JPS6019122A - Thin film display element - Google Patents

Thin film display element

Info

Publication number
JPS6019122A
JPS6019122A JP12624283A JP12624283A JPS6019122A JP S6019122 A JPS6019122 A JP S6019122A JP 12624283 A JP12624283 A JP 12624283A JP 12624283 A JP12624283 A JP 12624283A JP S6019122 A JPS6019122 A JP S6019122A
Authority
JP
Japan
Prior art keywords
thin film
bso
display element
polycrystal
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12624283A
Other languages
Japanese (ja)
Inventor
Shuji Urano
浦野 収司
Tetsuzo Yoshimura
徹三 吉村
Yoshiro Koike
善郎 小池
Masanori Watanabe
渡辺 正紀
Kenichi Hori
健一 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12624283A priority Critical patent/JPS6019122A/en
Publication of JPS6019122A publication Critical patent/JPS6019122A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To attain high resolution and to make a device large-scale by using a BSO polycrystal thin film, which is grown with annealing, as a dielectric thin film which is sandwiched between transparent electrodes and is used. CONSTITUTION:A BSO polycrystal thin film 3' grown with annealing is used as the dielectric thin film which is sandwiched between transparent electrodes 2 and 2' and is used. The transparent electrode 2 is formed on a transparent substrate 1, and a BSO thin film 3 in the polycrystalline state is formed by ion plating or the like, and crystalline granules of polycrystal are grown by annealing, thus obtaining the BSO polycrystal thin film 3'. Then, a large-sized BSO element which has the same degree of orientation as BSO single crystal is obtained locally. An insulating layer 4 and the transparent electrode 2' are formed successively on the BSO polycrystal thin film 3' to obtain a thin film display element. Thus, the thin film display element which is thin and has a high recording density can be produced easily up to a large size, for example, A4 size. Since this display element has less variance of thickness and has high resolution, it is used as a hologram medium or the like.

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の枝ネ11分骨 本発明は薄膜表示素子に関する。特にライトバルブ(す
なわち、光空間変調素子)として有用な薄膜表示素子に
関する。この表示素子は、ポッケルス効果金利用しrr
−F ROM (Pockels R,eadOut 
M’odulator ) ty)高解像イヒならびに
大型化を目的2する。 技術の背景 ライトバルブは、周知の通り、光源から一定強度で放射
された光線束を、入力信号に応じて1部分的に反射又は
透過することにより、投写画像を得るデバイスである。 かかるデバイスには、油膜や金属膜の表面を電子的手段
で変形させ、これとシュリーレン光学系を組み合わせた
ものや、1#品。 電気光学結晶等と偏光板を組み合わせたものなどがある
。例えば、以下に問題とするところのBi、2S102
o(以下、Booと記す)諧結晶を用いたライトバルブ
は、それに高電界を印加した後。 青色光の照射による現像で情報を書き込み、そして次に
、偏光板の使用下、赤色光を透過させることによってそ
の透過光から情報を読み取ることを特徴とする。 従来技術と問題点 従来、液晶ライドパ、ルプが多く用いられている。 しかしながら、このタイプのライトバルブは、商品(ヒ
されているにもかかわらず%製作が困難でかつコストが
高くつくため、せいぜい約5tMどま、す(量大口径で
)である。 液晶に代るものとして1例えばKDPやBS0などの単
結晶を利用することも試みられている。 しかしながら、前者は、高価であるばかりでなく。 例えば−60〜−70℃の低温下でなければ十分な特性
を発揮することができない。さらに、KDP。 B80単結晶は、先ず結晶成長、スライス加工、研摩等
の工程を要し、特にスライス加工、研摩等の機械加工が
大型化への障壁となっている。2またこれらの素子の分
解能は結晶の厚さに依存し、一般に薄い程高分解能にな
る傾向がある。従って従来の素子においてはスライス、
研摩等の機械加工の限界によって素子性能がおさえられ
ていた。従来の素子の厚さは約100μmのオーダーで
あるため、せいぜい50〜500本/咽の分解能しか得
られない。 発明の目的 本発明の目的は、上記したような従来技術の問題点に立
脚して、大口径
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film display element. In particular, the present invention relates to a thin film display device useful as a light valve (ie, a light spatial modulation device). This display element utilizes Pockels effect gold.
-F ROM (Pockels R, eadOut
M'odulator) ty) Aim for high resolution and large size. BACKGROUND OF THE INVENTION As is well known, a light valve is a device that obtains a projected image by partially reflecting or transmitting a bundle of light rays emitted from a light source at a constant intensity depending on an input signal. Such devices include those in which the surface of an oil film or metal film is deformed by electronic means and combined with a Schlieren optical system, and 1# products. There are some that combine electro-optic crystals and polarizing plates. For example, Bi, 2S102, which will be discussed below.
o (hereinafter referred to as Boo) After applying a high electric field to the light valve using the halo crystal. It is characterized by writing information through development by irradiation with blue light, and then reading the information from the transmitted light by transmitting red light using a polarizing plate. Prior Art and Problems Conventionally, liquid crystal displays have been widely used. However, this type of light bulb is difficult to manufacture and expensive even though it is popular, so it costs about 5tM at most (large diameter). For example, attempts have been made to use single crystals such as KDP and BS0. However, the former is not only expensive, but also has insufficient characteristics unless used at a low temperature of, for example, -60 to -70°C. In addition, KDP.B80 single crystal requires processes such as crystal growth, slicing, and polishing, and in particular, machining such as slicing and polishing is a barrier to increasing size. .2 Also, the resolution of these elements depends on the thickness of the crystal, and in general, the thinner the crystal, the higher the resolution.Therefore, in conventional elements, slicing,
Element performance has been limited by limitations in machining such as polishing. Since the thickness of conventional elements is on the order of about 100 μm, a resolution of only 50 to 500 lines/throat can be obtained at most. Purpose of the Invention The purpose of the present invention is to solve the problems of the prior art as described above, and to solve the problems of the prior art.

