JPS60192467A - Picture quality adjusting device - Google Patents

Picture quality adjusting device

Info

Publication number
JPS60192467A
JPS60192467A JP59049512A JP4951284A JPS60192467A JP S60192467 A JPS60192467 A JP S60192467A JP 59049512 A JP59049512 A JP 59049512A JP 4951284 A JP4951284 A JP 4951284A JP S60192467 A JPS60192467 A JP S60192467A
Authority
JP
Japan
Prior art keywords
signal
circuit
quality adjustment
video signal
image quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59049512A
Other languages
Japanese (ja)
Inventor
Susumu Tsujihara
辻原 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59049512A priority Critical patent/JPS60192467A/en
Publication of JPS60192467A publication Critical patent/JPS60192467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)

Abstract

PURPOSE:To attain automatically optimum picture quality adjustment well balanced in vertical and horizontal directions to various video signals different in the number of scanning lines by detecting the number of scanning lines of a video signal, and using the detected signal to control the frequency characteristic of the video signal. CONSTITUTION:A video signal (a) is inputted to an input terminal 1 and a signal (b) delayed by at a delay circuit 4 of a picture quality adjusting circuit 16 is obtaind. Further, a signal (c) delayed by 2 is obtained by a delay circuit 5. The signal (c) and the video signal (a) are added at an adder circuit 6 to halve the gain and a signal (d) is outputted. Then it is subtracted with the signal (b) at a subtraction circuit 7 and a signal (e) is outputted, it is added to the signal (b) at an adder circuit 9 via a gain control circuit 8 and a video signal (f) subject to picture quality adjustment is outputted. Moreover, a horizontal synchronizing signal is fed to an input terminal 10 and a vertical synchronizing signal is fed to an input terminal 14 and the number of scanning lines is detected by a scanning line number detection circuit 11. This detection signal is fed to a control signal generating circuit 12 via an operation circuit 15 to control the delay time of the delay circuits 4, 5 and th frequency band where the horizontal direction is emphasized through the operation in response to the number of scanning lines is controlled.

Description

【発明の詳細な説明】 2−・ ア 産業上の利用分野 本発明は、テレビジョン受像機に適した水平方向の画質
調整装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 2--A Field of Industrial Application The present invention relates to a horizontal image quality adjustment device suitable for a television receiver.

従来例の構成とその問題点 従来のテレビジョン受像機において、受像管では電子ビ
ームが有限の大きさを持つため、画面上光出力信号の高
域成分が低下する。この周波数高域成分の劣化を補償す
る必要がある。更に信号の □ステップ応答波形に適度
なプリンーートとオーバーシュートを付加することによ
って画像の鮮鋭度を実質的に向上させることができる。
Conventional Structure and Problems In a conventional television receiver, since the electron beam in the picture tube has a finite size, the high-frequency components of the optical output signal on the screen are reduced. It is necessary to compensate for this deterioration of high frequency components. Furthermore, by adding appropriate printout and overshoot to the step response waveform of the signal, the sharpness of the image can be substantially improved.

このためには高域成分を強調した特性にするが、弱電界
信号受信時での雑音あるいは視聴者の好みなどにより、
第3図に示す様に総合周波数特性を可変できる様に設計
する場合が多い。
To achieve this, the characteristics emphasize high-frequency components, but due to noise when receiving weak electric field signals or the viewer's preference,
As shown in FIG. 3, the design is often such that the overall frequency characteristics can be varied.

第1図に画質調整回路の一例を示し、第2図にその波形
を示す。第1図の入力端子1には、第2Naに示す映像
信号が入力され、トランジスタ2のコレクタに接続され
たコンデンサC1とインダ □クタンスL1 により、
第2図すに示す様に映像信 ′3ベーン 号の二次微分波形が得られる。よって中間端子付可変抵
抗器VR,の摺動端子が、端子4の位置では第2図Cに
示すようにプリシートとオーバーシーートを持つステッ
プ応答波形、すなわち第3図に示すシャープ状態となり
、端子5の位置では波形ひずみのない応答波形、すなわ
ち第3図に示すノーマル状態となり、端子6の位置では
コンデンサC2の効果によって立上りの緩やかな応答、
す々わち第3図に示すソフト状態の映像信号が出力端子
3に出力される。
FIG. 1 shows an example of an image quality adjustment circuit, and FIG. 2 shows its waveforms. A video signal indicated by a second Na is input to the input terminal 1 in FIG. 1, and the capacitor C1 and inductance L1 connected to the collector of the transistor 2 cause
As shown in Figure 2, a second-order differential waveform of the video signal '3 Vane signal is obtained. Therefore, at the position of terminal 4, the sliding terminal of variable resistor VR with an intermediate terminal has a step response waveform with pre-sheet and over-sheet as shown in Fig. 2C, that is, a sharp state shown in Fig. 3, and the terminal At position 5, there is a response waveform with no waveform distortion, that is, the normal state shown in Figure 3, and at position 6, there is a response with a gradual rise due to the effect of capacitor C2.
In other words, the video signal in the soft state shown in FIG. 3 is output to the output terminal 3.

