JPS60192338A - Endpoint detecting method - Google Patents

Endpoint detecting method

Info

Publication number
JPS60192338A
JPS60192338A JP4891784A JP4891784A JPS60192338A JP S60192338 A JPS60192338 A JP S60192338A JP 4891784 A JP4891784 A JP 4891784A JP 4891784 A JP4891784 A JP 4891784A JP S60192338 A JPS60192338 A JP S60192338A
Authority
JP
Japan
Prior art keywords
layer
state
signal
electric signal
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4891784A
Other languages
Japanese (ja)
Other versions
JPH0139648B2 (en
Inventor
Yoshiyuki Imada
今田 善之
Masatoshi Tahira
昌俊 田平
Kenji Inoue
井上 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Nippon Cables Ltd
Original Assignee
Dainichi Nippon Cables Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Nippon Cables Ltd filed Critical Dainichi Nippon Cables Ltd
Priority to JP4891784A priority Critical patent/JPS60192338A/en
Publication of JPS60192338A publication Critical patent/JPS60192338A/en
Publication of JPH0139648B2 publication Critical patent/JPH0139648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Abstract

PURPOSE:To enable to detect an endpoint without fail by a method wherein the amount of fluctuations per prescribed time of the level of an electric signal is calculated, said amount of fluctuations is discriminated with the passage of time, and a judgement wherein the layer thickness has become zero is given when the fact that the above is in the first condition is detected in prescribed number of times. CONSTITUTION:A developing solution 52 is filled up in a developing vessel 51, and the lower layer 60 having the surface layer (the photoresist layer whereon a pattern is exposed) to be developed is fixed. A sideviewing lens barrel 20 is fixed in such a manner that the incident light sent from a prism 42 will be intersecting at right angle with the surface of the surface layer 61 using a fittings 36. The incident light coming from the prism 42 is reflected to the surface of the surface layer 61 and on the surface of the lower layer 60, and the intensity of the entire reflected light is changed. This reflected light reaches the tip of an optical fiber code 10, and it is conducted to an O/E converter 3 through the intermediary of an optical fiber code 12. The O/E converter 3 converts the incident optical signal, i.e., the change in intensity of the reflected light, into an analog electric signal using the photoelectric conversion element such as a photodiode and the like. Said analog electric signal is converted into a digital electric signal by an A/D converter 4, and it is inputted to a central processing unit (CPU)1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置等のエツチングによる回路パター
ン作成時のエツチング終了点の検出、あるいはこのエツ
チングに先立つ回路パターンの現像の終了点等の検出方
法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to detecting the end point of etching when creating a circuit pattern by etching a semiconductor device, etc., or detecting the end point of development of a circuit pattern prior to etching. Regarding the method.

〔従来技術〕[Prior art]

集積回路等の半導体装置を作成する場合にはフォトリソ
グラフィ技術が用いられる。
Photolithography technology is used to create semiconductor devices such as integrated circuits.

これは、半導体基板となるべき板状物質の下層に蒸着、
塗着等により他の物質からなる層を形成して多層構造と
し、その表層に更にフォトレジスト等の耐腐食性物質を
塗布して回路パターンを露光し、これを現像してフォト
レジスト層の感光した部分又は感光していない部分を除
去して回路パターンを形成する。次にこれを腐食性液体
くエツチング媒体)に浸漬して表層のフォトレジストが
除去されている部分を腐食させて下層を露呈させ、最後
に表層上のフォトレジストを除去して所定の回路パター
ンを作成するものである。
This is deposited on the bottom layer of a plate-like material that will become a semiconductor substrate.
A layer made of other substances is formed by coating to create a multilayer structure, and a corrosion-resistant material such as photoresist is further applied to the surface layer, a circuit pattern is exposed, and this is developed to expose the photoresist layer to light. The exposed or unexposed portions are removed to form a circuit pattern. This is then immersed in a corrosive liquid (etching medium) to corrode the areas where the surface photoresist has been removed, exposing the underlying layer.Finally, the photoresist on the surface layer is removed to form a predetermined circuit pattern. It is something to create.

ところで、耐腐食性物質にて回路パターンを形成する際
の現像の進行状況、即ち耐腐食性物質の除去の進行状況
、あるいはエツチングの際の表層の腐食の進行状況、即
ち腐食が下層表面まで完了したか否かの検出は品質管理
上重要である。
By the way, the progress of development when forming a circuit pattern with a corrosion-resistant material, that is, the progress of removal of the corrosion-resistant material, or the progress of corrosion of the surface layer during etching, that is, the corrosion has completed to the surface of the underlying layer. Detection of whether or not it has been carried out is important for quality control.

