JPS60192267A - Condenser type rotary electrostatic voltmeter - Google Patents

Condenser type rotary electrostatic voltmeter

Info

Publication number
JPS60192267A
JPS60192267A JP4793484A JP4793484A JPS60192267A JP S60192267 A JPS60192267 A JP S60192267A JP 4793484 A JP4793484 A JP 4793484A JP 4793484 A JP4793484 A JP 4793484A JP S60192267 A JPS60192267 A JP S60192267A
Authority
JP
Japan
Prior art keywords
light
electrode plate
shielding plate
movable electrode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4793484A
Other languages
Japanese (ja)
Inventor
Ichiro Amari
甘利 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKA SEIKI KK
Original Assignee
NIKKA SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKA SEIKI KK filed Critical NIKKA SEIKI KK
Priority to JP4793484A priority Critical patent/JPS60192267A/en
Publication of JPS60192267A publication Critical patent/JPS60192267A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remotely designate the movement of a movable electrode plate and record the movement, by changing lights reaching a photoreceptor body in accordance with the movement of the movable electrode plate by means of a light shielding plate fitted to a rotary shaft. CONSTITUTION:When a fixed electrode plate 1 is charged with electric charges, electric charges of the opposite code are produced in a movable electrode plate 2 and a shaft 3 is rotated by electrostatic attracting force acting between both electrode plates 1 and 2. Since a spiral spring 4 gives force resisting the rotation of the shaft 3 to the shaft 3, the movable electrode plate 2 stops at a position corresponding to the quantity of the electric charges given to the fixed electrode plate 1. As the shaft 3 rotates, a light shielding plate 7 is moved from the position shown by the chain line to the position shown by the solid line and a large quantity of lights is given to a solar battery 9, most part of the which is covered with the light shielding plate 7 when the voltage is ''0'', from a light emitting source 8. Therefore, the position of the movable electrode plate 2 can be known through an electric current flowing out from the solar battery 9 and an electrostatic voltage can be made to indicate.

Description

【発明の詳細な説明】 コンデンサー型静電電圧計は構造が簡単で敏感に作動し
便利であるが、遠隔指示や記録ができないため、それら
が必要な場合には直流増幅型、交流増幅型またはその他
の複雑高価な静電電1−E割を用いなげればならない。
[Detailed Description of the Invention] Capacitor-type electrostatic voltmeters have a simple structure, operate sensitively, and are convenient, but cannot be used for remote indication or recording. The complicated and expensive electrostatic 1-E ratio must be used.

コンデンサー型静電電圧計にも色々の構造のものがある
が、現場の使用に便利なのは、渦巻ばねをもつ回転軸に
、コンデンサーの可動電極板を取りイ」け、固定電極板
との間の静電気力にょつて可動電極板を回転させるコン
デンサー型回転静電電圧計である。
There are various types of capacitor-type electrostatic voltmeters, but the one that is convenient for on-site use is to attach the movable electrode plate of the capacitor to a rotating shaft with a spiral spring, and to eliminate static electricity between it and the fixed electrode plate. This is a capacitor-type rotating electrostatic voltmeter that rotates a movable electrode plate using force.

この発明は、コンデンサー型静電電圧Hの上記の 点を
除去するため、コンデンサー型回転静電型圧制の可動電
極板を取り伺げている回転軸に遮光板を取り句け、その
遮光板の片側に発光源を、その反対側に受光体を設け、
その遮光板に1って、その発光源より放射されてその受
光体に到達する光を可動電極板の動きに応じて変化さぜ
、その変化する光を受光体で受け、その光の変化を電気
信号に変換させてその可動電極板の動きを指示させる遠
隔指示や記録に便利なコンデンサー型回転静電電圧側を
提供するものである。
In order to eliminate the above-mentioned problem of the capacitor-type electrostatic voltage H, this invention provides a light-shielding plate on the rotating shaft that takes up the movable electrode plate of the capacitor-type rotating electrostatic type oppression, and A light emitting source is placed on one side and a photoreceptor is placed on the other side.
The light shielding plate changes the light emitted from the light emitting source and reaches the photoreceptor according to the movement of the movable electrode plate, and the photoreceptor receives the changing light and changes the light. It provides a capacitor-type rotating electrostatic voltage side that is convenient for remote instruction and recording by converting it into an electric signal and instructing the movement of the movable electrode plate.