【すなわち、大面積】で。 膜厚が薄くかつ均一で、製造が簡便かつ低コストで、し
かも特性的に寸ぐれたライトパルプ、すなわち、R,膜
表示素子を提供することにある。 発明の構成 上記した目的は2本発明によれに、透明電極の中間にサ
ンドイッチされた誘電体薄膜を含む薄膜表示素子であっ
て、前記誘電体薄膜がBSO薄膜であシ、かつアニーリ
ングによって成長せしめられたBSO多結晶薄膜である
ことを特徴とする薄膜表示素子によって達成することが
できる。 すなわち、本発明によれば、透明基板上に透明電極を形
成した後、スパッタリング、イオンブレーティング等の
薄膜技術によシ多結晶状態のBSO薄膜を形成し1次い
で、アニーリングによって多結晶の結晶粒塊を成長させ
る。結晶粒塊が成長し。 局部的に見た場合に880単結晶と同程度の配向を有す
る大型のB80素子が生成する。゛大型のBSO素子の
形成後、絶縁層及び透明電極’k 71@次形成して所
望の薄膜表示素子を得る。 発明の実施例 次に、添付の図面を参照しながら本発明ケ説明する。こ
こでは、透過型BSO薄膜ライトパルプの製造について
説明する。 先ず%第1図に示されるように、ガラス基板1上にIT
O透明電極2を約2000への膜厚で形成する。とこで
、透明基板として使用するガラス基鈑け、それ上に施さ
れるべき透明電極が極く薄いので、できるかぎシ平滑で
なければならない。 反射型のライトバルブを製作する場合には、ガラス基鈑
に代えてアルミニウム基板、シリコン基板などを使用す
ることができる。ここで使用したITO透明電極は液晶
ディスプレイにおいてよく用いられている。 引き続いて、透明電極2上に例えばスパッタリング、イ
オンブレーティング、Eガンなどによって880’i蒸
着してBSO多結晶膜3を形成する(第2図、@照)。 BSO多結晶膜3の形成は1例えば、極く小さいB80
単結晶の粒子に電子ビームをあててBSO原子をたたき
出し、これを透明電極2上にイ」着せしめることによっ
て行なうことができる。この多結晶膜の膜厚は、数μm
、好ましくは可視光波長の数倍程度が望ましい。この場
合のBSO結晶粒子の粒径は約数10〜数1000人の
範囲内である。なお、BSOの蒸着にイオンブレーティ
ングを使用すると、得られるBSO膜の結晶性をよシ高
めることができる。 引き続いて、形成されたBSO多結晶膜を第3図に示さ
れるようにアニーリングして成長R8O多結晶膜5′ 
を形成する。この成長膜3′ は、各結晶粒の配向がそ
ろっており、結晶粒界による不整合は巨視的に見た場合
には十分無祈できるものとなる。アニーリングは、特に
制限をれるものでなくかつ、先に形成した透明電極2を
破壊しないかぎり、この技術分野において一般に用いら
れ、ている条件の下で任意に行なうことができる。例え
ば、酔素雰囲気中において約300〜450℃で約30
分間にわたってアニーリングを行なうのが有利である。 なお、このアニーリングの時点で。 適肖な磁界をかけて結晶の方向性を整え、よって。 結晶性を高めることが推奨される。 引き続いて、絶縁破壊を防止するため、形成された成長
BSO多結晶膜3/上に絶縁膜4を扱環する(第4図参
照)。この絶縁膜として、例えば8102が有用である
。なぜなら・ 8i02は・その下方の8SOのSiと
の相容性がよく、絶縁膜としても適している。 湿・後に、第5図に示されるように、第1図と同析にL
7てITO透明電極2′ を形成する。このようにして
、4層構造の層からなる所望の薄膜素子がイ0られる。 発明の効果 本発明によれば、上記説明から理解されるように、従来
のBSO単結晶ライトパルプと同様な特性をもった。し
かもそれよりも大口径の薄膜表示素子が比較的容易に得
られる。この表示素子は実際、A4ザイズの大型のもの
が可能である。この表示素子は、さらに、従来のものに
較べて2桁以上も薄く、オた、BSO素子の特徴として
薄くあればあるほど高い記録密度を有するので、従来の
もの(分解能約100〜500本/、)に較べて格別に
高い約1oooo本/利のオーダーの分解能を呈示する
ことができる。この表示素子は、さらに、従来のように
880単結晶をスライスして製造することがないので、
膜厚の変イヒが極く僅がである(例えばA5サイズの場
合、膜厚の変体を±0.1μmのオーダーにおさえるこ
とができる〕。 本発明の薄膜表示素子は、製造工程が簡便であるので、
もちろん低コストである。 本発明による薄膜表示素子は、上記したようにかなシ高
い分解能を有するので、ポログラノ・媒体として有利に
応用することができる。ぢらr(、現像が不要であり、
書き込み後直ちに電子的に読1み出すことができるので
、コンピー−ターのターミナルに応用することができる
[i.e., large area]. It is an object of the present invention to provide a light pulp, ie, R, film display element, which has a thin and uniform film thickness, is easy to manufacture, is low cost, and has fine characteristics. According to the present invention, there are provided a thin film display element comprising a dielectric thin film sandwiched between transparent electrodes, wherein the dielectric thin film is a BSO thin film and is grown by annealing. This can be achieved by a thin film display element characterized by a BSO polycrystalline thin film. That is, according to the present invention, after forming a transparent electrode on a transparent substrate, a polycrystalline BSO thin film is formed using a thin film technique such as sputtering or ion blating, and then annealing is performed to form a polycrystalline BSO thin film. Grow clumps. Grain clusters grow. A large B80 element is produced which has an orientation comparable to that of an 880 single crystal when viewed locally. After forming the large-sized BSO element, an insulating layer and a transparent electrode 71 are then formed to obtain a desired thin film display element. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described with reference to the accompanying drawings. Here, the production of transmission type BSO thin film light pulp will be explained. First, as shown in FIG. 1, IT is placed on a glass substrate 1.
The O transparent electrode 2 is formed with a film thickness of about 2000 nm. However, since the glass substrate used as the transparent substrate and the transparent electrode to be formed on it are extremely thin, they must be as smooth as possible. When manufacturing a reflective light valve, an aluminum substrate, a silicon substrate, etc. can be used instead of a glass substrate. The ITO transparent electrode used here is often used in liquid crystal displays. Subsequently, a BSO polycrystalline film 3 is formed on the transparent electrode 2 by, for example, sputtering, ion blasting, E-gun, etc., by depositing 880'i (880'i) (FIG. 2, @sho). The formation of the BSO polycrystalline film 3 is 1, for example, an extremely small B80 film.