従来ここのような終了点検出方法としては、例えば特開
昭55−104452等が知られているが、これは可干
渉光の反射光を電気信号に変換し、このアナログ信号の
時間導関数をめて終了点を判断するものであるが、終了
点付近の信号変化が緩やかであるため、その判断が困難
である。
Conventionally, such an end point detection method is known, for example, in JP-A-55-104452, which converts reflected light of coherent light into an electrical signal and calculates the time derivative of this analog signal. However, since the signal changes near the end point are gradual, this determination is difficult.

また信号処理系の定常ノイズと検出すべき信号との区別
が行ない難い点、更には終了後にたとえば腐食液中の気
泡等からの反射光があった場合等には未だ終了していな
いとの判断が行われる等、終了判定が不確実であり、ま
たややもすると終了反対に遅れが生じて所謂オーハエソ
チングを惹起し、不良品の発生を見るに到る場合があっ
た。
In addition, it is difficult to distinguish between stationary noise in the signal processing system and the signal to be detected, and furthermore, if there is reflected light from, for example, bubbles in the corrosive liquid, it may be difficult to determine that the process has not finished yet. The determination of completion is uncertain, and if something goes wrong, a delay in completion may occur, resulting in so-called over-eating, which may lead to the production of defective products.

〔発明の目的〕 本発明は以上の如き事情に鑑みてなされたものであり、
確実に終点を検出し得、また電気的ノイズの影響を排し
て誤検出のないエツチング及びそれに先立つ現像工程等
における終了点検出方法の提案を目的とする。
[Object of the invention] The present invention has been made in view of the above circumstances,
The object of the present invention is to propose a method for detecting an end point in etching and the development process that precedes it, which can reliably detect the end point, eliminates the influence of electrical noise, and prevents false detection.

〔発明の構成〕[Structure of the invention]

本発明に係る終点検出方法は、屈折率が異なる2Nの内
のINの逓減していく層厚が零となったことを検出する
終点検出方法において、層厚が逓減していく層の表面側
から可干渉光を投射し、該可干渉光の反射光を検出して
電気信号に変換し、該電気信号のレヘルの所定時間当り
の変動鍛をめ、これを所定範囲内にある第1状態、所定
範囲を超えて増加する第2状態、又は所定範囲を超えて
減少する第3状態に経時的に弁別し、前記第1状態であ
ることが所定回数に亘って検知された場合に前記層厚が
零となったと判定することを特徴とする。
The end point detection method according to the present invention is a method for detecting the end point of detecting when the layer thickness of IN of 2N having different refractive indexes has reached zero. projecting coherent light from the , detecting the reflected light of the coherent light and converting it into an electrical signal, adjusting the level of the electrical signal to fluctuate per predetermined time, and converting it into a first state within a predetermined range. , the second state increases over a predetermined range, or the third state decreases beyond a predetermined range over time, and when the first state is detected a predetermined number of times, the layer It is characterized in that it is determined that the thickness has become zero.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof.

第1図は本発明に係る終点検出方法を実施するための装
置を示すブロック図である。
FIG. 1 is a block diagram showing an apparatus for implementing the end point detection method according to the present invention.

レーザ発振器2は1le−Neレーザ光を発するもので
あり、そのレーザ光は光フアイバコード10を介して後
述する側視鏡筒20に伝送される。この光フアイバコー
ド10は結束具13から先端側部分は、光フアイバコー
ド11の周囲を光フアイバコード12の多数の素線で囲
繞した重心構造となっており、レーザ発振器2からのレ
ーザ光は光フアイバコード11を介して側視鏡筒20へ
伝送され、後述する如く側視鏡筒20からの反射光は光
フアイバコード12を介してO/E (光電)変換器4
に還送される構成となっている。そして、光フアイバコ
ード10の先端には自動現像装置50の現像槽51の底
面に取り付けられた固定具36にその脚34を固定され
た側視鏡筒20が接続されている。
The laser oscillator 2 emits a 1le-Ne laser beam, and the laser beam is transmitted to a side viewing barrel 20, which will be described later, via an optical fiber cord 10. The optical fiber cord 10 has a center of gravity structure in which the optical fiber cord 11 is surrounded by a large number of strands of the optical fiber cord 12 from the binding device 13 to the tip side, and the laser beam from the laser oscillator 2 is The light is transmitted to the side viewing barrel 20 via the fiber cord 11, and as described later, the reflected light from the side viewing barrel 20 is transmitted to the O/E (photoelectric) converter 4 via the optical fiber cord 12.
It is configured to be returned to A side-viewing lens barrel 20 whose legs 34 are fixed to a fixture 36 attached to the bottom surface of a developing tank 51 of an automatic developing device 50 is connected to the tip of the optical fiber cord 10.

第2図は側視鏡筒20の構成を示す縦断面図、第3図は
その本体2OAの構成を示す縦断面図、第4図は同じく
光フアイバコード1oとの接続部20Bを示す外観図で
ある。
FIG. 2 is a vertical cross-sectional view showing the configuration of the side viewing barrel 20, FIG. 3 is a vertical cross-sectional view showing the configuration of the main body 2OA, and FIG. 4 is an external view showing the connecting portion 20B with the optical fiber cord 1o. It is.