この発明を、実施例について、図面により詳しく説明す
る。
The present invention will be explained in detail with reference to the drawings and examples.

第1図および第2図は、この発明の一実施例を示す。第
1図および第2図において、1は可動電極板2とともに
、コンデンサーを構成する固定電極板であり、可動電極
板2は軸3に固定されていて、一定の角度の範囲で回転
できる構造になっており、その回転により固定電極板1
 。
1 and 2 show one embodiment of the invention. In Figures 1 and 2, 1 is a fixed electrode plate that together with a movable electrode plate 2 constitutes a capacitor, and the movable electrode plate 2 is fixed to a shaft 3 and has a structure that allows it to rotate within a certain angle range. Due to its rotation, the fixed electrode plate 1
.

と可動電極板2のコンデンサーとしての有効面積が変化
する。軸3には渦巻ばね4の一端が固定され、他端は固
定腕6に取り伺けられている。
As a result, the effective area of the movable electrode plate 2 as a capacitor changes. One end of a spiral spring 4 is fixed to the shaft 3, and the other end is extended to a fixed arm 6.

また軸3には遮光板7が取り伺けらit、その遮光板7
の片illに発光源8が、他の側には光発電素子として
太陽電池9が設けられている。
In addition, a light shielding plate 7 is located on the shaft 3, and the light shielding plate 7
A light emitting source 8 is provided on one side of the illumination device, and a solar cell 9 is provided as a photovoltaic element on the other side.

第1図および第2図において、可動電極板2および遮光
板7を鎖線で示してそれぞれ2′おJ:び7としている
が、これは固定電極板1に電荷が−りえられないとき、
すなわち電圧0のときのそれぞれの位置を示したもので
ある。太陽電池っけ電圧0のとき大部分が遮光板で蓋わ
れるように置か旧7、発光源8はその太陽電池9の全体
を照すことができるようになっている。
In FIGS. 1 and 2, the movable electrode plate 2 and the light-shielding plate 7 are indicated by chain lines as 2' and 7, respectively.
That is, each position is shown when the voltage is 0. When the voltage of the solar cell is 0, most of the solar cell 9 is placed so that it is covered with a light shielding plate, and the light emitting source 8 can illuminate the entire solar cell 9.

発光源は、一定光度を保つ電球でもよいし、光ファイバ
ーで導入さ」する外部よりの光でもよい。
The light source may be a light bulb that maintains a constant luminous intensity, or it may be external light introduced through an optical fiber.

固定電極板1に電荷が馬えられると、可動電極板2には
反対符号の電荷が生じ、両電極板間に働く静電気的吸引
力にまり輔3が回転する。
When a charge is accumulated on the fixed electrode plate 1, a charge of the opposite sign is generated on the movable electrode plate 2, and the marisuke 3 is rotated by the electrostatic attractive force acting between the two electrode plates.

渦巻はね4は軸3の回転に抗する力を輔3にJうえるの
で可動′電極板2は固定電極板1KLiえられた電荷の
量に応じた位置で静止する。この位置を第1図の実線で
示している。軸3の回転によって遮光板7も鎖線の位置
から実線の位置に移る。従って電圧0のときにその大部
分が遮光板7で蓋われていた太陽電池9に発光源8から
の光が太端に与えら」することになる。この光の量は遮
光板7の位置によって変化するので太陽電池から流出す
る電流もそれによって変化する。
Since the spiral spring 4 applies a force J to the shaft 3 that resists the rotation of the shaft 3, the movable electrode plate 2 comes to rest at a position corresponding to the amount of charge acquired by the fixed electrode plate 1KLi. This position is indicated by the solid line in FIG. As the shaft 3 rotates, the light shielding plate 7 also moves from the position indicated by the chain line to the position indicated by the solid line. Therefore, when the voltage is 0, the light from the light emitting source 8 is applied to the solar cell 9, most of which is covered with the light shielding plate 7, at its wide end. Since the amount of this light changes depending on the position of the light shielding plate 7, the current flowing out from the solar cell also changes accordingly.

