JPS60191006A - Production of chalcogenide powder - Google Patents

Production of chalcogenide powder

Info

Publication number
JPS60191006A
JPS60191006A JP4545484A JP4545484A JPS60191006A JP S60191006 A JPS60191006 A JP S60191006A JP 4545484 A JP4545484 A JP 4545484A JP 4545484 A JP4545484 A JP 4545484A JP S60191006 A JPS60191006 A JP S60191006A
Authority
JP
Japan
Prior art keywords
powder
metal
chalcogenide powder
sulfides
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4545484A
Other languages
Japanese (ja)
Inventor
Iwao Matsuyama
松山 巖
Kenzo Susa
憲三 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4545484A priority Critical patent/JPS60191006A/en
Publication of JPS60191006A publication Critical patent/JPS60191006A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain submicroscopic chalcogenide powder of high purity by reacting a metallic alkoxide with H2S, H2Se or H2Te. CONSTITUTION:A metallic alkoxide represented by a formula M(OR)n (where M is Ge, Si, Sn, Al, Ga, In, As, Sb, Mg, Ca, Sr, Ba, Y, Sc, La, Ti, Zr, V, Nb, Mo, Fe, Cd, Zn or Mn, and R is alkyl) is reacted with a compound represented by a formula H2X (where X is S, Se or Te) optionally in the presence of an inorg. or org. acid to obtain chalcogenide powder made of the sulfide, solenide or telluride of said metal.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蛍光体、光デイスク用などに使用される硫化
物、セレン化物、テルル化物の原料製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing raw materials for sulfides, selenides, and tellurides used for phosphors, optical disks, and the like.

〔発明の背景〕[Background of the invention]

従来、金属硫化物は、400〜500°Cで金属とH2
Sを直接反応させる方法や室温で金属塩化物とH2Sを
反応させる方法で合成が行なわれてきた。これらの硫化
物合成法で、前者は、高温のためザブミクロン粉が合成
できない。また後者の塩化物をJJK判とした場合には
一般に蒸気圧が低く、蒸留精製が困難で高純度粉末が合
成しにくいなどの問題を有していた。また、セレン化物
、テルル化物の合成で―セレン、またはテルルを目的と
する他の金属と同時にターゲットに蒸着する方法で合成
が行なわれているが、この方法で合成出来るものは薄膜
に限定され、セレン、テルルと金属の化合物を直接ルツ
ボ等で合成する製法は元素が小数に限定されるとともに
組成的に均質なものが得らないなどの欠点があった。
Conventionally, metal sulfides are made of metal and H2 at 400-500°C.
Synthesis has been carried out by directly reacting S or by reacting metal chloride with H2S at room temperature. Among these sulfide synthesis methods, Zabumicron powder cannot be synthesized in the former method due to the high temperature. Furthermore, when the latter chloride is made into JJK size, it generally has a low vapor pressure, making it difficult to purify by distillation and making it difficult to synthesize high-purity powder. Furthermore, in the synthesis of selenide and telluride, synthesis is carried out by depositing selenium or tellurium on a target at the same time as other metals, but the products that can be synthesized using this method are limited to thin films. The manufacturing method of directly synthesizing compounds of selenium, tellurium, and metals in a crucible or the like has the disadvantage that the number of elements is limited to a small number and that compositionally homogeneous products cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高純度なサブミクロンの硫化物、セレ
ン化物、テルル化物の粉末を合成する製造法を提供する
ことにある。
An object of the present invention is to provide a manufacturing method for synthesizing highly pure submicron powders of sulfides, selenides, and tellurides.

〔発明の概要〕[Summary of the invention]

本発明は、発明者が金属アルコキシドの加水分解反応の
反応過程を詳細に検討したことに端を発している。すな
わち、金属アルコキシドM(OR)。
The present invention originates from the inventor's detailed study of the reaction process of a metal alkoxide hydrolysis reaction. That is, metal alkoxide M(OR).

〔M;金属、O:酸素、R:アルキル基〕と水1120
を反応させると以下の式で一般に酸化物が合成される。
[M: metal, O: oxygen, R: alkyl group] and water 1120
When reacting, an oxide is generally synthesized according to the following formula.