本体2〇八は、鏡筒31及び固定用脚34とからなる。The main body 208 consists of a lens barrel 31 and fixing legs 34.

鏡筒31はその断面の外形が正方形の有底角筒状に形成
され、その底面の位置を底辺とする略正方形の開口部3
5が一側面に設けられており、この開口部35には1l
e−Ne レーザ光(0,633μm)に対して無反射
となるようにコーティング処理されたガラス板33が水
密嵌合されている。
The lens barrel 31 is formed into a rectangular cylinder shape with a square bottom in cross section, and has a substantially square opening 3 whose base is at the bottom of the lens barrel 31.
5 is provided on one side, and this opening 35 has a 1l
A glass plate 33 coated so as not to reflect e-Ne laser light (0.633 μm) is fitted in a watertight manner.

鏡筒31の上端面から開口部35の上縁辺の位置にかけ
ては円孔が開設されており、その内周面には雌ネジが刻
設されており、この上端部内周面には耐腐食性合成樹脂
製の0リング32が内嵌されている。この鏡筒31内の
底部には直角プリズム42がその先軸をガラス板33表
面と直交するように取り付けられている。即ち、第5図
にその外観図を示す如く、プリズム42は、後述するス
リーブ24の外径よりやや大内径で外周面に雄ネジを刻
設した円筒体状のプリズムホルダ40の底面下側に突設
された支持板43.43に抱持されており、このプリズ
ムホルダ40を鏡筒31内に螺合したものであり、鏡筒
31内の雌ネジの先端までプリズムホルダ4oを螺入す
ることによりプリズム42の一面がガラス板33と略対
向するようになっている。
A circular hole is formed from the upper end surface of the lens barrel 31 to the upper edge of the opening 35, and a female thread is carved on the inner peripheral surface of the hole. An O-ring 32 made of synthetic resin is fitted inside. A right-angled prism 42 is attached to the bottom of the lens barrel 31 so that its front axis is perpendicular to the surface of the glass plate 33. That is, as shown in FIG. 5, the prism 42 is mounted on the bottom of a cylindrical prism holder 40, which has an inner diameter slightly larger than the outer diameter of the sleeve 24, which will be described later, and has a male thread carved on its outer circumferential surface. The prism holder 40 is held by a protruding support plate 43, 43, and is screwed into the lens barrel 31. The prism holder 4o is screwed into the lens barrel 31 up to the tip of the female screw. As a result, one surface of the prism 42 substantially faces the glass plate 33.

更に鏡筒31の底部下側には脚34が取り付けられてい
る。この脚34は鏡筒31の長さ方向と軸長方向を一致
させた螺杆であって、前述の如く現像槽51底面に設置
された固定具36に刻設された雌ネジに螺合されること
により現像槽51に固定される。
Furthermore, a leg 34 is attached to the bottom of the lens barrel 31. This leg 34 is a screw whose length direction and axial direction are aligned with the length direction of the lens barrel 31, and is screwed into a female thread carved in a fixture 36 installed on the bottom surface of the developer tank 51 as described above. As a result, it is fixed to the developer tank 51.

光フアイバコード10との接続部20Bハ、ホルタ21
、押えリング22、ストップリング23等からなってい
る。
Connection part 20B with optical fiber cord 10, Holter 21
, a presser ring 22, a stop ring 23, etc.

ホルダ21はステンレス製であって、その上側部の外径
を鏡筒31の断面の外辺長と同一とし、下側部は上側部
に比してやや小径に形成されて鏡筒31に刻設された雌
ネジに螺合するように雄ネジが刻設された円筒であり、
前述の光フアイバコード10の先端面にその下端面を一
致させて光フアイバコード10に外嵌された適長のステ
ンレス製スリーブ24が遊嵌されている。このスリーブ
24のホルダ21下端から下方への突出部分の下端寄り
の位置にはステンレス製のストップリング23がセット
ビス23′により固定されているが、スリーブ24のス
トップリング23下端からの突出長は前述のプリズムホ
ルダ40の軸長方向寸法よりやや短目となっている。
The holder 21 is made of stainless steel, the outer diameter of the upper part is the same as the outer length of the cross section of the lens barrel 31, and the lower part is formed with a slightly smaller diameter than the upper part and is engraved on the lens barrel 31. It is a cylinder with a male thread carved into it so that it can be screwed into a female thread.
A stainless steel sleeve 24 of an appropriate length is loosely fitted around the optical fiber cord 10 with its lower end surface matching the distal end surface of the optical fiber cord 10 described above. A stop ring 23 made of stainless steel is fixed to a position near the lower end of the portion of the sleeve 24 that protrudes downward from the lower end of the holder 21 with a set screw 23'. It is slightly shorter than the axial dimension of the prism holder 40 described above.