This can be done by exposing single crystal particles to an electron beam to eject BSO atoms and depositing them on the transparent electrode 2. The thickness of this polycrystalline film is several μm.
, preferably several times the wavelength of visible light. The particle size of the BSO crystal particles in this case is within the range of about several tens to several thousand particles. Note that if ion blating is used for BSO deposition, the crystallinity of the resulting BSO film can be further improved. Subsequently, the formed BSO polycrystalline film is annealed as shown in FIG. 3 to form a grown R8O polycrystalline film 5'.
form. In this grown film 3', the orientation of each crystal grain is uniform, and any misalignment due to grain boundaries can be completely eliminated from a macroscopic perspective. Annealing is not particularly limited and can be arbitrarily performed under conditions commonly used in this technical field as long as it does not destroy the previously formed transparent electrode 2. For example, about 30°C at about 300 to 450°C in an intoxicant atmosphere.
Advantageously, the annealing is carried out for a period of minutes. Furthermore, at the time of this annealing. Apply an appropriate magnetic field to adjust the crystal orientation. It is recommended to increase crystallinity. Subsequently, in order to prevent dielectric breakdown, an insulating film 4 is applied over the grown BSO polycrystalline film 3 (see FIG. 4). For example, 8102 is useful as this insulating film. This is because: 8i02 has good compatibility with the Si of 8SO below it, and is suitable as an insulating film. After moistening, as shown in Figure 5, L was added to the same analysis as in Figure 1.
7 to form an ITO transparent electrode 2'. In this way, a desired thin film element consisting of four layers is produced. Effects of the Invention According to the present invention, as understood from the above description, the pulp had the same characteristics as the conventional BSO single crystal light pulp. Moreover, a thin film display element with a larger diameter than that can be obtained relatively easily. This display element can actually be made as large as A4 size. This display element is also more than two orders of magnitude thinner than conventional display elements, and as a characteristic of BSO elements, the thinner the display element, the higher the recording density. , ) can exhibit an exceptionally high resolution on the order of about 100 lines per line. Furthermore, this display element is not manufactured by slicing 880 single crystal as in the past, so
The variation in film thickness is extremely small (for example, in the case of A5 size, variation in film thickness can be suppressed to the order of ±0.1 μm). The thin film display element of the present invention has a simple manufacturing process. Because there is
Of course, it is low cost. Since the thin film display element according to the present invention has a very high resolution as described above, it can be advantageously applied as a porographic medium. Jira r (, development is not required,
Since it can be read out electronically immediately after writing, it can be applied to computer terminals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図及び第5図は、それぞ
れ、本発明による薄膜表示素子の製造工程を順を追って
断面で示したものである。 図中、1は透明基板、2及び2′は透明電極。 3はBSO多結晶膜、3′は成長F3so多結晶膜。 そして4は絶縁層である。 第5図 隘孟子銀
FIGS. 1, 2, 3, 4, and 5 are cross-sectional views showing the manufacturing process of a thin film display element according to the present invention in order. In the figure, 1 is a transparent substrate, and 2 and 2' are transparent electrodes. 3 is a BSO polycrystalline film, and 3' is a grown F3so polycrystalline film. and 4 is an insulating layer. Figure 5: Yan Mengzi Silver