M(OR)、、+mH,O−+MOx+n ROHこの
とき1反応の素過程を詳細に調べた結果、上式の反応は
H,OがOH−とH1イオンに分離し、生成したOl−
トイオンがM(OR)。のMを、H+イオンはORを攻
撃することによって反応が進行することが明らかとなっ
た。その結果、生成した酸化物MO,の酸素原子はH2
Oから供給されることが判明した1発明者らは、この事
実に着目し、H,Oの代わりにH,Oと同じ二等辺三角
形状の分子枯造を有するH2S、H2Se。
M(OR),,+mH,O-+MOx+n ROH At this time, as a result of detailed investigation of the elementary process of one reaction, the reaction in the above equation separates H and O into OH- and H1 ions, and the generated Ol-
Toion is M(OR). It has become clear that the reaction proceeds by attacking M and H + ions attacking OR. As a result, the oxygen atoms of the generated oxide MO, H2
The inventors focused on this fact and discovered that H2S and H2Se have the same isosceles triangular molecular structure as H and O instead of H and O.

)(、Teなどを使用すれば、これらのガスが金属アル
コキシド中の金属と直接反応し、硫化物、セレン化物、
テルル化物が合成できるはずであると考え至った。この
ような金属アルコキシドとの反応により、硫化物、セレ
ン化物、テルル化物を合成する方法は従来知られていな
い反応である。発明者らは、金属アルコキシドそのもの
、あるいは金属アルコキシドを適当な溶媒に溶解した溶
液に、H,S、)’I、S e又はH,Teガスを流し
込むことによって、硫化物、セレン化物、テルル化物が
合成できること、また得られた粉末が極めて微粒でしか
も高純度であることを見い出し、木法による製造が高純
度微粒粉の製法に極めて有効であることを明らかにした
) (, Te, etc., these gases react directly with the metal in the metal alkoxide, forming sulfides, selenides,
I came up with the idea that telluride could be synthesized. The method of synthesizing sulfides, selenides, and tellurides by such reactions with metal alkoxides is a reaction that has not been previously known. The inventors were able to produce sulfides, selenides, and tellurides by flowing H, S, )'I, Se, or H, Te gas into the metal alkoxide itself or into a solution of the metal alkoxide dissolved in an appropriate solvent. They discovered that the powder obtained was extremely fine and highly pure, and that the wood method was extremely effective in producing high-purity fine powder.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に従って詳述する。 Hereinafter, the present invention will be explained in detail according to examples.

実施例1.Ge硫化物の合成 Ge(OCH,)4 29.6m124:C1−1,O
H2OmQを加えた溶液をバブラに入れ、ここに9%N
、ガス希釈のH2SI&100mQ/1m1nの割合で
流し込んだ。ガスを流し込んで、しばらくすると液が白
濁しはじめ、 G e (OCHs )−とlI、Sの
間に反応が起きたことを示した。
Example 1. Synthesis of Ge sulfide Ge(OCH,)4 29.6m124:C1-1,O
Pour the solution containing H2OmQ into a bubbler and add 9% N
, gas dilution H2SI was poured in at a ratio of 100 mQ/1 m1n. After a while of flowing gas, the liquid began to become cloudy, indicating that a reaction had occurred between G e (OCHs)- and lI,S.

G e(COHa ) 41モルに対し2モルのH,S
の割合になるように、H,Sを流したのち、液を湿度を
断った室内に一日静置し、上澄液を除いたのち、真空乾
燥機で乾燥し、乾燥粉を作製した。得られた白色粉末は
X線的には非晶質であった6しかし赤外吸収スペクトル
、ラマンスペクトルのピーク位置から、この白色粉はG
a52であることが同定された6また、BET比表面積
は24.5n(/’gで平均粒径800人の極めて微細
な粉末であった。
2 mol of H, S for 41 mol of Ge(COHa)
After flowing H and S in such a ratio, the solution was allowed to stand for one day in a humidity-free room, and after removing the supernatant, it was dried in a vacuum dryer to produce a dry powder. The obtained white powder was amorphous according to
The powder was identified to be a52 and was an extremely fine powder with a BET specific surface area of 24.5n/'g and an average particle size of 800nm.