スリーブ24のストップリング23とホルダ21との間
には、鏡筒31に刻設された雌ネジと螺合する雄ネジが
刻設されたステンレス製の押えリング22が遊嵌されて
いる。
A stainless steel presser ring 22 is loosely fitted between the stop ring 23 of the sleeve 24 and the holder 21 and has a male thread that engages with a female thread that is formed on the lens barrel 31.

従って、まず鏡筒31内底部にプリズム42を固定した
プリズムホルダ40を螺入し、ストップリング23下端
がプリズムホルダ40」二面に当接するまでスリーブ2
4下端部を鏡筒31内に挿入する。そして所定の工具(
図示せず)を鏡筒31の上部開口から挿入して押えリン
グ22を回転させてストップリング23上部に当接する
まで下方へ螺進させてストップリング23をプリズムホ
ルダ40との間で挾む状態とする。これにより光フアイ
バコード10はその先端をプリズム42上面と極くわず
か離隔し、かつ光軸を一致させた状態で鏡筒31に固定
される。この後ホルダ21の下側小径部を鏡筒31に切
られた雌ネジに螺合すると、鏡筒31上端に設けられた
Oリング32により鏡筒31とホルダ21との間は液密
状態となる。
Therefore, first screw the prism holder 40 to which the prism 42 is fixed into the inner bottom of the lens barrel 31, and then screw the sleeve 2 until the lower end of the stop ring 23 comes into contact with the two surfaces of the prism holder 40.
4. Insert the lower end into the lens barrel 31. and the prescribed tool (
(not shown) is inserted into the upper opening of the lens barrel 31, the retaining ring 22 is rotated, and the stop ring 23 is screwed downward until it abuts the upper part of the stop ring 23, so that the stop ring 23 is sandwiched between it and the prism holder 40. shall be. As a result, the optical fiber cord 10 is fixed to the lens barrel 31 with its tip separated from the upper surface of the prism 42 by a very small distance and with its optical axis aligned. After that, when the lower small diameter part of the holder 21 is screwed into the female thread cut in the lens barrel 31, the O-ring 32 provided at the upper end of the lens barrel 31 creates a liquid-tight state between the lens barrel 31 and the holder 21. Become.

このように側視鏡筒20を組み立てることにより、光フ
アイバコードIOから伝送されたレーザ光はプリズム4
2に入射されてその進行方向を90°変換されてガラス
板33を透過して外部へ投射され、また外部からガラス
板33を透過してプリズム42に入射した光はその進行
方向を90°変換されて光フアイバコード10に入射す
ることとなる。
By assembling the side viewing barrel 20 in this way, the laser beam transmitted from the optical fiber cord IO is transmitted through the prism 4.
2, its traveling direction is changed by 90 degrees, and the light is transmitted through the glass plate 33 and projected to the outside, and the light that passes through the glass plate 33 from the outside and enters the prism 42 has its traveling direction changed by 90 degrees. and enters the optical fiber cord 10.

現像槽51内にはフォトレジスト用の現像液52が満た
されており、現像液52により現像されるべき表層(回
路パターンを露光されたフォトレジスト層)61を有す
る下層60が図示しない適宜の保持手段により現像層5
1の底面とその表面を垂直として固定されている。そし
て、前述した如く、この表N6]の表面にプリズム42
からの投射光が直交するように側視鏡筒20が、現像層
51底面に取り付けられた固定具36により固定されて
いる。
The developing tank 51 is filled with a photoresist developer 52, and a lower layer 60 having a surface layer (a photoresist layer exposed with a circuit pattern) 61 to be developed with the developer 52 is held in an appropriate manner (not shown). Developing layer 5 by means
The base of 1 and its surface are fixed vertically. As mentioned above, the prism 42 is placed on the surface of this table N6.
The side-viewing lens barrel 20 is fixed by a fixture 36 attached to the bottom surface of the developing layer 51 so that the projected light beams from the side viewing lens barrel 20 are orthogonal to each other.

従ってプリズム42からの投射光は表1at61の表面
及び下層62の表面それぞれにで反射され、この際に表
層の厚さ分の2倍の光路長の相異により位相のずれた両
反射光が干渉し合うため、反射光全体としての光強度が
変化する。
Therefore, the projected light from the prism 42 is reflected by the surface of the table 1at61 and the surface of the lower layer 62, and at this time, the two reflected lights, which are out of phase, interfere with each other due to the difference in optical path length, which is twice the thickness of the surface layer. As a result, the light intensity of the reflected light as a whole changes.

この反射光はガラス板35を介してプリズム42に入射
し、90°進行方向を変換されて光フアイバコード10
の先端に到り、その光フアイバコード12を介してO/
E変換部3に伝送される。
This reflected light enters the prism 42 via the glass plate 35, and its traveling direction is changed by 90°, and the optical fiber cord 10
to the tip of the O/
It is transmitted to the E converter 3.