従ってこの電流によって可動電極板の位置を知ることが
でき、静電電圧を指示させることができる。
Therefore, the position of the movable electrode plate can be determined by this current, and the electrostatic voltage can be indicated.

この発明の別の実施例として、太陽電池の如き光発電素
子の代りに半導体装置検出素子を第1図および第2図の
太陽電池9の位置に置き、遮光板7に設けた1個の細孔
を通してのみ発光源8の光がその半導体装置検出素子に
到達するようにする。この場合には可動電極板の動きに
従って細孔を通る光がその半導体装置検出素子の上を移
動するのでこの光の位置を検出して可動電極板の位置を
知り静電電圧を指示させることができる。゛ 第3図、第4図および第5図は、この発明の更に別の実
lA例を示す図面である。第3図および第4図において
、遮光板1は可動電極板の取り伺けられている同じ軸に
取り伺けら」tている遮光板1にはその軸の中心を中心
・とする円周上に等間隔に細孔または細隙を設け、その
遮光板10片側にその細孔の円周上に2個の送光ファイ
バー3および4を一定の間隔を置いて設け、その遮光板
1の他の11411の各送光ファイバーに対応する位置
にそれぞれ受光ファイバー3および4′を設け、遮光板
の回転によって各1対の光ファイバーを流れる光が断続
される構造になっている。
As another embodiment of the present invention, a semiconductor device detection element is placed in place of the solar cell 9 in FIGS. The light from the light emitting source 8 is made to reach the semiconductor device detection element only through the hole. In this case, as the light passes through the pores as the movable electrode plate moves, it moves over the detection element of the semiconductor device, so it is possible to detect the position of this light, know the position of the movable electrode plate, and instruct the electrostatic voltage. can. 3, 4, and 5 are drawings showing still another embodiment of the present invention. In FIGS. 3 and 4, the light shielding plate 1 is located on the same axis as the movable electrode plate, and the light shielding plate 1 is located on the circumference centered on the center of the axis. pores or slits are provided at regular intervals on one side of the light shielding plate 1, and two light transmitting fibers 3 and 4 are provided at regular intervals on the circumference of the pores on one side of the light shielding plate 1. Light-receiving fibers 3 and 4' are provided at positions corresponding to the respective light-transmitting fibers of 11411, and light flowing through each pair of optical fibers is interrupted by rotation of the light-shielding plate.

第5図は2対の光ファイバーの間隔を定める方法を示す
図面である。細孔2の径をa、相隣れる細孔間の遮光板
の幅をbとし光のビームの径をdとすれば、幅1〕を b)(’]、、5\2)(1 にとり、光ファイバーの間隔は n (a−1−b )」−(0,5〜1.、(1)dに
とればよい。たソし1]は任意の整数である。
FIG. 5 is a diagram showing a method for determining the distance between two pairs of optical fibers. If the diameter of pore 2 is a, the width of the light shielding plate between adjacent pores is b, and the diameter of the light beam is d, then the width 1] is b) ('], 5\2) (1 In this case, the spacing between the optical fibers may be set to n (a-1-b) - (0.5 to 1., (1)d, where 1] is an arbitrary integer.

第5図ではn=’lとし光ファイバーの間隔はa+ b
 −1−d となっている。
In Figure 5, n = 'l, and the distance between the optical fibers is a + b.
-1-d.