第3図に総合周波数特性を示す様に、画質調整回路にお
いて映像信号に与えるプリシュートとオーバーシーート
量とを可変調整することにより、画像の鮮鋭度を向上さ
せることができる。
As shown in the overall frequency characteristics shown in FIG. 3, the sharpness of the image can be improved by variably adjusting the amount of preshoot and oversheet given to the video signal in the image quality adjustment circuit.

従来の画質調整回路は、画質の調整に応じてその周波数
特性が第3図に示す様に特定な周波数foを中心とする
部分だけで変化されるため、画質調整により強調される
周波数帯域がfa と異なる場合、たとえば広帯域の映
像信号が入力された時は、前記狭帯域の映像信号に対し
ては、適当な画質調整が行なえるが、広帯域の映像信号
に対しては、画質調整により強調される周波数帯域が映
像信号の帯域に比べ低くすぎるため、画質調整が適正で
なくなるということが生じる。
In the conventional image quality adjustment circuit, the frequency characteristics of the conventional image quality adjustment circuit are changed only in a portion centered around a specific frequency fo as shown in Fig. 3, so that the frequency band emphasized by image quality adjustment is fa. For example, when a wideband video signal is input, appropriate image quality adjustment can be performed for the narrowband video signal, but the wideband video signal is emphasized by the image quality adjustment. Since the frequency band of the video signal is too low compared to the band of the video signal, the image quality adjustment may not be appropriate.

すなわち、映像信号の所定の周波数帯域を強調すること
をより画質を改善する画質調整回路において、適正な画
質を得るためには、各映像信号の帯域に応じて強調する
周波数帯域を変え彦ければならないが、従来の画質調整
回路では強調する周波数帯域が固定で、それの利得のみ
が調整可能なものとして構成されていたため、映像信号
の周波数帯域に応じて常に適正な画質が得られないとい
う欠点があった。
In other words, in an image quality adjustment circuit that improves image quality by emphasizing a predetermined frequency band of a video signal, in order to obtain appropriate image quality, it is necessary to change the frequency band to be emphasized depending on the band of each video signal. However, in conventional image quality adjustment circuits, the frequency band to be emphasized is fixed and only the gain is adjustable, so it is difficult to always obtain appropriate image quality depending on the frequency band of the video signal. was there.

発明の目的 本発明の目的は、前記従来の画質調整回路における欠点
を除き、各種類の映像信号に対しても常発明の構成 本発明は、映像信号の走査線数を検出する走査5ペーア 線数検出手段と、前記走査線数検出手段からの信号によ
り、映像信号の周波数特性を制御する画質調整手段とを
備えた画質調整回路であり、映像信号の走査線数に応じ
て、強調される周波数帯域を自動的に制御できるもので
ある。
OBJECTS OF THE INVENTION It is an object of the present invention to eliminate the drawbacks of the conventional image quality adjustment circuits and to provide an inventive configuration that can be applied to various types of video signals. The image quality adjustment circuit includes a number detection means and an image quality adjustment means for controlling the frequency characteristics of the video signal according to the signal from the scanning line number detection means, and the frequency characteristics of the video signal are emphasized according to the number of scanning lines of the video signal. The frequency band can be automatically controlled.

実施例の説明 以下、本発明につき、その一実施例を示す図面を参照し
て詳細に説明する。
DESCRIPTION OF EMBODIMENTS The present invention will be described in detail below with reference to the drawings showing one embodiment thereof.

第4図は、本発明の一実施例の画質調整回路の構成を示
すブロック図であり、第5図はその動作を説明するため
の波形図である。
FIG. 4 is a block diagram showing the configuration of an image quality adjustment circuit according to an embodiment of the present invention, and FIG. 5 is a waveform diagram for explaining its operation.

入力端子1には第5Naに示す映像信号が入力され、そ
の信号は画質調整回路16の遅延時間τを有する遅延回
路4へ供給され、第5図すに示す様にτ遅延した信号が
遅延回路4から得られる。
A video signal shown in No. 5 Na is input to the input terminal 1, and the signal is supplied to the delay circuit 4 having a delay time τ of the image quality adjustment circuit 16, and the signal delayed by τ is sent to the delay circuit as shown in FIG. Obtained from 4.