Claims (1)

【特許請求の範囲】[Claims] 1、透明電極の中間にサンドイツチされた誘電体薄膜を
含む薄膜表示素子であって、前記誘電体薄膜がB S 
(、)薄膜であり、かつアニーリングによって成長せし
められ7’(BSO多結晶薄膜であることを特徴とする
薄膜表示素子。
1. A thin film display element including a dielectric thin film sandwiched between transparent electrodes, the dielectric thin film being B S
(,) A thin film display element characterized in that it is a thin film and is a 7' (BSO) polycrystalline thin film grown by annealing.
JP12624283A 1983-07-13 1983-07-13 Thin film display element Pending JPS6019122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12624283A JPS6019122A (en) 1983-07-13 1983-07-13 Thin film display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12624283A JPS6019122A (en) 1983-07-13 1983-07-13 Thin film display element

Publications (1)

Publication Number Publication Date
JPS6019122A true JPS6019122A (en) 1985-01-31

Family

ID=14930308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12624283A Pending JPS6019122A (en) 1983-07-13 1983-07-13 Thin film display element

Country Status (1)

Country Link
JP (1) JPS6019122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245721A (en) * 1989-03-18 1990-10-01 Ngk Insulators Ltd Image converting element and x-ray detection of image using thereof
JPH0384518A (en) * 1989-08-29 1991-04-10 Ngk Insulators Ltd Optical parts and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245721A (en) * 1989-03-18 1990-10-01 Ngk Insulators Ltd Image converting element and x-ray detection of image using thereof
JPH0384518A (en) * 1989-08-29 1991-04-10 Ngk Insulators Ltd Optical parts and production thereof

Similar Documents

Publication Publication Date Title
US3969545A (en) Light polarizing material method and apparatus
JPH05203958A (en) Liquid crystal display device and production of liquid crystal display device
JPH0475022A (en) Reelection type liquid crystal display device and production thereof
JPS58205181A (en) Matrix liquid crystal display
EP0376982A1 (en) Liquid crystal light valve and associated bonding structure
US5745205A (en) Method of introducing slightly titlting homeotropic orientation into liquid crystal, liquid crystal electro-optical device, and liquid crystal light valve
JP2008276261A (en) Light control unit
JPS6019122A (en) Thin film display element
JPS6189889A (en) Optical information-recording medium
GB1364766A (en) Ferroelectric system for bulk storage of phase holograms
US4165923A (en) Liquid crystal alignment structure
JP2786078B2 (en) Faraday rotator and optical isolator
TW583488B (en) Reflective liquid crystal display and method for fabricating the same
Andrade Part II.—The structure of metallic coatings. The crystallisation of thin metal films
US4514041A (en) Polarizer with electrode thereon in a liquid crystal display
GB1583176A (en) Molecular alignment process and device for liquid crystals displays
US3813144A (en) Method and device for color modulation
JPS6241311B2 (en)
WO2005027138A1 (en) Light control apparatus and method for driving the same
JPH08106093A (en) Liquid crystal light valve
US4980041A (en) Method of making liquid crystal devices with improved adherence
JPH04301819A (en) Space optical modulating element
JPH07120781A (en) Production of optical writing type spacial optical modulating element
JPH08106092A (en) Liquid crystal light valve
JPH04232924A (en) Liquid crystal electro-optic device