各受光ファイバーは、それぞれ光電スイッチに接続され
ていて、光ファイバーを流れる光/フl遮光板によって
さえぎられるときに光電スイッチがオフとなり、光が流
れるときにオンになる構造にすると、この2個の光電ス
イッチのオンオフの状態を次のように処理して遮光板1
の動きを知ることができる。
Each receiving fiber is connected to a photoelectric switch, and if the structure is such that the photoelectric switch turns off when the light flowing through the optical fiber is blocked by the light blocking plate, and turns on when the light flows, these two The on/off state of the photoelectric switch is processed as follows, and the light shielding plate 1 is
You can know the movement of

先づ2個の光電スイッチがいづれもオフのときにのみカ
ウンティング回路がオンとなり、次に最初にオンになっ
たスイッチのみにて1をプラス加算するかマイナス加算
する。第5図でこれを説明すると、図の位置ではカウン
ティング回路がオンの状態になっている。図の右の光フ
ァイバーに接続されたスイッチのオンで」−1、左の光
ファイバーに接続さ」tたスイッチのオンで−1を加算
するものとずれば、遮光板1が左に動くと最初にオンに
なるのは右の光電スイッチであるから斗1を加算する。
The counting circuit is turned on only when both of the first two photoelectric switches are off, and then only the switch that is turned on first adds 1 or adds 1 minus. This will be explained with reference to FIG. 5. In the position shown in the figure, the counting circuit is in an on state. When the switch connected to the optical fiber on the right side of the diagram is turned on, -1 is added, and when the switch connected to the optical fiber on the left side is turned on, -1 is added. Since it is the photoelectric switch on the right that turns on, add 1.

この加算が行われると直にカウンティング回路はオフに
なり、再び2個の光電スイッチが共にオフになるまでは
カウンティング回路は作動しない。引続き遮光板1が左
に動くと」−1の加算が行われる。次に遮光板17ハ右
に動くと先づ2個の光電スイッチが共にオフになりカウ
ンティング回路メン−オンになってから、最初にオンに
なるのは左の光電スイッチでル)るから−1の加算が行
われるとともに直にカウンティング回路がオフになる。
Immediately after this addition is performed, the counting circuit is turned off and does not operate until both of the photoelectric switches are turned off again. When the light shielding plate 1 continues to move to the left, an addition of "-1" is performed. Next, when the light shielding plate 17 moves to the right, both of the two photoelectric switches are turned off and the counting circuit is turned on.The first photoelectric switch that is turned on is the one on the left. The counting circuit is immediately turned off as soon as the addition of .

このようにして遮光板1の動きをデジタル表示すること
ができ、従って静電電圧を表示することができろ。九フ
ァイバーによる方法は、光電変換や演算処理をする部分
を非危険場所に置き、それらを危険場所に設置した静電
電圧側と元ファイバーによって接続することにより危険
場所に電流を通さないですむ。これは安全管理」二〇太
′鍔な長所である。
In this way, the movement of the light shielding plate 1 can be digitally displayed, and therefore the electrostatic voltage can be displayed. The nine-fiber method eliminates the need to pass current through the hazardous area by placing the photoelectric conversion and calculation processing parts in a non-hazardous area and connecting them to the electrostatic voltage side installed in the hazardous area using the original fiber. This is a major advantage of safety management.

′シかじ、このような光フ了イノにを用いずに上記の送
光ファイバー3,7+の位置にそれそり、発光ダイオー
ドを、受光ファイバー3,71の位置にそれぞれフメト
ダイオードを置くことに」:り光ファイバーを用いずに
静電電圧を指示させることもできる。
``Instead, instead of using such an optical fiber, I decided to place a light emitting diode at the position of the above-mentioned light transmitting fibers 3 and 7+, and a fumetode at the position of the light receiving fibers 3 and 71, respectively.'' :It is also possible to indicate electrostatic voltage without using optical fiber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例を示す平面図であり、第2
図は第1図のA B OC断面図である。 J・・・固定電極板、2・・・可動電極板、2・電Iモ
Oのときの可動電極板の位置、3 輔、4・・・渦巻ば
ね、5・・軸受、6・渦巻はね固定腕、7・・・遮光板
、7′・電圧0のときの遮光板の位置、8・・・発光源
、9・・太陽電池第3図、第41ンjおよび第5図は、
この発明の別の実施例を示す図面で、第4図は第3図の
A I3断面図、第5図は細孔の間隔と光ファイバーの
位置の関係を示す図面である。
FIG. 1 is a plan view showing an embodiment of the present invention, and FIG.
The figure is a sectional view taken along AB OC in FIG. 1. J...Fixed electrode plate, 2...Movable electrode plate, 2.Position of movable electrode plate when electric ImoO, 3.Storage, 4...Spiral spring, 5..Bearing, 6.Spiral is Fixed arm, 7... Light shielding plate, 7' - Position of light shielding plate when voltage is 0, 8... Light emitting source, 9... Solar cell Figures 3, 41 and 5 are as follows:
FIG. 4 is a cross-sectional view taken along A I3 of FIG. 3, and FIG. 5 is a drawing showing the relationship between the pore spacing and the position of the optical fiber.

