JPS60190853A - Ultrasonic measuring apparatus - Google Patents

Ultrasonic measuring apparatus

Info

Publication number
JPS60190853A
JPS60190853A JP59045112A JP4511284A JPS60190853A JP S60190853 A JPS60190853 A JP S60190853A JP 59045112 A JP59045112 A JP 59045112A JP 4511284 A JP4511284 A JP 4511284A JP S60190853 A JPS60190853 A JP S60190853A
Authority
JP
Japan
Prior art keywords
ultrasonic
measured
transducer
pair
compression shaping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59045112A
Other languages
Japanese (ja)
Other versions
JPH0380016B2 (en
Inventor
Yoshinori Hayakawa
吉則 早川
Hirohide Miwa
三輪 博秀
Nobushiro Shimura
孚城 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59045112A priority Critical patent/JPS60190853A/en
Publication of JPS60190853A publication Critical patent/JPS60190853A/en
Publication of JPH0380016B2 publication Critical patent/JPH0380016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • A61B8/0825Clinical applications for diagnosis of the breast, e.g. mammography

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To enable the discovery of an abnormal region, by applying press shaping to an object to be measured so at to obtain known thickness distribution and measuring a propagation time or an attenuation amount required in a thickness direction. CONSTITUTION:An object 10 to be measured is shaped to a definite thickness and an ultrasonic wave is transmitted through the shaped object 10 to be measured in a thickness direction and, if a time required in transmission is measured, the average sonic velocity of the object 10 to be measured can be measured. In this case, if transmitting/receiving characteristics are preliminarily calculated in such a state that the object 10 to be measured is absent as shown by the posi- tion S in the drawing and compared with that at a position Q, the attenuation amount in the object 10 to be measured can be measured. Therefore, if cancer 11 is present at a position P, it can be discovered as a large part on the distribution of a sonic velocity/attenuation amount.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は知音)IT C(Tissue Charac
terization:にJ1織弁別)装’(%”−に
関し、特に乳腺の集団検診に適する装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to IT C (Tissue Charac).
The present invention relates to a device suitable for mass examination of mammary glands.

(発明の従来技術〕 超癌波診断装置の従来技術として(J。(Prior art to the invention) As a conventional technology of ultra-cancer wave diagnostic equipment (J.

■超i′:!I波CT (Computer Tomo
graphy技術を用いて被測定体内部の各種パラメー
タの分布を透過法でめて断層像として表示するもの)■
Bモモ−−力式(被測定体内Blsの音響インピーダン
スの変化点の分布を断j!像として表示するもの) ■反U=]型TC(反射超音波を処理することにより、
被測定体内部の各種パラメータの分布を111i層像と
して表示するもの) などか知られている。
■Super i':! I-wave CT (Computer Tomo
(Using graphy technology, the distribution of various parameters inside the object to be measured is determined using the transmission method and displayed as a tomographic image)
BMomo-force formula (Displays the distribution of changing points of the acoustic impedance of Bls in the body to be measured as a cross-section image) ■Anti-U = ] type TC (By processing reflected ultrasound,
A method that displays the distribution of various parameters inside the object to be measured as a 111i layer image) is known.

一方、集団検診用の装置としては。On the other hand, it can be used as a device for mass medical examinations.

+a+高速性(測定データを得るに要する時間が短く、
且つ測定の結果が即時に得られること)(b) ’T’
 C可能く単なる断層像でなく1組織パラメータが測定
出来ること) が要求され、また」1記■の研究からパラメータとして
は、音速及び減衰量が有効なことが判っている。しかし
、上記■及び■の方法ばいずれも計算時間(信号の処理
時間)がかかりすぎ(a)の要求を充たさない。敢えて
高速化せんとすると厖大なノ\−1’ウエアを要し、大
きさ及び価格の面で実用に適さない。また」1記■の方
式ではTCはできず。
+a+High speed (short time required to obtain measurement data,
and measurement results can be obtained immediately) (b) 'T'
It is required to be able to measure one tissue parameter rather than just a tomographic image, and it has been found from the research in 1.2 that sound velocity and attenuation are effective parameters. However, both methods (1) and (2) take too much calculation time (signal processing time) and do not satisfy the requirement (a). If we dare to increase the speed, it would require a huge amount of hardware, making it unsuitable for practical use in terms of size and price. Also, TC cannot be performed using the method described in Section 1.■.

有効な診断ができない。Unable to make an effective diagnosis.

ところで超音波技術の一つとして、超音波顕微鏡が知ら
れている。これは、第1図に示す如く。
By the way, an ultrasound microscope is known as one of the ultrasound techniques. This is shown in FIG.

透過型(A)と反射型(B)があるが、いずれも被測定
体測定試料1を薄片にしてマイラー膜2上に置き、ザフ
ァイア製の音響レンズ3を介してトランスデユーサ4か
ら超音波を送出し、トランスデユーサ4 (反射型の場
合は同一のトランスデューザ4)により被測定体試料を
通過した超音波を受信し、その透過局間または減衰率等
を測定し。
There are transmission type (A) and reflection type (B), but in both cases, a measurement sample 1 of the object to be measured is made into a thin slice and placed on a Mylar film 2, and ultrasonic waves are transmitted from a transducer 4 through an acoustic lens 3 made of Zaphire. The transducer 4 (or the same transducer 4 in the case of a reflective type) receives the ultrasonic waves that have passed through the sample to be measured, and measures the transmission distance or attenuation rate, etc.