07E変換部3は入射された光学信号、即ち」二連の反
則光の強度変化をフ第1・ダイオード等の光電変換素子
によりアナログの電気信号に変換するものであり、この
アナログの電気信号はA/D(アナログ/デジタル)変
換器4によりデジタル電気信号に変換されて0円」】に
入力される。
The 07E conversion unit 3 converts the incident optical signal, that is, the intensity change of the two series of repulsed lights, into an analog electrical signal using a photoelectric conversion element such as a first diode, and this analog electrical signal is The signal is converted into a digital electrical signal by an A/D (analog/digital) converter 4 and inputted to 0 yen.

CPU lば操作部7、ROM8、RAM 9等と共に
マイクロコンピュータシステムを構成しており、入力さ
れた信号の演算処理等を行うものであり、その結果は表
示装置5に表示され、また前述の自動現像装置500制
御装置に適宜与えられる。なお、ROM BはCPII
 1の演算プログラム等を格納しており、RAM 9は
演算処理に必要なデータ、演算の途中結果等を記憶する
ものである。
The CPU constitutes a microcomputer system together with the operating section 7, ROM 8, RAM 9, etc., and performs arithmetic processing of input signals.The results are displayed on the display device 5, and the above-mentioned automatic It is given to the developing device 500 control device as appropriate. Furthermore, ROM B is CPII
The RAM 9 stores data necessary for arithmetic processing, intermediate results of arithmetic operations, and the like.

次に、本発明方法を実施するための−上述の如く構成さ
れた装置の動作について、CPU1の演算処理内容を示
す第6.8.10図のフローチャートに従って説明する
Next, the operation of the apparatus configured as described above for carrying out the method of the present invention will be explained with reference to the flowchart of FIG.

まず第7図のCPII Iによる処理対象となる原信号
、即ち表層61及び下層60の表面からの反射光の強度
変化を上段に、これをCPU lにより処理した結果を
下段にそれぞれ示したグラフに従ってCPt11の処理
内容について説明する。
First, the original signal to be processed by the CPII I in FIG. 7, that is, the intensity change of the reflected light from the surfaces of the surface layer 61 and the lower layer 60, is shown in the upper row, and the result of processing this signal by the CPU I is shown in the lower row. The processing contents of CPt11 will be explained.

最初に現像装置50に対して現像開始を指示する信号S
が与えられると、CPU 1にもこの信号Sが与えられ
る。これによりCPU lは所定時間T1の経過後に原
信号の処理を開始するが、これは現像開始直後に無用の
処理を行って誤検出等が発生するのを回避するためであ
る。
First, a signal S instructs the developing device 50 to start development.
When the signal S is given, this signal S is also given to the CPU 1. As a result, the CPU 1 starts processing the original signal after the predetermined time T1 has elapsed, but this is to avoid unnecessary processing immediately after the start of development, which would result in false detection or the like.

次にCP[I 1は原信号のサンプリングを開始するが
、このサンプリングはたとえば、A/D変換器4により
lOm秒間秒間子原信号のデジタル化サンプリングを行
う。このようにしてサンプリングされた各時点の反射光
強度のデータを処理するが、第8図はそのデータ処理、
即ちH,L、 E判定のフローチャートである。
CP[I 1 then starts sampling the original signal, for example by performing digitized sampling of the original signal for lOm seconds by means of the A/D converter 4. The data of reflected light intensity at each time point sampled in this way is processed, and FIG. 8 shows the data processing,
That is, this is a flowchart of H, L, and E determination.

10m秒間隔にてサンプリングされた反射光強度のデー
タDi は順次RAM 9に格納されるが、サンプリン
グ開始後のデータ数がn個(装置の電気的ノイズのレベ
ルが高い場合はnを比較的大に、ノイズのレベルが低い
場合にはnを比較的小とする)になると実際の処理を開
始する。
The reflected light intensity data Di sampled at 10 msec intervals are sequentially stored in the RAM 9, but the number of pieces of data after sampling starts is n (if the electrical noise level of the device is high, n may be set to a relatively large number). When the noise level is low, n is set to be relatively small), the actual processing starts.