Claims (1)

【特許請求の範囲】 (1) コンデンサー型回転静電型BE計において、可
動電極板の取り旬げられている軸に遮光板を取り伺げ、
その遮光板の片側に発光源を、その反対側に受光体を設
け、その遮光板によって、その発光源より放射されて、
その受光体に到達する光をその可動電極板の動きに応じ
て変化させ、その変化する光を受光体で受け、その光の
変化を電気信号に変換させてその可動電極板の動きを指
示させるコンデンサー型回転静電電圧計 (2) 上記(1)項において受光体に光発電素子を用
い、発光源から受光体に放射される光の景を遮光板の動
きにより加減し、光発電素子の発生する電気量を変化さ
せて可動電極板の動きを指示させるコンデンサー型回転
型電圧計(3) 上記(2)項において、光発電素子の
代りに半導体装置検出素子を用い、遮光板に設けられた
1個の細孔を通してのみ発光源よりの光がその半導体装
置検出素子に到達するよ5KLその細孔を通して到達し
た光の位置をその半導体装置検出素子で検出して可動電
極板の位置を指示させるコンデンサー型回転静電電圧計 (4) 上記(1)項において、遮光板にその遮光板の
取り伺げられている軸を中上・とじた円周上に等間隔に
細孔を設け、その遮光板の片側のその細孔の円周上に2
個の送光ファイバーを一定間隔を置いて設け、その遮光
板の他の側のそれらの送光ファイバーに対応する位置に
それぞれ受光ファイバーを設け、それらの2差1の送受
光ファイバーを流れろ光がその遮光板によって同時に遮
断されているとき〆ン二あり、かつ、その遮光板が一方
に回転するときには2対の中の定った1対の光ファイバ
ーに他の1対の光ファイバーよりも先に光が通過するよ
うにし、その遮光板が他方に回転するときには他の1対
の光ファイバーに先に光が通過するようにし、それらの
光の断続によって遮光板の回転の方向と回転量を検出し
て可動電極板の位置を指示させるコンデンザー型回転静
電電圧泪 f5) に記(4)項において、送光ファイバーの位置
に発光ダイオードを、受光ファイバーの位置にフメトダ
イオードを置き可動電極板の位置を指示させるコンデン
サー型回転静電電圧計
[Claims] (1) In a condenser-type rotary electrostatic BE meter, a light shielding plate is placed on the shaft of the movable electrode plate,
A light emitting source is provided on one side of the light shielding plate, and a light receiving body is provided on the other side of the light shielding plate.
The light reaching the photoreceptor is changed according to the movement of the movable electrode plate, the changing light is received by the photoreceptor, and the change in light is converted into an electrical signal to direct the movement of the movable electrode plate. Condenser type rotary electrostatic voltmeter (2) In the above item (1), a photovoltaic element is used as the photoreceptor, and the view of the light emitted from the light source to the photoreceptor is adjusted by the movement of the light shielding plate, and the photovoltaic element is generated. A capacitor-type rotary voltmeter that instructs the movement of a movable electrode plate by changing the amount of electricity generated (3) In item (2) above, a semiconductor device detection element is used instead of a photovoltaic element, and a The light from the light emitting source reaches the semiconductor device detection element only through one pore.The position of the light that has reached the semiconductor device through the pore is detected by the semiconductor device detection element to indicate the position of the movable electrode plate. Capacitor-type rotating electrostatic voltmeter (4) In item (1) above, pores are provided in the light-shielding plate at equal intervals on the circumference with the axis of the light-shielding plate intersected in the upper middle, and the light-shielding 2 on the circumference of that pore on one side of the plate.
Light transmitting fibers are provided at regular intervals, and receiving fibers are provided at positions corresponding to the light transmitting fibers on the other side of the light shielding plate. When the light shielding plate is simultaneously blocked by the two optical fibers, and the light shielding plate rotates in one direction, the light passes through one pair of optical fibers before the other pair. When the light-shielding plate rotates in the other direction, the light passes through the other pair of optical fibers first, and the direction and amount of rotation of the light-shielding plate are detected by the interruption of the light, and the movable electrode plate A condenser-type rotating electrostatic voltage that directs the position of the movable electrode plate is used. type rotating electrostatic voltmeter
JP4793484A 1984-03-13 1984-03-13 Condenser type rotary electrostatic voltmeter Pending JPS60192267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4793484A JPS60192267A (en) 1984-03-13 1984-03-13 Condenser type rotary electrostatic voltmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4793484A JPS60192267A (en) 1984-03-13 1984-03-13 Condenser type rotary electrostatic voltmeter

