JPS60192271A - Neighborhood electric field measuring device - Google Patents

Neighborhood electric field measuring device

Info

Publication number
JPS60192271A
JPS60192271A JP4653984A JP4653984A JPS60192271A JP S60192271 A JPS60192271 A JP S60192271A JP 4653984 A JP4653984 A JP 4653984A JP 4653984 A JP4653984 A JP 4653984A JP S60192271 A JPS60192271 A JP S60192271A
Authority
JP
Japan
Prior art keywords
probe
antenna
measured
signal
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4653984A
Other languages
Japanese (ja)
Inventor
Hisao Iwasaki
久雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4653984A priority Critical patent/JPS60192271A/en
Publication of JPS60192271A publication Critical patent/JPS60192271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To correct errors in amplitude and in phase of a transmitter-receiver system caused by temperature change, etc., in measuring environment during measurement, by detecting the hourly variation of signals distributed at the feeding point of an antenna to be measured. CONSTITUTION:A probe 27 is stopped at a prescribed location and outputs distributed at the feeding point of an antenna 23 to be measured are connected to a receiver 31 by means of a switching device 30, and then, recording in a CPU32 is performed by using the amplitude and phase of signals are reference signals. Then, by continuously running the probe 27 in the direction of y-axis and operating the switching device 30 at short time intervals, the quantity of variation of the outputs at the feeding point from the reference signals is calculated and sent to a control device 24 and the quantity of variation is corrected by a variable phase shifter 22 and variable attenuator 21. On the other hand, when the location of the probe 27 detected by a probe location detecting device 29 coincides with a measuring point, the output signal of the probe 27 is connected with the receiver 31 and data are accumulated in a data accumulating device 35. The remote radiating directivity of the antenna to be measured is found by using the data.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、アンテナの・近傍で電磁界を測定する近傍電
界測定装置に係り、特に、送受信機系の振幅1位相変動
を補正する方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a near-field electric field measurement device that measures an electromagnetic field in the vicinity of an antenna, and particularly to a method for correcting amplitude one-phase fluctuations in a transceiver system.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

平面走査型近傍電界測定について説明する。平面走査型
近傍電界測定装置は、第1図に示すように被測定アンテ
ナ1.被測定アンテナ1に給電する送14機2.被測定
アンテナ1の近傍の電界を測定するプローブ3.このプ
ローブを(駆動する装置4、受信機5.測定データを蓄
積処理する装置6から成り立っている。
Plane scanning near electric field measurement will be explained. The plane scanning type near-field electric field measuring device has an antenna to be measured 1. as shown in FIG. 14 transmitters feeding power to the antenna under test 12. Probe 3 for measuring the electric field near the antenna to be measured 1. It consists of a device 4 for driving this probe, a receiver 5, and a device 6 for accumulating and processing measurement data.

近傍電界測定においては、特性の異なる2つのプローブ
を用いる。まず1個のプローブで、2次元平面上の各測
定点の近傍電界の振幅と位相を測定し、次に前記プロー
ブのかわりに別特性を有するプローブを用いて同様の測
定を行なう。この測定したデータ値を用いて、前記処理
装置6でフーリエ変換等の計算処理を行ない被測定アン
テナ1の遠方放射指向性や利得時をめる。
In near-field electric field measurement, two probes with different characteristics are used. First, one probe is used to measure the amplitude and phase of the electric field near each measurement point on a two-dimensional plane, and then a similar measurement is performed using a probe with different characteristics in place of the probe. Using the measured data values, the processing device 6 performs calculation processing such as Fourier transform to determine the far radiation directivity and gain of the antenna 1 to be measured.