データDi (i>n)が読込まれると、データDiを
含む過去のn個のデータDi−n”Dnの内最大及び最
小値を除外した残りのn−2個の平均値Diを算出して
これを現時点を代表するデータとする。そして1つ前の
データDi−1が読み込まれた時点で算出された平均値
Di−+ 、即ちデータD 1−n−1〜Dn−1の内
最大及び最小値を除外した残りのn−2個の平均値Di
−+を過去を代表するデータとする。そして両データD
i とDL+ との比較を行うことにより入力信号値(
反射光強度)の変化を検出するが、装置の電気的ノイズ
の影響を排除するためこの電気的ノイズの平均値よりや
や大である値を八■とするとl Di −Di−t l
 <1 八Vの第1の状態では実質的な信号レベルの変化はない
、Di −Di−t >AVの第2の状態では信号レベ
ルが増加しつつあり、Di −Di−+ <−ΔVの第
3の状態では信号レベルが減少しつつあるとしてそれぞ
れ比較結果″E″、′H″、″L″として判断する。信
号値の変化がない場合、即ち反射光強度が一定である°
“E”の場合には信号が極大又は極小のピーi付近にあ
る場合及び現像が終了した場合とがあるが、この“E”
の場合には終了判定が行われる。
When the data Di (i>n) is read, the average value Di of the remaining n-2 pieces excluding the maximum and minimum values among the past n pieces of data Di-n''Dn including the data Di is calculated. Then, the average value Di-+ calculated at the time when the previous data Di-1 was read, that is, the maximum value among the data D1-n-1 to Dn-1. and the remaining n-2 average values Di excluding the minimum value
Let −+ be data representing the past. And both data D
By comparing i and DL+, the input signal value (
In order to eliminate the influence of the electrical noise of the device, let us take a value that is slightly larger than the average value of this electrical noise as 8■ Di −Di−t l
In the first state with <1 8V there is no substantial change in signal level, in the second state with Di -Di-t >AV the signal level is increasing and with Di -Di-+ <-ΔV In the third state, the signal level is decreasing, and the comparison results are determined as "E,""H," and "L." If there is no change in the signal value, that is, the reflected light intensity is constant.
In the case of "E", there are cases where the signal is near the maximum or minimum peak i, and there are cases where development has been completed, but this "E"
In this case, a termination determination is made.

第10図は終了判定のフローチャートである。FIG. 10 is a flowchart of termination determination.

終了判定は基本的には” E”、即ち第1の状態が所定
回数N以上継続して検出されたが否がで行われる。しか
し、たとえば第9図に示す如く実際には終了状態となっ
て“E”の状態がある程度継続した後、終了判定が下さ
れる所定回数Nまで“E″の状態が検出されない内に何
らかの原因により“H”又は”L”と判定されるような
ノイズが入力した場合、EHL判定の結果は“H”又は
°“r−”と判定されて終了判定が中断される。この2 ような誤判定を回避するため、CPU ]ば過去の信号
の周期を基に上述のようなノイズの排除を行う。
The end determination is basically made based on "E", that is, whether the first state has been continuously detected a predetermined number of times N or more. However, as shown in FIG. 9, for example, after the "E" state has continued for a certain amount of time when the end state has actually been reached, some reason may occur before the "E" state is not detected until the predetermined number of times N when the end judgment is made. If a noise that is determined to be "H" or "L" is input, the result of the EHL determination is determined to be "H" or "r-", and the end determination is interrupted. In order to avoid such erroneous determinations, the CPU performs noise elimination as described above based on the past signal cycle.

具体的には、“E″以外状態であると判定される都度カ
ウンタC2を+1づつインクリメントする■のステップ
へ進む。そして”E″の状態が検出された場合にば■の
ステップへ進んでカウンタC1を+1づつインクリメン
トした1麦カウンタC2(D値VC2を読み出し記憶す
る。
Specifically, the process proceeds to step (2) in which the counter C2 is incremented by +1 each time it is determined that the state is other than "E". When the state of "E" is detected, the process proceeds to step (3), where the counter C1 is incremented by +1 and the wheat counter C2 (D value VC2) is read and stored.

次にカウンタC2の値VC2が零でない場合、即ち直前
のHLE判定の結果が“°H”又は“L”であった場合
にはその値VC2を記憶した後カウンタC2をリセット
 (VO2=0)L、カウンタC2の過去の値から最小
値を除外した平均値V02をめると、このVO2は第7
図に■を付して示す如く過去の信号の平均半周期に相当
する。そして■のステップにてカウンタC1の値VC1
が所定値Nより大であれば終了と判定されるが、小であ
る間はHL E判定へ戻る。
Next, if the value VC2 of the counter C2 is not zero, that is, if the result of the previous HLE judgment was "°H" or "L", the value VC2 is memorized and then the counter C2 is reset (VO2=0) L, if we add the average value V02 excluding the minimum value from the past values of counter C2, this VO2 is the seventh
As shown in the figure with ■, it corresponds to the average half period of the past signal. Then, in step ■, the value VC1 of the counter C1
If it is larger than the predetermined value N, it is determined that the process has ended, but while it is small, the process returns to the HLE judgment.

このように、“H”又は“I2”の状態がら“E”の状
態になった場合には信号の過去の平均半周期V C2が
まずめられ、以後“E”の状態が継続する間は“′E゛
′と判定された回数が計数されてゆき、これが所定回数
N[上となると終了判定が下される。
In this way, when the state changes from "H" or "I2" to "E", the past average half cycle of the signal V C2 is first estimated, and from then on, while the "E" state continues, The number of times it is determined as "'E"' is counted, and when this reaches a predetermined number of times N[, an end determination is made.