また遅延回路4からの出力は遅延回路5に供給され、第
5図Cに示す様に、第5図aに示す入力映像信号に対し
て2τ遅延した信号が遅延回路6から得られる。第5図
aに示す入力端子1からの映像信号と第5図Cに示す遅
延回路5からの2τ遅6召−ン 延された信号とを加算回路6で加算して利得を2分の1
にし、第5図dに示す信号が出力される。
The output from the delay circuit 4 is also supplied to the delay circuit 5, and as shown in FIG. 5C, a signal delayed by 2τ with respect to the input video signal shown in FIG. 5A is obtained from the delay circuit 6. The video signal from the input terminal 1 shown in FIG. 5A and the 2τ delayed 6-time signal from the delay circuit 5 shown in FIG.
The signal shown in FIG. 5d is output.

第5図すに示す遅延回路4からのτ遅延された信号と第
5図dに示す加算回路6からの加算出力とを減算回路7
で減算して、第5図eに示す様な輪郭信号が出力され、
等何曲に二次微分を行なったことになる。
A subtraction circuit 7 subtracts the signal delayed by τ from the delay circuit 4 shown in FIG. 5S and the addition output from the addition circuit 6 shown in FIG.
After subtraction, a contour signal as shown in Figure 5e is output,
So how many songs have we performed quadratic differentiation on?

第5図eに示す減算回路7からの輪郭信号は利得制御回
路8に供給され、入力端子13に入力される利得制御信
号により利得が制御される。利得制御回路8からの利得
制御された輪郭信号は、加算回路9で第5図すに示す遅
延回路4からのτ遅延した信号と加算して、第5図fに
示す様な、画質調整された映像信号が出力端子3から出
力される。
The contour signal from the subtraction circuit 7 shown in FIG. The gain-controlled contour signal from the gain control circuit 8 is added to the signal delayed by τ from the delay circuit 4 shown in FIG. 5 in an adder 9, and the image quality is adjusted as shown in FIG. The video signal obtained is output from the output terminal 3.

また入力端子1oには水平同期信号及び入力端子14に
は垂直同期信号が供給され、走査線数検出回路11で走
査線数が検出される。この走査線数の検出信号は演算回
路15と制御信号発生回路12で構成された制御回路1
6へ供給される。演算回路16では、走査線数に応じた
水平方向の輪7ページ 郭信号作成のための演算を行う。
Further, a horizontal synchronizing signal is supplied to the input terminal 1o, and a vertical synchronizing signal is supplied to the input terminal 14, and the number of scanning lines is detected by a scanning line number detection circuit 11. This detection signal of the number of scanning lines is transmitted to a control circuit 1 composed of an arithmetic circuit 15 and a control signal generation circuit 12.
6. The arithmetic circuit 16 performs arithmetic operations to create a seven-page contour signal in the horizontal direction according to the number of scanning lines.

演算回路15からの演算出力は、制御信号発生回路12
に供給され、前記遅延回路4,5の遅延時間を制御する
様な制御信号が出力される。したがって走査線数に応じ
て演算された、水平方向が強調された周波数帯域を制御
することができる。
The calculation output from the calculation circuit 15 is transmitted to the control signal generation circuit 12.
A control signal for controlling the delay time of the delay circuits 4 and 5 is output. Therefore, it is possible to control the frequency band in which the horizontal direction is emphasized, which is calculated according to the number of scanning lines.

より詳細に説明するため、第6図の解像度特性図を用い
る。
In order to explain in more detail, the resolution characteristic diagram shown in FIG. 6 will be used.

輪郭信号は遅延時間τを有する2個の遅延回路4.5を
使用することにより作成できるが、水平方向の解像度特
性を知るため水平方向の解像本数を水平有効走査区間内
の正弦波の繰返しと考えると入力信号がElnが Eln= 5in2πm(t−)τ)であツタ時、遅延
回路4からの出力E1は E+ = sin2yrmt 遅延回路5からの出力E2は E2 = 5in2πm (t−7)となる。
The contour signal can be created by using two delay circuits 4.5 having a delay time τ, but in order to know the horizontal resolution characteristics, the number of horizontal resolution lines is determined by repeating the sine wave within the horizontal effective scanning period. Considering this, when the input signal Eln is Eln = 5in2πm(t-)τ), the output E1 from the delay circuit 4 is E+ = sin2yrmt, and the output E2 from the delay circuit 5 is E2 = 5in2πm (t-7). Become.

mは水平有効走査区間内の正弦波の繰返しの数である。m is the number of repetitions of the sine wave within the horizontal effective scanning section.