この測定では、被測定アンテナの近傍電界櫃の振幅と位
相を正確に測定する必要がある。しかし、実際の測定シ
ステムでは、必ず送受信機系に、測定環境の温度変化や
送信機の周波数変動が生ずるために、プローブ受信信号
に、上記変動による振幅1位相誤差が発生する。被測定
アンテナが大開口で、周波数が高くなる程、測定点数測
定鎖酸が大きくなるので、 dill定に要する時間が
長くなり。
In this measurement, it is necessary to accurately measure the amplitude and phase of the electric field near the antenna under test. However, in an actual measurement system, temperature changes in the measurement environment and frequency fluctuations in the transmitter always occur in the transmitter/receiver system, so that a one-amplitude phase error due to the above fluctuations occurs in the probe reception signal. The larger the aperture of the antenna to be measured and the higher the frequency, the greater the number of measurement points and the longer the time required for dill determination.

例えば開口が100λ以上であるとき全測定時間が数時
間から十数時間におよぶ。そのため、この測定時間中に
、ト記の受信信号上に生ずる送受信機系の温度変化、周
波数変動による受信信号上の位相は、数1(から十数度
位変化する。このために、この誤差を含んだデータを用
いて、被測定アンテナの遠方界指向性をめても、正1t
4A 1.に指向性はめられず許容値以上の誤差が発生
する。一般に、−30dB位のレベルまで指向性を正確
にめるためには、全測定位相誤差を約30以内に抑える
必要がある。このことより、上記に示した受信信号上に
生ずる誤差量が問題であることがわかる。
For example, when the aperture is 100λ or more, the total measurement time ranges from several hours to more than ten hours. Therefore, during this measurement time, the phase of the received signal due to temperature changes and frequency fluctuations in the transmitter/receiver system that occur on the received signal described in (g) changes by several degrees (from several tens of degrees). Even if we consider the far-field directivity of the antenna under test using data including
4A 1. The directivity cannot be matched and an error exceeding the allowable value occurs. Generally, in order to accurately set the directivity to a level of about -30 dB, it is necessary to suppress the total measured phase error to within about 30 dB. From this, it can be seen that the amount of error occurring on the received signal shown above is a problem.

また、被測定アンテナの開口が、走査枠に比較して同じ
位か大きくなると、所望の遠方界指向性をめるのに必要
な近傍界データを1回の定歪で必要な領域全てを測定出
来ない。そのために、被測定アンテナの近傍電界の測定
領域を、2分割以上に分割し、そのおのおのの分割され
た領域におけるデータから、所望の遠方界指向性を得る
ために必要な近傍電界測定データを作る必要がある。
Also, if the aperture of the antenna under test is the same or larger than the scanning frame, the near-field data necessary to obtain the desired far-field directivity can be measured in all the necessary areas with one constant strain. Can not. For this purpose, the measurement area of the near electric field of the antenna under test is divided into two or more parts, and from the data in each divided area, the near electric field measurement data necessary to obtain the desired far-field directivity is created. There is a need.

この場合、分割されたデータ間のつなぎ合せが問題であ
る。何故ならば、先に述べたように、1分割t11域の
データを取得する時間でさえ、送受信機系に測定環境の
温度変化や送信機系の周波数変動が生じ、プローブ受信
信号に振幅位相誤差が発生する。
In this case, the problem is how to connect the divided data. This is because, as mentioned earlier, even during the time it takes to acquire data in the 1-division t11 region, temperature changes in the measurement environment and frequency fluctuations in the transmitter system occur in the transceiver system, resulting in amplitude and phase errors in the probe reception signal. occurs.

それぞれの分割領域で取得した間においても上記と同様
のことが言える。従ってデータ間をつなぎ合せる2つの
そ−れぞれの領域の測定値も異なつた値である。よって
、上記に述べた方法で取得した受信信号に誤差を含んで
いるデータから遠方界をめても、正確な遠方界指向性を
めることが・出来ない。
The same thing can be said about the times acquired in each divided area. Therefore, the measured values of the two regions connecting the data are also different values. Therefore, even if the far field is determined from data containing errors in the received signal obtained by the method described above, accurate far field directivity cannot be determined.

従来これ等の問題点を解決するために第2図に続走行さ
せ、△yごとにデータを収集する。次にX軸方向に△X
だけ動かし、上記と同様な測定を11上で行なう。
Conventionally, in order to solve these problems, the vehicle is run as shown in FIG. 2 and data is collected every Δy. Next, △X in the X-axis direction
11 and perform the same measurements as above.