発光分光分析による金属不純物分析では、Go以外はす
べて1円)−以下であり、得られた粉末は極めて高純度
であった。
Metal impurity analysis by emission spectroscopy showed that all of the impurities except Go were less than 1 yen), and the obtained powder had extremely high purity.

実施例2.Ta硫化物の合成 T a(QC,H,)!、 4.6 g と CI、O
H16gを混合した液をバブラに入れ9%濃度のH,5
(N2希釈)を流R100m m /w+inの速さで
バブルした。H,Sを流し込むと黒色沈澱物が生成し始
めることが」Zめられた。沈澱物を真空乾燥法で乾燥し
、組成分析した結果Tag、であった。
Example 2. Synthesis of Ta sulfide Ta(QC,H,)! , 4.6 g and CI,O
Pour a mixture of 16g of H into a bubbler and add 9% H,5
(N2 dilution) was bubbled at a flow rate of R100 mm/w+in. It was noted that when H and S were poured, a black precipitate began to form. The precipitate was dried using a vacuum drying method, and the composition was analyzed and the result was Tag.

BET比表面積15cJ/g、Ta、S以外の金属元素
の不純物量は5 PPII以下であった。
The BET specific surface area was 15 cJ/g, and the amount of impurities of metal elements other than Ta and S was 5 PPII or less.

実施例3.60のセレン化物 ae(oc、H,、)42.5gとC,H,OH78m
Qの混合溶液をバブラに入J]、、2%濃度のH2S 
e (A r稀釈)を500m12/winの流量で流
し込んだ。得られた沈澱物はX線的には非晶質であった
が、ラマンスペクトルからG e S e 2化合物で
あることが判明した6得らオした沈澱物の比表面積は、
12rtr/g、Ge、Se以外の金属元素不純物はい
ずれも5 ppm以下であった。
Example 3.60 selenide ae (oc, H,,) 42.5 g and C, H, OH 78 m
Put the mixed solution of Q into the bubbler J], 2% H2S
e (Ar diluted) at a flow rate of 500 m12/win. The obtained precipitate was amorphous according to X-rays, but the Raman spectrum revealed that it was a G e S e 2 compound.6 The specific surface area of the obtained precipitate was:
12 rtr/g, and all metal element impurities other than Ge and Se were 5 ppm or less.

実施例4.Sbのテルル化物 S b (QC,HG )42.6 gを(、:、 H
70HG OmQに溶解した液に、1%のH,T p、
 (A r稀釈)ガスを500mQ/winの流量でバ
ブルした。得られた灰白色状粉末を乾燥し、化学分析し
た結果、生成粉末は、はぼSb、Te、、であると雄定
された。得られた粉末はX線的には非晶質物質であった
。粉末の金属不純物濃度は、各元素に対し、いずれもl
10PP以下であり、fii!めで高純度な粉末であっ
た。
Example 4. 42.6 g of Sb telluride S b (QC,HG) (,:, H
1% H, T p,
(Ar dilution) Gas was bubbled at a flow rate of 500 mQ/win. As a result of drying the obtained off-white powder and chemically analyzing it, it was determined that the produced powder was Sb, Te, etc. The obtained powder was an amorphous substance according to X-ray examination. The metal impurity concentration of the powder is l for each element.
It is less than 10PP and fii! It was a highly pure powder.

実施例5.触媒 実施例1において、Geのアルコキシドとアルコールの
混合液に酢酸(100%)を0.1 m Q加えた。H
2Sを加えると実施例1に比較して、極めて早く白色粉
末Ge52の生成が起り、酢酸が−1−記の反応におい
て触媒作用をもっていることが明らかとなった6 以上の実施例は、Ge、Ta、Sb硫化物、セレン化物
、テルル化物合成の例を挙げたが、この他、Si、AM
、 Ga、In、Aq、 Mg、Cm。
Example 5. In Catalyst Example 1, 0.1 mQ of acetic acid (100%) was added to the mixture of Ge alkoxide and alcohol. H
When 2S was added, white powder Ge52 was formed extremely quickly compared to Example 1, and it became clear that acetic acid had a catalytic effect in the reaction described in -1-.6 In the above examples, Ge, Examples of synthesis of Ta, Sb sulfide, selenide, and telluride have been given, but in addition, Si, AM
, Ga, In, Aq, Mg, Cm.