この時輪郭信号FHは EH=−sin2πmr−−;[sin2yrm(t+
τ)−1−sin2πm(t−r)〕m=1−cos 
2yr+nr) sin 2πmτ−−−−−−−−−
・−(1)となり(1−cos 2πmτ)のレスポン
スを第6図に示す様にくし形層波数特性となることがわ
かる。
At this time, the contour signal FH is EH=-sin2πmr--;[sin2yrm(t+
τ)-1-sin2πm(t-r)]m=1-cos
2yr+nr) sin 2πmτ−−−−−−−−−
-(1), and it can be seen that the response of (1-cos 2πmτ) has a comb-shaped layer wavenumber characteristic as shown in FIG.

次に走五線数から水平方向の強調する周波数特性を演算
する演算回路15について述べる。
Next, the arithmetic circuit 15 that calculates the frequency characteristic to be emphasized in the horizontal direction from the number of stroke lines will be described.

捷た説明しやすくするため標準方式のテレビジョン信号
の場合について述べる。
To simplify the explanation, we will discuss the case of a standard television signal.

垂直輪郭信号は前記水平輪郭信号作成と構成は同じであ
るが、2個の1H遅延回路を用いて作成されたが、垂直
方向の解像度特性を知るため垂直方向の解像本数を正弦
波の繰返しと考えると、f(t−h)=sin2πnt
・・・・・・・・・・・・・・・・・・・・・(2)f
(t) = sln 2πn (t+h )・・・・・
・・・・・・・・・・・・・・・・(3)f(t−2h
)=sin2πn(t−h)−−−−−−−・−べ4)
となる。
The vertical contour signal has the same configuration as the horizontal contour signal described above, but was created using two 1H delay circuits, but in order to know the vertical resolution characteristics, the number of vertical resolution lines was changed by repeating a sine wave. Considering that, f(t-h)=sin2πnt
・・・・・・・・・・・・・・・・・・・・・(2)f
(t) = sln 2πn (t+h)...
・・・・・・・・・・・・・・・・・・(3) f(t-2h
)=sin2πn(t-h)--------・-be4)
becomes.

ここでnは垂直方向の有効走査区間にある正弦波9ベー
ン の繰返しの数である。hは1Hに相当するため垂直方向
の有効走査区間を1とすれば走査線数525本、有効走
査区間93.5 %とするとh= v245となる。
Here, n is the number of repetitions of the nine sinusoidal vanes in the vertical effective scanning section. Since h corresponds to 1H, if the effective scanning section in the vertical direction is 1, then the number of scanning lines is 525, and if the effective scanning section is 93.5%, then h=v245.

垂直輪郭信号Evは(2)〜(4)式よりEv= 5i
n2 yrn t−二[:5in2πn(t+h)+5
in2 πn(t−4)〕=(1−cos2yrnh)
sin2πnt−・−聞=叩・・(5)(5)式より振
幅項(1−cos2πnh)のnをパラメータとするレ
スポンスが解像度特性を示し、h= 1−とした場合、
(1−cos2πnh)の解45 像度特性を第7図に示す。第7図かられかる様に最大の
レスポンスはn=122.5で得られる。
The vertical contour signal Ev is Ev=5i from equations (2) to (4).
n2 yrn t-2[:5in2πn(t+h)+5
in2 πn(t-4)]=(1-cos2yrnh)
sin2πnt-・-=beat... (5) From equation (5), the response with n in the amplitude term (1-cos2πnh) as a parameter indicates the resolution characteristic, and when h = 1-,
Solution 45 of (1-cos2πnh) The image power characteristics are shown in FIG. As shown in FIG. 7, the maximum response is obtained at n=122.5.

これは垂直有効走査区間内の正弦波の繰返しの数である
からテレビ解像本数では245本に相当する。
Since this is the number of repetitions of the sine wave within the vertical effective scanning section, it corresponds to 245 lines in terms of television resolution.

したがって垂直方向の最大レスポンスn=1225を水
平方向に換算すれば4:3のアスペクト・レイショから m=丁n−丁X 122.5= 163 となる。
Therefore, if the maximum response n=1225 in the vertical direction is converted into the horizontal direction, it becomes m=ding n-ding X 122.5=163 from the aspect ratio of 4:3.

(1)式において振幅項(1−cos2πmτ)が最大
に1oベ−2 なる条件は第2項Cog 2πmτが−1になる時で、
この時m=163と置き、τをめれば、水平と垂直の解
像度特性を等しくすることができる。
In equation (1), the condition that the amplitude term (1-cos2πmτ) reaches a maximum of 1obe-2 is when the second term Cog2πmτ becomes -1,
In this case, by setting m=163 and subtracting τ, the horizontal and vertical resolution characteristics can be made equal.

