるのに対して、本発明
の方法によるものでは第1図に示す如く、積重ね高さに
影響する側壁部肉厚寸法を除いた口部周辺及び底部とそ
の周辺については金型の一方の面からのみしか形状規制
を行わない。即ち、成形品を雄金型に沿った形状とする
か、雌金型に沿った形状とするかは、その都度の市場か
らの要求によって定めるとするも延伸V−)の両面に適
用する真空圧に圧力調整弁をもって圧力差を作用させる
ことから任意の形状が選択し得るものであるが、いずれ
Kしろ片面からのみしか形状規制を行わず此の部分を型
内発泡によって達成される限界的自由発泡肉厚で成形品
を構成することから、口部に於いて発生するタワミ変形
強度の補強を図ったところに大きな特徴を有する本ので
ある。
However, the molding method shown in Fig. 1 for the thermoplastic foamed resin sheet in this case is called a mated mold, in which both male and female molds are fitted together. In this case, the shape of the gap should be the same as the target cross-sectional shape of the molded product, and in that case, the wall thickness of each part of the molded product should be less than the critical foaming degree achieved by in-mold foaming. Therefore, the inner and outer shapes of the molded product and its wall thickness are completely controlled by the mold surface, whereas in the method of the present invention, as shown in Figure 1, the stacking height is affected. The shape of the mouth area, bottom area, and surrounding area, excluding the side wall thickness dimension, is restricted only from one side of the mold. In other words, whether the shape of the molded product is to follow the male mold or the female mold will be determined depending on the market requirements in each case, but the vacuum applied to both sides of the stretching V-) Since a pressure difference is applied to the pressure by a pressure regulating valve, any shape can be selected. Since the molded product is made of thick, free-foamed material, the main feature of this book is that it is designed to strengthen the bending deformation strength that occurs at the mouth.

実施例1 発泡剤としてフレオンを用いたポリスチレンを基材とす
る厚み2調、発泡倍率11.3倍の押巳しシートを養生
後、炉内温度180℃に設定した遠赤外線加熱炉で10
秒加熱した時の平均発泡厚みは4.2 mであった。こ
れを縦横外形寸法160X160順、絞)深さ2211
111E%立上シ角度35.5°、側壁部金型間隙5.
37mg、口部頂辺及び底面部よ?) 5.5 am高
さ範囲を自由発泡構造としたミート・トレイ金型で雄型
面真空度−650mHj’(ゲージ圧)、雌型面真空度
−600mHfcゲージ圧)を適用して成形したミート
・トレイは口部周辺肉厚が4.7 rMlr s側壁部
肉厚3.37調、底立上シ部肉厚4.6 tanの内面
形状が雄型金型表面形状と一致するものであシ、ioo
枚当シの積重ね高さは5801RI++%口部周辺中央
に5順の集中的変形歪を与えた時の反発性強度390f
を有するものであった。
Example 1 After curing a compressed sheet made of polystyrene with Freon as a foaming agent and having a foaming ratio of 11.3 times and a thickness of 2 tones, it was heated for 10 minutes in a far-infrared heating furnace with an internal temperature of 180°C.
The average foaming thickness when heated for seconds was 4.2 m. This is in order of vertical and horizontal external dimensions 160 x 160, depth 2211
111E% rising angle 35.5°, side wall mold gap 5.
37mg, top and bottom of mouth? ) Meat molded using a meat tray mold with a free-foam structure in the 5.5 am height range, applying a vacuum level of -650 mHj' (gauge pressure) on the male mold side and a vacuum level of -600 mHfc gauge pressure on the female mold side.・The tray has a wall thickness around the mouth of 4.7 rMlr s, a side wall thickness of 3.37 mm, a bottom riser wall thickness of 4.6 mm, and an inner shape of the tan that matches the surface shape of the male mold. C, ioo
The stacking height of the sheets is 5801RI++%, and the repulsion strength is 390f when 5 concentrated deformation strains are applied to the center around the opening.
It had a

とれに対して、各部の金型間隙がS、’57wmの、成
形品肉厚が内外面両方共、金型表面形状で規制を受ける
従来方式の金型で一600smHgの真空度を適用して
成形したものは、各部の肉厚が3、S 7 WJRs 
’100枚当勺の積重ね高さが580m+、口部周辺F
C5WjnL:15集中的変形歪を与えた時の反発性強
度は340gを有するものであった。
In order to deal with this, a vacuum degree of 1600 smHg was applied to a conventional mold in which the mold gap of each part was S, '57wm, and the wall thickness of the molded product was regulated by the mold surface shape on both the inner and outer surfaces. The molded product has a wall thickness of 3, S 7 WJRs.
'Stacking height of 100 sheets is 580m+, mouth area F
C5WjnL: 15 The repulsion strength when subjected to concentrated deformation strain was 340 g.