Sr、Ba、Y、Sc、La、Ti、Zr、V。Sr, Ba, Y, Sc, La, Ti, Zr, V.

Nb、MO,FO,Cd、Zn、Mnなどの金属アルコ
キシドとH,SまたはH2S5またはH,Teを反応さ
せることにより硫化物、セレン化物、テルル化物の高純
度微粉末の合成が可能である。また、それぞれの反応に
おいて酸を加えることが反応促進のために極めてりJI
果があり、それらの酸としではil・酸の他にへ酸、塩
化水素、硫酸、硝酸などが有効である6 以上に述べた如く、本発明によれば、従来にない合成反
応により高純度の硫化物、セレン化物、テルル化物粉体
を製造できる。
By reacting metal alkoxides such as Nb, MO, FO, Cd, Zn, and Mn with H, S, H2S5, or H, Te, it is possible to synthesize high-purity fine powders of sulfides, selenides, and tellurides. In addition, it is extremely important to add acid in each reaction to promote the reaction.
In addition to il acid, helical acid, hydrogen chloride, sulfuric acid, nitric acid, etc. are effective as these acids.6 As described above, according to the present invention, high purity can be obtained by an unprecedented synthetic reaction. can produce sulfide, selenide, and telluride powder.

〔発明の効果〕〔Effect of the invention〕

本発明は、各種金属の硫化物、セレン化物、テルル化物
を合成する新規な方法であり、高純度かつ極微粉末状の
−E記化合物が容易に得られる点で画期的効果を有する
ものである。
The present invention is a novel method for synthesizing sulfides, selenides, and tellurides of various metals, and has a groundbreaking effect in that highly pure and ultrafine powder-like compound -E can be easily obtained. be.

代理人 弁理士 高橋」獣 、′ ゝ()′Agent: Patent Attorney Takahashi “Beast” ゝ()′

Claims (1)

【特許請求の範囲】 1、金属アルコキシドM (OR)。(Mは、Qe。 S I HS rl gΔQ、Ga、In、As、Sb
。 M g g Ca + S r p B a、 HY 
HS c HI、a。 T i、Zr、V、Nb、Mo、Fe、Cd。 Zn、Mnの群より選択した少なくとも一元素の金属、
0は酸素、Rはアルキル基)とH2X(XはS、Se、
Teより選択した少なくとも−・元素)を反応させ、上
記金属の硫化物、セレン化物、テルル化物を合成するこ
とを特徴とするカルコゲナイド粉末の製造方法。 2、無機酸または有機酸を金属アルコキシドに加え反応
させることを特徴とする特許精求の範囲第1項記載のカ
ルコゲナイド粉末の製造方法。
[Claims] 1. Metal alkoxide M (OR). (M is Qe. S I HS rl gΔQ, Ga, In, As, Sb
. M g g Ca + S r p B a, HY
HS c HI, a. Ti, Zr, V, Nb, Mo, Fe, Cd. at least one element of metal selected from the group of Zn and Mn;
0 is oxygen, R is an alkyl group) and H2X (X is S, Se,
1. A method for producing chalcogenide powder, which comprises reacting at least - elements selected from Te to synthesize sulfides, selenides, and tellurides of the above metals. 2. The method for producing chalcogenide powder according to item 1 of the patent application, characterized in that an inorganic acid or an organic acid is added to a metal alkoxide and reacted.
JP4545484A 1984-03-12 1984-03-12 Production of chalcogenide powder Pending JPS60191006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4545484A JPS60191006A (en) 1984-03-12 1984-03-12 Production of chalcogenide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4545484A JPS60191006A (en) 1984-03-12 1984-03-12 Production of chalcogenide powder

Publications (1)

Publication Number Publication Date
JPS60191006A true JPS60191006A (en) 1985-09-28