00327r!ll7= −1、m= 163と置けば
26 水平方向の走五期間63.6μs、有効走査率83チと
すれば τ=はり淳タノ見己キ1“62[4S’126 したがって、水平方向の輪郭信号作成のため遅延回路と
しては162μsの遅延回路を用いることにより、テレ
ビ解像度本数245本にピークをもつ水平方向の画質調
整が得られ、垂直の場合のピークと等しくなる。
00327r! If we set ll7 = -1 and m = 163, then 26. If the horizontal scanning period is 63.6 μs and the effective scanning rate is 83, then τ = 1"62[4S'126] Therefore, horizontal direction By using a 162 .mu.s delay circuit as a delay circuit for contour signal creation, horizontal image quality adjustment having a peak at a resolution of 245 televisions is obtained, which is equal to the peak in the vertical case.

また走査線数が標準方式の2倍程度1126本で帯域が
約5倍、20MH2の高精細度方式のテレビジョン信号
の時も同様に、演算回路16にて演算を行う。この場合
1M = 29 、63μs (fH=33.rtsM
tlz)、有効走査率を垂直95%、水平83.13%
とすると垂直解像度は約760本となり、アスペ117
、:、ア クト・レイショを4:3とすると約20M[IZの帯域
が必要と々る。また垂直方向のピークすなわちテレビ解
像度本数は、走査線数から約534本となり、水平方向
のピークを垂直と同じに選ぶとすると約14,5 MI
Tzす々わちτ−36μsとなる。
Similarly, the arithmetic circuit 16 performs calculations in the case of a high-definition television signal of 20 MH2, in which the number of scanning lines is 1126, which is about twice that of the standard system, and the band is about five times as large. In this case 1M = 29, 63μs (fH = 33.rtsM
tlz), effective scanning rate of 95% vertically and 83.13% horizontally
Then, the vertical resolution will be about 760 lines, which is 117 lines.
, :, If the act ratio is 4:3, a bandwidth of about 20M [IZ] is required. Also, the vertical peak, that is, the number of TV resolutions, is approximately 534 from the number of scanning lines, and if the horizontal peak is chosen to be the same as the vertical, it is approximately 14.5 MI
Tz is therefore τ-36 μs.

しかし実際には、垂直と同じよりも水平を高めにした方
が鮮鋭度・自然感が得られる。
However, in reality, sharpness and naturalness can be obtained by setting the horizontal position higher than the vertical setting.

したがって標準方式のテレビジョン信号の時は垂直より
、1.3倍程度水平を高めて、τ=125μSピーク周
波数4Mt周波数4乙tIz算している。
Therefore, in the case of a standard television signal, the horizontal is about 1.3 times higher than the vertical, and τ=125 μS peak frequency 4Mt frequency 4tIz is calculated.

また高精細度方式のテレビジョン信号の時も同様に垂直
より1.3倍程度水平を高めてτ−25μsピーク周波
数2oMFIzになる様に演算している。
Further, in the case of a high-definition television signal, calculations are similarly made to raise the horizontal by about 1.3 times as much as the vertical to achieve a peak frequency of τ-25 μs of 2oMFIz.

次にその動作について詳細に説明するため第8図、9図
の波形図及び周波数特性図を用いる。水平方向輪郭信号
を作成するためには、遅延手段を必要とするが、この目
的のため電荷転送素子はフロック信号の周波数を制御す
ることにより遅延時間を任意に制御できるため非常に便
利である。
Next, in order to explain the operation in detail, the waveform diagrams and frequency characteristic diagrams shown in FIGS. 8 and 9 will be used. A delay means is required to create a horizontal contour signal, and charge transfer devices are very convenient for this purpose because the delay time can be arbitrarily controlled by controlling the frequency of the flock signal.

第8図aに示す標準方式のテレビジョン信号は、第4図
の入力端子1に供給されると、第8図C5dに示す水平
同期信号と垂直同期信号も入力端子10.14に供給さ
れる。入力端子10,14からの水平・垂直同期信号は
走査線数検出回路11に供給され、垂直期間にいくつの
水平同期が存在するか、すなわち走査線数が検出される
。この走査線数検出回路11から走査線数を検出した検
出信号は、演算回路15と制御信号発生回路12で構成
された制御回路16に供給される。演算回路15は前記
述べた様に走査線数から水平方向の強調する周波数帯域
を演算してめられる。演算回路16からの演算出力は制
御回路12に供給され、制御信号発生回路12はたとえ
ば電圧制御発信器で構成されており、前記演算出力に応
じてクロック信号を発生しており、そのクロック信号が
、遅延回路4,6(電荷転送素子)に供給され、遅延回
路4,6の遅延時間を制御している。
When the standard television signal shown in FIG. 8a is supplied to input terminal 1 of FIG. 4, the horizontal and vertical synchronization signals shown in FIG. 8C5d are also supplied to input terminal 10.14. . Horizontal and vertical synchronization signals from input terminals 10 and 14 are supplied to a scanning line number detection circuit 11, which detects how many horizontal synchronizations exist in a vertical period, that is, the number of scanning lines. A detection signal that detects the number of scanning lines from the scanning line number detection circuit 11 is supplied to a control circuit 16 composed of an arithmetic circuit 15 and a control signal generation circuit 12. As described above, the arithmetic circuit 15 calculates the frequency band to be emphasized in the horizontal direction from the number of scanning lines. The calculation output from the calculation circuit 16 is supplied to the control circuit 12, and the control signal generation circuit 12 is composed of, for example, a voltage control oscillator, and generates a clock signal according to the calculation output. , are supplied to the delay circuits 4 and 6 (charge transfer elements), and control the delay times of the delay circuits 4 and 6.