これをX軸上のすべての測定点について行なう、このX
軸方向の測定がすべて終了したのち最初に走査したyI
iI111方向と直焚した方向(X軸方向)でかつ、y
軸の中心上の12上を走査する。この測定値と、はじめ
に測定した2次元平面上の測定匝とを比較し、温度変化
等により生じた受信信号上の変化を補正する方法が用い
られている。
This is done for all measurement points on the X axis.
yI scanned first after all axial measurements were completed
iI111 direction and direct firing direction (X-axis direction), and y
Scan over 12 on the center of the axis. A method is used in which this measured value is compared with the first measured value on a two-dimensional plane to correct changes in the received signal caused by changes in temperature or the like.

この方式では、y ’tll上を連続走査する測定時間
中には、送受信機系の振幅1位相変化はないと仮定して
いる。し力1し実際の測定系では、y軸上を遅続走イf
する時間が数分以上もかかる。さらに被測足アンテナが
大開口アンテナになり、かつ、使用周波数が畠くなる程
測定点数、測足長が増加するので、上記の数分以上の測
定時間より、さらに時間がかかることになる。この間に
、送受信機系は、測足器周辺の温度変化等により(辰幅
1位相変化をおこし、かつその値も1回の走査中に上記
に示した許容値である約30以上変化することもある。
This method assumes that there is no change in amplitude or phase of the transmitter/receiver system during the measurement time of continuous scanning on y'tll. The force is 1, and in the actual measurement system, the delayed running force f on the y-axis is
It takes more than a few minutes. Furthermore, as the foot antenna to be measured becomes a large aperture antenna and the frequency used increases, the number of measurement points and the length of the foot to be measured increase, so the measurement time takes longer than the several minutes or more described above. During this period, the transmitter/receiver system undergoes a phase change of one width (one width) due to temperature changes around the foot measuring device, and its value also changes by more than 30, which is the allowable value shown above, during one scan. There is also.

近傍電界走査面を分割して測定する場合においては、従
来方式は、その分割された定食領域の補正を行なえるが
、分割された走査領域間のJ正を行なうことが出来ない
。従って従来方式では、同精度な測定結果を要求される
近傍゛鑞昇測足においては、全(不充分である。
When measuring by dividing the near electric field scanning plane, the conventional method can correct the divided fixed area, but cannot perform J correction between the divided scanning areas. Therefore, in the conventional method, the measurement result is insufficient for the near-field measurement, which requires measurement results with the same accuracy.

〔発明の目的〕 本発明は、以上の点に鑑みてなされたもので、測定環境
の温度変化等により発生する送受信機系に生ずる振幅1
位相誤差を測定中に補正し、上記の測定誤差により生ず
る被測足アンテナの遠方界指向性上に生ずるi、q差を
なくし、得られる指向性の精度の向上を図った近傍電界
測定装置を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above-mentioned points.
A near-field electric field measurement device that corrects phase errors during measurement, eliminates the i, q difference that occurs in the far-field directivity of the antenna to be measured due to the above-mentioned measurement errors, and improves the accuracy of the obtained directivity. The purpose is to provide.

〔発明の概要〕[Summary of the invention]

本発明は、送信機と被測定アンテナの間に、口]変減衰
器と可変移相器を挿入し、被測定アンテナの給電点で信
号を2分配し、一方に被測定アンテナを接続し、もう一
方に、ミキサーを接続し、この信号と前記プローブで受
信した信号をミキサーに通した後の信号とを父互に切替
えて収り出し、得られた被測だアンテナの給電点で分配
された信号の時間経過による変化を検出し、この検出さ
れた変化量を、前記可変減衰器と可変移相器に対して補
正するようにしたものである。
The present invention inserts a variable attenuator and a variable phase shifter between the transmitter and the antenna under test, divides the signal into two at the feeding point of the antenna under test, and connects the antenna under test to one side. A mixer is connected to the other end, and this signal and the signal received by the probe passed through the mixer are switched between each other, and the obtained signal is distributed at the feeding point of the antenna under test. The change in the signal over time is detected, and the detected change amount is corrected for the variable attenuator and the variable phase shifter.