実施例2 発泡剤としてフレオンを用いたポリスチレンを基材とす
る厚み2 If!Iff N発泡倍率14倍の押出しシ
ートを養生後、炉内温度200″Cに設定した遠赤外線
加熱炉で6.5秒加熱した時の平均発泡厚みは3.7.
であった。これを縦横外形寸法35.501側壁部金型
間隙3.37 all 、口部頂辺及び底面部よp 5
.8.高さ範囲を自由発泡構造としたミート・トレイ金
型で雄型面真空度−650mHf(ゲージ圧)、雌型面
真空度−600#IIHf(ゲージ圧)を適用して成形
したミート・トレイは口部周辺肉厚が4.5.、側壁部
肉厚3.57111%底立上ル部肉厚4.8 ttua
の内面形状が雄型金型表面形状と一致するものであシ、
100枚当シの積重ね高さは580m5口部周辺中央F
C5lIIIの集中的変形歪を与えた時の反発性強度3
75fを有するものであった。
Example 2 Thickness 2 based on polystyrene using Freon as a blowing agent If! After curing an extruded sheet with an Iff N foaming ratio of 14 times, the average foaming thickness was 3.7.
Met. The vertical and horizontal external dimensions are 35.501, the side wall mold gap is 3.37 all, and the top and bottom of the mouth are p5.
.. 8. The meat tray was molded using a meat tray mold with a free foam structure in the height range, applying a vacuum level of -650 mHf (gauge pressure) on the male mold side and -600 #IIHf (gauge pressure) on the female mold side. The wall thickness around the mouth is 4.5. , side wall thickness 3.57111% bottom riser thickness 4.8 ttua
The inner shape of the mold must match the surface shape of the male mold,
The stacking height for 100 sheets is 580 m5 center F around the opening.
Repulsion strength 3 when intensive deformation strain is applied to C5lIII
It had a diameter of 75 f.

これに対して、各部の金型間隙が3.37 mgの、成
形品肉厚が内外面両方共、金型表面形状で規制を受ける
従来方式の金型で−600aam Tlfl (ゲージ
圧)の真空度を適用して成形したものは、各部の肉厚が
1!+ 711!I、100枚当シの積重ね高さが58
01101!10部周辺に5都の集中的変形歪を与え走
時の反発性強度は325Fを有するものであった。
On the other hand, a conventional mold with a mold gap of 3.37 mg at each part and a molded product wall thickness of both the inner and outer surfaces, which are regulated by the mold surface shape, requires a vacuum of -600 aam Tlfl (gauge pressure). The thickness of each part is 1! +711! I, stacking height of 100 sheets is 58
01101!A concentrated deformation strain of 5 cities was applied around the 10th section, and the repulsion strength during running was 325F.

第1図−1は本発明の成形金型の成形終了時の状態を示
す説明用断面図、第1図−2はその成形容器の口部周辺
部の拡大断面図、第五図−1は従来通常の成形金型の成
形終了時の状態を示す説明用断面図、第五図−2はその
成形容器口部周辺部の拡大断面図。
Fig. 1-1 is an explanatory sectional view showing the state of the molding die of the present invention at the end of molding, Fig. 1-2 is an enlarged sectional view of the vicinity of the mouth of the molded container, and Fig. 5-1 is FIG. 5-2 is an explanatory cross-sectional view showing the state of a conventional conventional molding die at the end of molding, and FIG. 5-2 is an enlarged cross-sectional view of the vicinity of the mouth of the molding container.

1.1′は成形熱可塑性発泡樹脂シー)、2.!!及び
2’、3’は金型、4,4′は真空用細孔、5,6及び
5’ 、 6’は真空ポンプよシの配管。
1.1' is a molded thermoplastic foam resin sheet), 2. ! ! 2' and 3' are molds, 4 and 4' are vacuum holes, and 5, 6, and 5' and 6' are piping for the vacuum pump.