したがって、第8図aに示す様々前記標準方式のテレビ
ジョン信号が入力端子1に供給された時は、第8図すに
示す様に標準方式の信号に適した13t(−シ 画質調整が行なわれ、第9図に示す様に強調される周波
数帯域がfs(たとえば4 M tlz )に設定され
る。また第8図eに示す様々高精細度方式のテレビジョ
ン信号が入力端子1に供給された時も同様に、第8図f
に示す様に高精細度方式の信号に適した画質調整が行な
われ、第9図に示す様に強調される周波数帯域が14(
たとえば20MHz)に設定される。
Therefore, when the television signals of the various standard formats shown in FIG. Then, as shown in FIG. 9, the frequency band to be emphasized is set to fs (for example, 4 M tlz). Also, television signals of various high-definition systems as shown in FIG. 8e are supplied to input terminal 1. Similarly, when
As shown in Figure 9, image quality adjustment suitable for high-definition signals is performed, and as shown in Figure 9, the frequency bands to be emphasized are 14 (
For example, it is set to 20MHz).

以上述べた実施例ではわかりやすく説明するため、走査
線数より自動的に画質調整の周波数特性を制御させる周
波数帯域を演算でめる演算回路を用いた場合について述
べてきたが、前記演算回路を省略し、初期設定を行なっ
てもよい。
In the above-mentioned embodiments, in order to provide an easy-to-understand explanation, a case has been described in which an arithmetic circuit is used that can calculate the frequency band for automatically controlling the frequency characteristics of image quality adjustment based on the number of scanning lines. You may omit it and perform initial settings.

第10図は本発明の第2の実施例を示す画質調整回路の
ブロック図であり、第11図、第12図はその動作を説
明するための周波数特性図である。
FIG. 10 is a block diagram of an image quality adjustment circuit showing a second embodiment of the present invention, and FIGS. 11 and 12 are frequency characteristic diagrams for explaining its operation.

第4図と同様の動作をするものは同一の番号で示し説明
は省略する。なお第10図には前記述べた演算回路を省
略し、初期設定を行う時のブロック図を示す。第4図と
異なるのは強調される周波14ヘー。
Components that operate in the same way as in FIG. 4 are designated by the same numerals and explanations will be omitted. It should be noted that FIG. 10 shows a block diagram for performing initial settings, with the arithmetic circuit described above omitted. The difference from Fig. 4 is that frequency 14 is emphasized.

数帯域の映像信号成分を抽出する抽出回路17を設け、
前記抽出回路17からの信号レベルを画質調整の利得を
制御するための入力端子13に供給する点である。
An extraction circuit 17 for extracting video signal components in several bands is provided,
The point is that the signal level from the extraction circuit 17 is supplied to the input terminal 13 for controlling the gain of image quality adjustment.

したがって、第11図aに示す様に強調される周波数帯
域がfsで、多くの映像信号成分(斜線)が存在する時
は、抽出回路17からの信号としては、たとえばレベル
が大きくなる。この信号を画質調整の利得を制御する入
力端子13へ供給することにより、第12図破線に示す
様に強調される周波数帯域f5の利得が大きくなる。
Therefore, as shown in FIG. 11a, when the frequency band to be emphasized is fs and many video signal components (shaded) are present, the level of the signal from the extraction circuit 17 will be high, for example. By supplying this signal to the input terminal 13 that controls the gain for image quality adjustment, the gain of the frequency band f5 to be emphasized increases as shown by the broken line in FIG.

また第11図すに示す様に、強調される周波数帯域f5
に、映像信号成分が存在しない時は、抽出回路17から
の信号としては、レベルが小さくなる。この信号を画質
調整の利得を制御する入力端子13へ供給することによ
り、第12図実線に示す様に強調される周波数帯域f5
の利得が小さくなる。
Moreover, as shown in FIG. 11, the frequency band f5 to be emphasized is
On the other hand, when no video signal component exists, the level of the signal from the extraction circuit 17 is low. By supplying this signal to the input terminal 13 that controls the gain for image quality adjustment, the frequency band f5 is emphasized as shown by the solid line in FIG.
gain becomes smaller.