〔発明の効果〕〔Effect of the invention〕

測定環境の温度変化により生ずる送受信機系の部幅1伎
相変動のために発生する近傍電界戦上の誤差信号を測定
中に補正できるので、精1隻よく、被測定アンテナの遠
方界指向性をめることが出来る。
It is possible to correct during measurement the error signal due to near-field warfare caused by phase fluctuations in the width of the transceiver system caused by temperature changes in the measurement environment. It is possible to put

さらに、近傍電界走査面を分割した、それぞれの分割領
域間における上記の誤差信号も測定中に補正出来る。よ
って高精度な測定結果を要求される測定に本発明は有効
である。
Furthermore, the above-mentioned error signal between the respective divided regions obtained by dividing the near electric field scanning plane can also be corrected during measurement. Therefore, the present invention is effective for measurements that require highly accurate measurement results.

従来方式で行なう全測定後のシステム変動を較正する測
定が不要になり、さらに、測定後の全2、次元測定値に
対する補正も不要になる。
There is no need for measurements to calibrate system variations after all measurements performed in the conventional method, and there is also no need for corrections for all two-dimensional measurements after measurements.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を嘱3図に示す。 An embodiment of the present invention is shown in Figure 3.

本発明は、送信機20と、被測定アンテナ23と、この
間に挿入された較正用可変減衰!?321と。
The present invention includes a transmitter 20, an antenna to be measured 23, and a variable attenuation for calibration inserted between them. ? 321 and.

可変移相器22き、これを1ttlJ ftfll T
る袈i祉24と、ミキサー25と、走査枠26と、プロ
ーブ27と、プローブ、リス@装置28さ、プローブ位
1:を演出装置29と、信号切替装置30と、受信機3
1と、CPU32と、データ蓄積装置33とから成り立
っている。
There is a variable phase shifter 22, which is 1ttlJ ftflll T
24, mixer 25, scanning frame 26, probe 27, probe, squirrel @ device 28, probe position 1: production device 29, signal switching device 30, receiver 3
1, a CPU 32, and a data storage device 33.

以下、具体例をボしながら説明する。A specific example will be explained below.

第3図において、被測定アンテナの給電点で分配された
信号は、ミキサー25−bに接続されている。
In FIG. 3, the signal distributed at the feeding point of the antenna under test is connected to a mixer 25-b.

このミキサー25−bを通った後の信号には、IF、L
O(i号が流れている。このI F 、 LO倍信号送
信信号RFに比べて周波数が十分低くなっている。
The signal after passing through this mixer 25-b includes IF, L
O(i) is flowing.The frequency of this I F is sufficiently lower than that of the LO multiplied signal transmission signal RF.

さらに、この信号が通っているケーブルを可動部がない
ように固足する。
Furthermore, the cable carrying this signal is fixed so that there are no moving parts.

被測定アンテナの給電点で分配された信号を。The signal distributed at the feeding point of the antenna under test.

受信機31に辿した後の出力信号を観測すると、時間経
過による測定環境の温度変化等による送信機、受信機等
の振幅8位相ゆらぎとRF信号が通っているケーブル等
による位相変化をめることが出来る。よってこの信号の
1辰幅と位相を観測することで時間経過による近傍電界
測定システムの変動を調べることが出来る。
Observing the output signal after it has been traced to the receiver 31, we find amplitude 8 phase fluctuations in the transmitter, receiver, etc. due to temperature changes in the measurement environment over time, and phase changes due to the cables etc. through which the RF signal passes. I can do it. Therefore, by observing the one-line width and phase of this signal, it is possible to investigate fluctuations in the near-field electric field measurement system over time.