Family

ID=12719792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4545484A Pending JPS60191006A (en) 1984-03-12 1984-03-12 Production of chalcogenide powder

Country Status (1)

Country Link
JP (1) JPS60191006A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227149A (en) * 1991-10-08 1993-07-13 Sullivan Thomas M Process for making silicon monosulfide and aluminum sulfide
JPH06293503A (en) * 1993-04-02 1994-10-21 Tsuushiyousangiyoushiyou Kiso Sangyokyokucho Production of metal sulfide from metal alkoxide
US5458865A (en) * 1992-04-06 1995-10-17 The United States Of America As Represented By The Secretary Of The Navy Electrical components formed of lanthanide chalcogenides and method of preparation
USH1540H (en) * 1993-06-30 1996-06-04 The United States Of America As Represented By The Secretary Of The Navy Electrical components formed of lanthanide chalcogenides and method of preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227149A (en) * 1991-10-08 1993-07-13 Sullivan Thomas M Process for making silicon monosulfide and aluminum sulfide
US5458865A (en) * 1992-04-06 1995-10-17 The United States Of America As Represented By The Secretary Of The Navy Electrical components formed of lanthanide chalcogenides and method of preparation
JPH06293503A (en) * 1993-04-02 1994-10-21 Tsuushiyousangiyoushiyou Kiso Sangyokyokucho Production of metal sulfide from metal alkoxide
USH1540H (en) * 1993-06-30 1996-06-04 The United States Of America As Represented By The Secretary Of The Navy Electrical components formed of lanthanide chalcogenides and method of preparation

Similar Documents

Publication Publication Date Title
JP5028616B2 (en) Method for producing metal sulfide
Bai et al. A simple solution-phase approach to synthesize high quality ternary AgInSe 2 and band gap tunable quaternary AgIn (S 1− x Se x) 2 nanocrystals
Abdullah et al. Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex
US10865109B2 (en) Method for preparation of magic-sized nano-crystalline substance
Zhu et al. One-step room temperature rapid synthesis of Cu 2 Se nanostructures, phase transformation, and formation of p-Cu 2 Se/p-Cu 3 Se 2 heterojunctions
JP2014040331A (en) Method for manufacturing zinc tin oxide
Bouznit et al. New co-spray way to synthesize high quality ZnS films
JP5788832B2 (en) Method for producing sulfide compound semiconductor nanoparticles containing Cu, Zn, Sn and S using solvothermal method
Hu et al. Template-mediated growth of Cu3SnS4 nanoshell tubes
Kovalenko et al. Formation of single-crystalline BaTiO3 nanorods from glycolate by tuning the supersaturation conditions
Peisen et al. Preparation of lanthanum sulfide nanoparticles by thermal decomposition of lanthanum complex
JPS60191006A (en) Production of chalcogenide powder
Rajput et al. A comparative study on structural and optical properties of ZnO nanoparticles prepared by three different synthesis methods
Zhang et al. Solvothermal synthesis of uniform hexagonal-phase ZnS nanorods using a single-source molecular precursor
EP2432735B1 (en) Composition and method for producing ito powders or ito coatings
Huang et al. Preparation of PbI2 microflakes by pH-controlled double-jet precipitation
Ashok kumar et al. Effect of solvents on the structural, optical and morphological properties of Zn 0.96 Cu 0.04 O nanoparticles
JPWO2006077890A1 (en) Method for producing monodispersed spherical metal oxide fine particles and metal oxide fine particles
Muthukumaran Effect of solvents on the structural, optical and morphological properties of ZnCuO nanoparticles.
JPS6086022A (en) Production of titanic acid salt
Sreekumari Nair et al. Some effects of single molecule precursors on the synthesis of CdS nanoparticles
JPS6086026A (en) Production of composite perovskite compound
WO2023021897A1 (en) Method for producing core/shell-type semiconductor nanoparticles, and semiconductor nanoparticle composite
KR100963538B1 (en) Process for preparing nano-sized cadmium and cadmium chalcogenide colloid in organic solvents
Mabila et al. Synthesis of Anisotropic Tin Monosulphide Nanoparticles Using Sn-Thiourea as a Single Molecular Precursor