したがって、映像信号に応じて自動的に画質調)の利得
を制御できる。
Therefore, it is possible to automatically control the gain (image quality tone) according to the video signal.

15・く−シ 以上この実施例では、特定の周波数帯域を強調する場合
について述べてきたが、周波数帯域を制御してもよい。
15. In this embodiment, a case has been described in which a specific frequency band is emphasized, but the frequency band may also be controlled.

ところでこの実施例では遅延手段として電荷転送素子を
用いた場合について説明したが、可変遅延線たとえばタ
ップディレーライン等を用いて段階的に切換えてもよい
Incidentally, in this embodiment, a case has been described in which a charge transfer element is used as the delay means, but a variable delay line such as a tap delay line or the like may be used for stepwise switching.

また輪郭信号を作成する手段として、遅延線方式につい
て説明したが、原信号と低域通過フィルタたとえばアク
ティブフィルタ等で差をとって輪郭信号とする低域通過
フィルタ方式を用いて、連続又は段階的に切換えてもよ
い。
In addition, as a means of creating a contour signal, we have explained the delay line method, but using a low-pass filter method that takes the difference between the original signal and a low-pass filter, such as an active filter, to create a contour signal, it is possible to create a contour signal continuously or stepwise. You may switch to

またり、C等の受動素子を用いて二次微分する方式を段
階的に切換えてもよい。
Alternatively, the method of second-order differentiation using a passive element such as C may be switched in stages.

以上述べたものは、二次微分を行い輪郭信号を作成する
手段について述べてきたが、前記手段により、−次微分
を行い、偏向の電子ビームの速度を速度変調して、画質
調整を行なってもよい。
What has been described above is a means for performing second-order differentiation and creating a contour signal. However, the means described above performs -order differentiation, modulates the velocity of the deflected electron beam, and adjusts the image quality. Good too.

発明の効果 本発明の画質調整回路は、映像信号の走査線数を検出す
る走査線数検出手段と、前記走査線数検出手段からの信
号により、映像信号の周波数特性を制御する画質調整手
段とを設けることにより走査線数の異なる各種の映像信
号に対して、自動的に垂直及び水平方向のバランスにと
れた最適の画質調整が行なえるため、高品質な画像を得
ることができる。
Effects of the Invention The image quality adjustment circuit of the present invention includes a scanning line number detection means for detecting the number of scanning lines of a video signal, and an image quality adjustment means for controlling the frequency characteristics of the video signal using a signal from the scanning line number detection means. By providing this, it is possible to automatically perform optimum image quality adjustment with a balance in the vertical and horizontal directions for various video signals having different numbers of scanning lines, so that high-quality images can be obtained.

また前記画質調整手段に、周波数特性を制御する周波数
帯域の映像信号成分を抽出する抽出回路を設けこの抽出
回路からの信号レベルで、画質調整の利得を制御するこ
とにより、S/Nの良好な高品質の画像を得ることがで
きる。
Further, the image quality adjustment means is provided with an extraction circuit for extracting a video signal component in a frequency band for controlling frequency characteristics, and by controlling the gain of image quality adjustment using the signal level from this extraction circuit, a good S/N ratio can be achieved. High quality images can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例における画質調整装置の回路図、第2図
はその動作を説明するだめの波形図、第3図はその動作
を説明するための周波数特性図、第4図は本発明の第1
の実施例における画質調整装置のブロック図、第5図は
その動作を説明するための波形図、第6図、第7図はそ
の動作を説明するための解像度特性図、第8図はその動
作をより17ページ 詳細に説明するための波形図、第9図はその動作を説明
するための周波数特性図、第10図は本発明の第2の実
施例における画質調整装置のブロック図、第11図、第
12図はその動作を説明するための周波数特性図である
。 16・・・・・・画質調整回路、4,5・・・・・・遅
延回路、6.9・・・・・・加算回路、7・・・・・・
減算回路、8・・・・・・利得制御回路、16・・・・
・・演算回路、12・・・・・・制御信号発生回路、1
1・・・・・・走査線数検出回路。 代理人の氏名 弁理士 中 尾敏 男 ほか1名第1図 第2図 第3図 十■邊丸 ど 区 8 第10図 第0図 士1〕炭)矢、 6 L −−J 第11図 151■想
Fig. 1 is a circuit diagram of a conventional image quality adjustment device, Fig. 2 is a waveform diagram for explaining its operation, Fig. 3 is a frequency characteristic diagram for explaining its operation, and Fig. 4 is a diagram for explaining its operation. 1st
5 is a waveform diagram for explaining its operation, FIGS. 6 and 7 are resolution characteristic diagrams for explaining its operation, and FIG. 8 is its operation. FIG. 9 is a frequency characteristic diagram for explaining its operation, FIG. 10 is a block diagram of the image quality adjustment device in the second embodiment of the present invention, and FIG. 12 are frequency characteristic diagrams for explaining the operation. 16... Image quality adjustment circuit, 4, 5... Delay circuit, 6.9... Addition circuit, 7...
Subtraction circuit, 8...Gain control circuit, 16...
... Arithmetic circuit, 12 ... Control signal generation circuit, 1
1...Scanning line number detection circuit. Name of agent Patent attorney Toshio Nakao and 1 other person Figure 1 Figure 2 Figure 3 151 ■Thoughts