特許出願人 鐘淵化学工業株式会社 代理人弁理士浅野真− 第1!!−1Patent applicant Kanebuchi Chemical Industry Co., Ltd. Representative Patent Attorney Makoto Asano 1st! ! -1

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性発泡樹脂シート又は熱可塑性発泡樹脂シ
ートに非発泡熱可塑性樹脂層を積層した複合発泡樹脂シ
ートを加熱回層化したのち、雄雌嵌合の金型内にて容器
を成形する方法において、容器の側壁部肉厚寸法を型内
発泡で達成される限界的自由発泡度肉厚以下となるよう
金型表面で規制し、その他の部分の一部又は全部の厚さ
を金型表面で規制せず、型内発泡の限界的自由発泡度肉
厚となるように雄雌金型の両面より一500wHg以上
の真空圧を適用することを特徴とする容器の両面真空成
形法。
(1) After heating and layering a thermoplastic foamed resin sheet or a composite foamed resin sheet in which a non-foamed thermoplastic resin layer is laminated on a thermoplastic foamed resin sheet, a container is formed in a male-female mold. In this method, the wall thickness of the side wall of the container is controlled on the mold surface so that it is below the critical free foaming wall thickness achieved by in-mold foaming, and the thickness of some or all of the other parts is controlled by the mold surface. A double-sided vacuum forming method for containers, characterized in that a vacuum pressure of 1500 wHg or more is applied from both sides of male and female molds to achieve the critical free foaming degree and wall thickness of in-mold foaming without restricting the surface.
(2)容器側壁部以外のその他の部分が容器の底部、底
部の周辺立上り部分及び又は口部周辺である特許請求の
範囲第1項記載の両面真空成形法。
(2) The double-sided vacuum forming method according to claim 1, wherein the portion other than the side wall of the container is the bottom of the container, a rising portion around the bottom, and/or the periphery of the mouth.
JP22719784A 1984-10-29 1984-10-29 Vacuum-molding method of both surfaces of container Granted JPS60192615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22719784A JPS60192615A (en) 1984-10-29 1984-10-29 Vacuum-molding method of both surfaces of container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22719784A JPS60192615A (en) 1984-10-29 1984-10-29 Vacuum-molding method of both surfaces of container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6362078A Division JPS54154472A (en) 1978-05-26 1978-05-26 Mold for formed vessel

Publications (2)

Publication Number Publication Date
JPS60192615A true JPS60192615A (en) 1985-10-01
JPS6365491B2 JPS6365491B2 (en) 1988-12-15

Family

ID=16857013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22719784A Granted JPS60192615A (en) 1984-10-29 1984-10-29 Vacuum-molding method of both surfaces of container

Country Status (1)

Country Link
JP (1) JPS60192615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344726A2 (en) * 1988-05-30 1989-12-06 Sekisui Kaseihin Kogyo Kabushiki Kaisha Polyolefin resin foamed laminate sheet and double-side vacuum forming of the same
EP0718077A1 (en) * 1994-12-23 1996-06-26 Hoechst Aktiengesellschaft Method and devices for perforating smooth, closed cell surfaces of open celled foamed sheets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344726A2 (en) * 1988-05-30 1989-12-06 Sekisui Kaseihin Kogyo Kabushiki Kaisha Polyolefin resin foamed laminate sheet and double-side vacuum forming of the same
EP0718077A1 (en) * 1994-12-23 1996-06-26 Hoechst Aktiengesellschaft Method and devices for perforating smooth, closed cell surfaces of open celled foamed sheets

Also Published As

Publication number Publication date
JPS6365491B2 (en) 1988-12-15

Similar Documents

Publication Publication Date Title
EP0706452B1 (en) Polystyrene foam sheet and process of making same
EP2318208B1 (en) Multilayer thermoplastic sheet materials and thermoformed articles prepared therefrom
US4359160A (en) Nestable foam cup with improved heat retention and the process for its manufacture
US3484510A (en) Method for forming foam articles
US8419406B2 (en) Dynamic mould tool
NL8403679A (en) METHOD FOR MAKING SHAPED BODIES FROM FOAM PLASTIC
JPS60192615A (en) Vacuum-molding method of both surfaces of container
JPS624211B2 (en)
WO2005090041A2 (en) Moulding plastics articles
USRE28364E (en) Method for forming foam articles
JP2000127193A (en) Manufacture of foamed polystyrene with skin
JPH1170601A (en) Container
JP2002292669A (en) Method for producing foamed resin molding with skin
JP2005335168A (en) Method for manufacturing inversely tapered container formed of polyolefinic resin expanded sheet
WO2023188487A1 (en) Coextruded sheet
JP2002210891A (en) Foamed styrene resin laminate and molding using the sane
JPH01118430A (en) Manufacture of skinned polystyrene resin foam molded product
KR20000062119A (en) Expandable polystyrene resin and a method of producing the same
JP2006103165A (en) Composite molded product and its manufacturing method
JP2005238552A (en) Heat insulating panel manufacturing method
JPH09226002A (en) Method for thermally molding synthetic resin foamed sheet, the sheet and thermal molding of the sheet
EP0912333A1 (en) Polystyrene foam sheet for forming deep drawn articles, and the deep drawn articles made therefrom
JPH01262123A (en) Manufacture of styrene resin expansion molded form with skin
JPH02173130A (en) Styrene-based foam
JPS6245819B2 (en)