そこで、ある時間(例えば、測定開始時)、における被
測定アンテナの給電点において分配された信号を基準と
し、そのμ後の時間経過によるシステム系の振幅8位相
の変化量へA、△φを送信機20と被測定アンテナ23
の間に挿入した可変移相器22と可変減衰器21で、プ
ローブ受信信号に対して補正することにより、システム
系の振幅1位相の変動をなくし、常に基串値を一足に保
つことが出来る。
Therefore, using the signal distributed at the feeding point of the antenna under test at a certain time (for example, at the start of measurement) as a reference, A and △φ are applied to the amount of change in the amplitude and phase of the system over time after μ. Transmitter 20 and antenna under test 23
By correcting the probe reception signal using the variable phase shifter 22 and variable attenuator 21 inserted between the two, it is possible to eliminate fluctuations in one phase of the amplitude of the system system and always maintain the base value at the same level. .

以上のことを用いて、第2図に示したプローブ走査方式
で、被測定方式で被測定アンテナの近傍電界値を測定す
る場合を考える。
Using the above, consider the case where the near electric field value of the antenna to be measured is measured using the probe scanning method shown in FIG. 2 using the measured method.

ナの給電点で分配された出力信号を受信機31へ接続し
、プローブ出方信号を無反射終端する。この受信機31
で検出された被測定アンテナの給電点で分配された信号
の振幅A1位相φを基準とし、その値をCPU32に記
録し、この値を以後のシ連続走行させる。このとき、切
替装置3oで、プローブ出力信号と被測定アンテナの給
電点で分配された出力信号を測定点と次の測定点の間を
プローブが走行する時間より、はるかに短かい間隔で切
替え受信機31に接続する。
The output signal distributed at the feeding point of the probe is connected to the receiver 31, and the probe output signal is terminated without reflection. This receiver 31
The amplitude A1 phase φ of the signal distributed at the feeding point of the antenna to be measured detected in is used as a reference, the value is recorded in the CPU 32, and this value is used for continuous running from now on. At this time, the switching device 3o switches and receives the probe output signal and the output signal distributed at the feeding point of the antenna under test at an interval much shorter than the time the probe travels between the measurement point and the next measurement point. Connect to machine 31.

CPU32で、先にめた基準信号(A、φ)からの変化
量△A、△φを算出する。この変旬緻△A、△φの情報
を可変移相器22と、可変減衰器21を判例する制菌装
置24に送る。
The CPU 32 calculates the amount of change ΔA, Δφ from the previously determined reference signal (A, φ). Information on the change rates ΔA and Δφ is sent to the variable phase shifter 22 and the sterilization device 24 that controls the variable attenuator 21.

劃−装置24は、この情報△A、△φに相当する量、可
変移相器22と可変減衰器21を動力)し先の変動量を
補正する。可変移相器22として、PINダイオードや
可変容量ダイオードを用いた電子式移相作、可変減衰器
21としてダイオード装荷形減衰器を用いると、その印
加バイアス電圧。
The control device 24 corrects the previous fluctuation amount by powering the variable phase shifter 22 and the variable attenuator 21 by amounts corresponding to the information ΔA and Δφ. When an electronic phase shift operation using a PIN diode or a variable capacitance diode is used as the variable phase shifter 22 and a diode-loaded attenuator is used as the variable attenuator 21, the bias voltage applied thereto.

電流を変えることで、移相△φ減減衰へAを動かせる。By changing the current, A can be moved to phase shift △φ decrease attenuation.

一方、プローブ27の出力信号より、測定点の信号の位
相をめるために平均操作をCPU32で行なう。
On the other hand, the CPU 32 performs an averaging operation based on the output signal of the probe 27 in order to adjust the phase of the signal at the measurement point.

プローブの位置を検出するプローブ位置検出装置29で
、プローブの位置を険出し、測定点と、その位置が一致
したとき、切替装置3oのマイクロ波用スイッチでブロ
ーク27の出力信号を受イを機31に接続し、被測定ア
ンテナの給電点で分配された出力信号を無反射終端する
The probe position detection device 29 detects the position of the probe, and when the position of the probe is aligned with the measurement point, the microwave switch of the switching device 3o receives the output signal of the break 27. 31, and the output signal distributed at the feeding point of the antenna to be measured is terminated without reflection.