Publications (1)

Publication Number Publication Date
JPS60192267A true JPS60192267A (en) 1985-09-30

Family

ID=12789200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4793484A Pending JPS60192267A (en) 1984-03-13 1984-03-13 Condenser type rotary electrostatic voltmeter

Country Status (1)

Country Link
JP (1) JPS60192267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003044A2 (en) * 1998-11-10 2000-05-24 Xerox Corporation Method and apparatus for using shuttered windows in a micro-electro-mechanical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003044A2 (en) * 1998-11-10 2000-05-24 Xerox Corporation Method and apparatus for using shuttered windows in a micro-electro-mechanical system
EP1003044A3 (en) * 1998-11-10 2001-04-18 Xerox Corporation Method and apparatus for using shuttered windows in a micro-electro-mechanical system

Similar Documents

Publication Publication Date Title
US3907435A (en) Light beam alignment target and method
US5138154A (en) Shaft angle encoder with rotating off-axis interference pattern
US6093928A (en) Position measuring rotary incremental optical encoder
US4445029A (en) Distance detector using a photopotentiometer and a continuous detecting system
JPS6019441B2 (en) Detection circuit of photocell pattern sensing device
US4906846A (en) Displacement detector for detecting an amount of displacement of an object to be measured
JPH06265370A (en) Optical rotation-angle detection apparatus
JPS60192267A (en) Condenser type rotary electrostatic voltmeter
ES2050745T3 (en) ANGULAR POSITION MEASURING DEVICE.
JP2009038312A (en) Sunlight incident direction sensor
US4658132A (en) Rotational angle detecting device with full circumference illumination and detection
JPS6082915A (en) Distance measuring device
JPS56155815A (en) Interface detector
CN205607415U (en) Photoelectric encoder
JPS6463886A (en) Radiation sensor
JPS6254120A (en) Displacement detector
GB1098377A (en) Improved apparatus for detecting an electrical condition in a region of high electrical potential and transmitting an indication thereof
SU1332115A1 (en) Solar power plant orientation sensor
JPH0642919A (en) Method and apparatus for finding direction and/or position of light source
JPH1130531A (en) Non-contact position and displacement measuring device
JPS60195457A (en) Capacitor type rotary electrostatic voltmeter
JPH037435A (en) Radio selective call receiver
SU506892A1 (en) Photoelectric converter of angular movements in a code
Vasilchenko et al. Study of External Flashes Influence and False Operation on Work Stability of Laser Speed Sensors
JPH0618296Y2 (en) Electricity measuring device