Claims (3)

【特許請求の範囲】[Claims] (1)映像信号の走査線数を検出する走査線数検出手段
と、この走査線数検出手段からの信号により映像信号の
周波数特性を制御する画質調整手段とを備えた画質調整
装置。
(1) An image quality adjustment device comprising a scanning line number detection means for detecting the number of scanning lines of a video signal, and an image quality adjustment means for controlling the frequency characteristics of the video signal using a signal from the scanning line number detection means.
(2)画質調整手段として、走査線数検出手段からの信
号により、映像信号の周波数特性が制御される周波数帯
域を演算によりめる演算回路を用いた特許請求の範囲第
1項記載の画質調整装置。
(2) The image quality adjustment according to claim 1, wherein the image quality adjustment means uses an arithmetic circuit that calculates the frequency band in which the frequency characteristics of the video signal are controlled based on the signal from the scanning line number detection means. Device.
(3)画質調整手段として、映像信号の周波数特性が制
御される周波数帯域の映像信号成分を抽出する抽出回路
と、この抽出回路からの信号レベルにより画質調整の利
得を制御する利得制御回路とを用いた特許請求の範囲第
1項記載の画質調整装置。
(3) The image quality adjustment means includes an extraction circuit that extracts a video signal component in a frequency band in which the frequency characteristics of the video signal are controlled, and a gain control circuit that controls the gain of the image quality adjustment based on the signal level from this extraction circuit. The image quality adjustment device according to claim 1 is used.
JP59049512A 1984-03-14 1984-03-14 Picture quality adjusting device Pending JPS60192467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049512A JPS60192467A (en) 1984-03-14 1984-03-14 Picture quality adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049512A JPS60192467A (en) 1984-03-14 1984-03-14 Picture quality adjusting device

Publications (1)

Publication Number Publication Date
JPS60192467A true JPS60192467A (en) 1985-09-30

Family

ID=12833181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049512A Pending JPS60192467A (en) 1984-03-14 1984-03-14 Picture quality adjusting device

Country Status (1)

Country Link
JP (1) JPS60192467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344528A (en) * 1992-10-22 1993-12-24 Olympus Optical Co Ltd Outline correcting device for endoscope image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344528A (en) * 1992-10-22 1993-12-24 Olympus Optical Co Ltd Outline correcting device for endoscope image

Similar Documents

Publication Publication Date Title
JPH06507776A (en) video enhancer
US5444500A (en) Display device including a correction circuit, and correction circuit for use in a display device
GB2067045A (en) Vertical aperture correction of a video signal
JPS60192467A (en) Picture quality adjusting device
US4336552A (en) Vertical aperture correction circuit
JP2751447B2 (en) Noise reduction device
JPS63198483A (en) Picture-quality adjusting circuit
US5416818A (en) X-ray TV camera having function to switch a visual field of X-ray image
JPH01215185A (en) Contour compensation circuit
JPS62222777A (en) Outline compensation device
JP2003032513A (en) Image signal processor
JPS60192468A (en) Picture quality adjusting device
JP3356815B2 (en) Circuit for adaptive white-compression of video signal
JPS60192465A (en) Picture quality adjusting device
JP2871323B2 (en) Video signal processing device
EP0598442B1 (en) Display device including a correction circuit, and correction circuit for use in said device
KR100400017B1 (en) Apparatus and method for enhancing resolution of image
JPH0329570A (en) Dynamic speed modulation circuit
JPS60192466A (en) Profile compensating device
JPH04346510A (en) Filter device
JP3300453B2 (en) Image quality adjustment device
JPH03268684A (en) Control correction circuit
JPH0522634A (en) Contour correction circuit
SU1119188A1 (en) Corrector of contour sharpness of television picture
EP0268332A1 (en) Method and apparatus for generating an adaptive peaking signal increasing the sharpness of a video signal