このとき検出した信号をデータ蓄積装置33に蓄える。The signal detected at this time is stored in the data storage device 33.

2次元走査によって得られたデータには、1巡航走査中
における測定環境の温度の影響等による送受信機系の振
幅2位相変動さえも補正されている。
In the data obtained by two-dimensional scanning, even amplitude two-phase fluctuations in the transmitter/receiver system due to the influence of the temperature of the measurement environment during one cruise scan are corrected.

さらに、近傍電界走査面を分割して測定する場合におい
ても、各分割された領域間における送受信機系の振幅1
位相誤差も測定中に補正出来る。
Furthermore, even when measuring by dividing the near electric field scanning plane, the amplitude of the transmitter/receiver system between each divided area 1
Phase errors can also be corrected during measurement.

従って、このデータを用いて被測定アンテナの遠方放射
指向性をめると、従来方式でめられた指向性よりさらに
高精度な指向性が得られる。
Therefore, if this data is used to determine the far-field radiation directivity of the antenna under test, a more accurate directivity than that determined by the conventional method can be obtained.

本発明は高精夏測定に有効である。The present invention is effective for high-sensitivity measurement.

また従来方式で行なう全測定後の較正用データを収集す
る作業も不要になる。
Furthermore, the work of collecting calibration data after all measurements, which is done in the conventional method, becomes unnecessary.

上記に述べた可変減衰器、可変移相器をリファレンス信
号側すなわち送信機とミキサー25aの間に挿入しても
同4′Hな効果が得られる。
The same 4'H effect can be obtained by inserting the variable attenuator and variable phase shifter described above on the reference signal side, that is, between the transmitter and the mixer 25a.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の近傍電界測定装置を示す図、第2図は
、従来の補正方法を説明するための図、第3図は、本発
明の一実施例を示す図である。 20・・・送信機、21・・・較正可変移相器、22・
・・較正可変移相器、23・・・被測定アンテナ、24
・・・制御装置、25・・・ミキサー、26・・・走査
枠、27・・・プローブ、28・・・駆動装置、29・
・・位1fl検出装置、30・・・切替装置、31・・
・受信機、32・・・cPU、33・・・データ蓄積装
置。 代理人弁理士 則 近 憲 1右(ほか1名)第 1 
図 第 2 図 第 3 図
FIG. 1 is a diagram showing a conventional near electric field measuring device, FIG. 2 is a diagram for explaining a conventional correction method, and FIG. 3 is a diagram showing an embodiment of the present invention. 20... Transmitter, 21... Calibration variable phase shifter, 22.
... Calibration variable phase shifter, 23 ... Antenna under test, 24
...Control device, 25...Mixer, 26...Scanning frame, 27...Probe, 28...Drive device, 29...
...1fl detection device, 30...switching device, 31...
- Receiver, 32... cPU, 33... data storage device. Representative patent attorney Nori Chika 1st right (and 1 other person) 1st
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 被測定アンテナと、この被測定アンテナにf@屯する送
iif機と、前記被測定アンテナの近傍成界値を測定す
るプローブと、このプローブよりの1モF信号を受信す
る受信1幾と、前記プローブを駆動する装置と、前記プ
ローブの位はを検出する装置と、前記受信機からの振幅
位相情報を蓄える装置から成る平面走査近傍電界測定装
置において、前記送信機および被測定アンテナの間に設
けられた可変減衰器および可変移相器と、′、#!i、
測定アンテナへ供給される送信信号をミキサーに分配す
る手段と、このミキサーの出力信号と前記プローブで受
信した信号をミキサーに通した後の1言号との父互に切
替える装置と、この切替装置を介して得られる前記被測
定アンテナの給電点で分配された信号の時間経過による
変化を検出する装置と、この検出された変化量を前記可
変減衰器および可変移相器に対して補正する制御装置と
を具11+N したことを特徴とする近傍電界測定装置
An antenna to be measured, a transmitter IIF transmitting f@ to the antenna to be measured, a probe that measures a near field value of the antenna to be measured, and a receiver 1 that receives a 1F signal from the probe; In a plane scanning near-field electric field measuring device comprising a device for driving the probe, a device for detecting the position of the probe, and a device for storing amplitude and phase information from the receiver, there is a device between the transmitter and the antenna to be measured. With a variable attenuator and a variable phase shifter provided, ′, #! i,
means for distributing the transmission signal supplied to the measurement antenna to a mixer; a device for switching between the output signal of the mixer and one word after passing the signal received by the probe through the mixer; and the switching device. a device for detecting a change over time in a signal distributed at the feeding point of the antenna under test obtained through the above, and a control for correcting the detected change amount with respect to the variable attenuator and variable phase shifter. 1. A near-field electric field measuring device, characterized in that the device comprises: 11+N.
JP4653984A 1984-03-13 1984-03-13 Neighborhood electric field measuring device Pending JPS60192271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4653984A JPS60192271A (en) 1984-03-13 1984-03-13 Neighborhood electric field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4653984A JPS60192271A (en) 1984-03-13 1984-03-13 Neighborhood electric field measuring device