一方、“′E”の状態がN回以上継続するまでに“I]
°゛又はL′”の状態となった場合には■のステップか
ら■のステップへ進みカウンタC1の値VC,と、先に
められている信号の平均半周期V C2の安全率を見込
んだ所定比率、たとえば80%、70%程度の値vc2
 ’とが比較され、V C+<vc2 ’の場合、即ち
過去の信号の平均半周期VC2の所定比率VC2’より
短い時間以内に“′H”又は“L”の状態となった場合
には、たとえば現像?&52中の気泡によるノイズであ
ると見做して“E″の状態が継続しているものとしてカ
ウンタC1による計数を続行し、VCI >VC2”の
場合、即ちVC2’以後に“H”又は“L ”の状態と
なった場合には終了ではないと判定してカウンタC1を
リセット(VCI =0)する。
On the other hand, until the state of “'E” continues for N times or more, “I]
If the state is "°" or "L'", proceed from step ① to step ②, and take the value VC of counter C1 and the safety factor of the average half period of the signal VC2 set in advance. A predetermined ratio, for example, a value vc2 of about 80% or 70%
' is compared, and if V C+<vc2 ', that is, if the state becomes "'H" or "L" within a time shorter than a predetermined ratio VC2' of the average half cycle VC2 of the past signal, For example, developing? Assuming that the noise is caused by air bubbles in If the state is "L", it is determined that the process has not ended, and the counter C1 is reset (VCI = 0).

一方、■のステップで終了が判定された場合にば、その
後所定時間1゛2の経過を待って終了信号が自動現像器
50に出力され、これにより現像液の排出が行われる等
して現像の進行が停止される。
On the other hand, if the end is determined in step (2), after a predetermined time period of 1 to 2 has elapsed, an end signal is output to the automatic developing device 50, and the developing solution is discharged, etc. progress is stopped.

〔効果〕〔effect〕

以上詳述した如く本発明に係る終点検出方法によれば、
検出された信号のレベル変動を検出するに際しては、移
動平均値を用いてレベル変動が実質的に零である第1の
状態、実質的に増加しつつある第2の状態又は実質的に
減少しつつある第3の状態とに経時的に弁別して行うの
で、終了点の検出判定が的確に行え、また判定装置等の
定常的電気ノイズの影響は排除されるため正確で遅れの
ない終了判定が可能となる。
As detailed above, according to the end point detection method according to the present invention,
In detecting level fluctuations in the detected signal, a moving average value is used to determine a first state in which the level fluctuation is substantially zero, a second state in which it is substantially increasing, or a second state in which it is substantially decreasing. Since the detection and judgment of the end point can be carried out accurately, the end point can be accurately detected and judged, and since the influence of steady electrical noise from the judgment device etc. is eliminated, the end point can be judged accurately and without delay. It becomes possible.

また前記実施例では、終了判定に際しては、過去の信号
の平均周期を予めめ、この平均周期の所定割合以上に亘
って終了を意味する信号が検出された場合にのみ実際の
終了判定を下しているので、確実な終点検出が可能とな
る。
Furthermore, in the embodiment, when determining the end, the average cycle of past signals is determined in advance, and the actual end determination is made only when a signal indicating the end is detected for a predetermined percentage of the average cycle or more. Therefore, reliable end point detection is possible.

なお前記実施例ではエツチングのためのパターン形成時
の現像終了点検出について説明したが、5 他にエツチングの腐食仮定は勿論のこと、下層と屈折率
の異なる表層の逓減過程の終了点の検出に広く応用可能
である。
In the above embodiment, the detection of the end point of development during pattern formation for etching was explained, but it is also possible to detect the end point of the gradual decrease process of the surface layer, which has a different refractive index from the lower layer, as well as the etching corrosion assumption. It is widely applicable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いられる装置のブロック図、
第2図は側視鏡筒の縦断面図、第3図はその本体の縦断
面図、第4図は同じくその接続スリーブの外観図、第5
図はプリズムホルダの外観図、第6.8.9図はCPU
の処理内容を示すフローチャート、第7.10図は信号
の波形を示すグラフである。 1・・・CPU 2・・・レーザ発振器 3・・・O/
E変換器 10,11.12・・・光フアイバコード 
20・・・側視鏡筒60・・・下層 61・・・表層 特 許 出願人 大日日本電線株式会社代理人 弁理士
 河 野 登 夫 6
FIG. 1 is a block diagram of an apparatus used to implement the present invention;
Fig. 2 is a longitudinal sectional view of the side viewing barrel, Fig. 3 is a longitudinal sectional view of its main body, Fig. 4 is an external view of its connecting sleeve, and Fig. 5 is a longitudinal sectional view of the side viewing barrel.
The figure is an external view of the prism holder, and Figure 6.8.9 is the CPU.
FIG. 7.10 is a flow chart showing the processing contents, and FIG. 7.10 is a graph showing the waveform of the signal. 1...CPU 2...Laser oscillator 3...O/
E converter 10, 11, 12... optical fiber code
20...Side viewing barrel 60...Lower layer 61...Surface layer patent Applicant Dainichi Nippon Electric Cable Co., Ltd. Agent Patent attorney Noboru Kono 6