Publications (1)

Publication Number Publication Date
JPS60192271A true JPS60192271A (en) 1985-09-30

Family

ID=12750095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4653984A Pending JPS60192271A (en) 1984-03-13 1984-03-13 Neighborhood electric field measuring device

Country Status (1)

Country Link
JP (1) JPS60192271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165975A (en) * 1999-12-10 2001-06-22 Mitsubishi Electric Corp Apparatus and method for measuring antenna
WO2001084165A1 (en) * 2000-04-28 2001-11-08 Advantest Corporation Field distribution measuring method and device
JP2019219255A (en) * 2018-06-19 2019-12-26 アンリツ株式会社 Antenna measuring device and antenna measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165975A (en) * 1999-12-10 2001-06-22 Mitsubishi Electric Corp Apparatus and method for measuring antenna
WO2001084165A1 (en) * 2000-04-28 2001-11-08 Advantest Corporation Field distribution measuring method and device
US6804617B2 (en) 2000-04-28 2004-10-12 Advantest Corporation Field distribution measuring method and device
JP2019219255A (en) * 2018-06-19 2019-12-26 アンリツ株式会社 Antenna measuring device and antenna measuring method

Similar Documents

Publication Publication Date Title
US4044353A (en) Microwave level gaging system
US8314620B2 (en) Systems and methods for online phase calibration
US6100540A (en) Laser displacement measurement system
US3992615A (en) Electro-optical ranging system for distance measurements to moving targets
US8149167B2 (en) System and method for removing channel phase error in a phase comparison direction finder
US7218272B2 (en) Reducing antenna boresight error
US7821447B2 (en) Bias adjustment of radio frequency unit in radar apparatus
EP0544989B1 (en) Methods and apparatus for correction of cable variations
US20080143585A1 (en) Methods and systems for interferometric cross track phase calibration
US4958294A (en) Swept microwave power measurement system and method
US6531881B1 (en) Measurement arrangement
US20170322288A1 (en) Method for calibrating a radar system
US8400165B2 (en) Power calibration system
EP0168182A2 (en) Optical measurement apparatus
JPS60192271A (en) Neighborhood electric field measuring device
JP2801989B2 (en) Radar guidance system and method for correcting phase error between channels
US4864218A (en) Method of compensating for frequency errors in noise power meters
US5053776A (en) Device and method for the telemetric measurement of a distance and application to a radar probe for determining the topographic map of the loading surface of a shaft furnace
JPH0137882B2 (en)
CA1114480A (en) Method and apparatus for automatically calibrating a radio altimeter
JPS60170770A (en) Measuring device for nearby electric field
RU2253874C2 (en) Method for panoramic measurement of uhf bipolar reflection coefficient
JPH01316679A (en) Holographic radar
US3283323A (en) Automatic gain control ratio circuit
Neumeyer A Homodyne W-Band Networkanalyzer with Integrated Quadrature Detector