Claims (1)

【特許請求の範囲】 1、屈折率が異なる2層の内のINの逓減していく層厚
が零となったことを検出する終点検出方法において、 層厚が逓減していく層の表面側から可干渉光を投射し、 該可干渉光の反射光を検出して電気信号に変換し、 該電気信号のレベルの所定時間当りの変動量をめ、これ
を所定範囲内にある第1状態、所定範囲を超えて増加す
る第2状態、又は所定範囲を超えて減少する第3状態と
に経時的に弁別し、 前記第1状態であることが所定回数に亘って検知された
場合に前記層厚が零となったと判定することを特徴とす
る終点検出方法。
[Scope of Claims] 1. In an end point detection method for detecting when the thickness of a layer in which IN of two layers with different refractive indexes gradually decreases reaches zero, the surface side of the layer where the layer thickness gradually decreases. projecting coherent light from the base, detecting the reflected light of the coherent light and converting it into an electrical signal, determining the amount of variation in the level of the electrical signal per predetermined time, and converting this into a first state within a predetermined range. , a second state in which the increase exceeds a predetermined range, or a third state in which the decrease exceeds a predetermined range over time, and when the first state is detected a predetermined number of times, the An end point detection method characterized by determining that the layer thickness has become zero.
JP4891784A 1984-03-13 1984-03-13 Endpoint detecting method Granted JPS60192338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4891784A JPS60192338A (en) 1984-03-13 1984-03-13 Endpoint detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4891784A JPS60192338A (en) 1984-03-13 1984-03-13 Endpoint detecting method

Publications (2)

Publication Number Publication Date
JPS60192338A true JPS60192338A (en) 1985-09-30
JPH0139648B2 JPH0139648B2 (en) 1989-08-22

Family

ID=12816599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4891784A Granted JPS60192338A (en) 1984-03-13 1984-03-13 Endpoint detecting method

Country Status (1)

Country Link
JP (1) JPS60192338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598508A1 (en) * 1986-05-09 1987-11-13 Guillaume Michel Method and apparatus for determining the end of attack of an etched surface
US4767495A (en) * 1986-12-10 1988-08-30 Dainippon Screen Mfg. Co., Ltd. Method for detecting time for termination of surface layer removal processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598508A1 (en) * 1986-05-09 1987-11-13 Guillaume Michel Method and apparatus for determining the end of attack of an etched surface
US4767495A (en) * 1986-12-10 1988-08-30 Dainippon Screen Mfg. Co., Ltd. Method for detecting time for termination of surface layer removal processing

Also Published As

Publication number Publication date
JPH0139648B2 (en) 1989-08-22

Similar Documents

Publication Publication Date Title
EP0809098B1 (en) A method and apparatus for optically discriminating between the phases of a three-phase fluid
US5065037A (en) Corrosion resistant refractive and adsorptive type optical liquid level sensors
US6897964B2 (en) Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them
EP0516481A2 (en) Internal reflectance element with very small sample contacting surface
EP0194732A2 (en) Sensor for the measurement of the refractive index of a fluid and/or phase boundary between two fluids by means of visible or invisible light
WO1989003978A1 (en) Optical liquid level sensor
US6356675B1 (en) Fiber optic refractive index monitor
US5617201A (en) Method for refractometer measuring using mathematical modelling
EP0453226A2 (en) Fiber optic liquid leak detector
JPS60192338A (en) Endpoint detecting method
IE66055B1 (en) Measuring a gap between a tube and a float
JPH0228541A (en) Optical concentration detector
US7212280B1 (en) Device for measuring the dimension and controlling of defects in optical fibres during production
JPS60501125A (en) Method and device for measuring suspended solids content in a fluid medium
JPS6435306A (en) Incidence angle determining method for refractive index and film thickness measurement
JPS61262638A (en) Sensor for measuring refractive index
JPH05133871A (en) Immersion type device for measuring specific gravity of liquid
JPS61226639A (en) Throw type component analyzer
JPS5995439A (en) Measuring method of corrosion speed
JP2002372493A (en) Method for measuring liquid
CN217605655U (en) Wireless probe type liquid concentration measuring device
JPH0387605A (en) Method and device for measuring film thickness
JPH0194246A (en) Turbidity meter
KR20020094110A (en) Optical Lens Device and Apparatus for Determining Concentration and Type of Solutions by Refractive Index Measurement
JPS60213028A (en) Detection of terminus