試料をX−Y方向に移’PJrしてその分布を表示する
ものである。なお試料のまわりは水 で囲んである。
The sample is moved in the X-Y direction and its distribution is displayed. The sample is surrounded by water.

しかし、このような顕微鏡を利用するには、被71[l
+定休体組繊をりJり取って薄片に加工しな&)ればな
らず、集団検診には全く適さない。
However, in order to use such a microscope, the subject 71 [l
+Regular closure The tissue fibers must be removed and processed into thin pieces, making it completely unsuitable for mass medical examinations.

〔発明のH的〕[H aspect of invention]

本発明は以上の点にがんかめ、上記に++、 (b)の
要求を共に充たし、かつ比較的安価な装置を提供するこ
とをト1的とする。
The present invention takes into account the above points, and aims to provide an apparatus that satisfies both the requirements of ++ and (b) above and is relatively inexpensive.

〔発明の要点〕[Key points of the invention]

本発明は、被測定体を一定のj¥さ、もしくは不定でも
よいから既知の厚さ分布に圧迫整形し、その厚さ方向に
関して要する伝播時間又は減衰量を測定することにより
、該厚さ方向と直交する面内ての音速及び/又は減衰率
(世)の分布をめ2異常部位の発見を可能とするもので
ある。
The present invention compresses and shapes the object to be measured into a known thickness distribution, which may be constant or variable, and measures the propagation time or attenuation amount required in the thickness direction. This makes it possible to discover abnormalities based on the distribution of the sound velocity and/or attenuation rate in a plane orthogonal to the plane.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の−・実施例の概略構成図であり。 FIG. 2 is a schematic diagram of an embodiment of the present invention.

(A)は(B)のA−A’断面図、 (B)は(八)の
B−B′断面図である。図より」りるように、乳腺10
は略コの字型の圧迫整形手段20により挾まれて一定の
厚さに整形される。圧迫整形手段20の上下部分間はジ
ャバラ機構21で伸縮自在に連結され。
(A) is a sectional view taken along line AA' in (B), and (B) is a sectional view taken along line BB' in (8). As shown in the figure, mammary gland 10
is held between the approximately U-shaped compression shaping means 20 and shaped to a constant thickness. The upper and lower portions of the compression shaping means 20 are telescopically connected by a bellows mechanism 21.

また上下各部分内には送信用トランスデユーサ22と受
信用トランスデユーサ23が夫々設りられている。尚ト
ランスデューザ22.23は互いに対向した位置関係を
保ちつつ、x、Y方向に移動して2次元的に走査可能に
されるものとする。また、少なくとも被測定体10に接
する面24.25は超音波を透過する材質で構成されて
おり、また内部には水等の音響結合材26が充填されて
いるものとする。さらに乳腺10の先端付近はやはり水
や周知の超音波結合ゲル等の音響結合体27を充填して
、超音波が透過するようにする。
Furthermore, a transmitting transducer 22 and a receiving transducer 23 are provided in each of the upper and lower parts. It is assumed that the transducers 22 and 23 are movable in the x and y directions while maintaining a positional relationship in which they face each other, so as to be able to scan two-dimensionally. Further, it is assumed that at least the surfaces 24 and 25 in contact with the object to be measured 10 are made of a material that transmits ultrasonic waves, and the interior thereof is filled with an acoustic coupling material 26 such as water. Further, the vicinity of the tip of the mammary gland 10 is filled with an acoustic coupling material 27 such as water or a well-known ultrasound coupling gel, so that ultrasound can pass therethrough.

このように被測定体10を一定の厚さに整形して厚さ方
向に超召波を透過させ、透過するに要する時間を測定す
れば、被測定体10の平均も速が測定できる。また図示
Sの位:6のように被測定体10が存在しない状態(水
のめが存在する状態)での送信/受信4寺性を予め(ま
たは測定の都度)求めておき1位置0ての送信/受信時
(1,1と比較することにより、被測定体]0での減衰
量が測定できる。よって位置P4ごおいて+y:nか存
在すれば、l′)速/減衰1;jノ分イ1’i 、1:
 L:Z第((図の如< 、7F+速/ 減衰、r1i
〕大きい部分として発見できる。
In this way, by shaping the object 10 to be measured to a certain thickness, transmitting the supersonant waves in the thickness direction, and measuring the time required for the transmission, the average speed of the object 10 to be measured can be measured. In addition, as shown in the figure S position: 6, the transmission/reception characteristics in the state where the measured object 10 is not present (the state where the water pot is present) are determined in advance (or each time the measurement is made), and the 1 position 0 is set. When transmitting/receiving (by comparing 1 and 1, the amount of attenuation at the object to be measured) 0 can be measured. Therefore, at position P4, +y:n, if present, l') speed/attenuation 1; j minutes i 1'i, 1:
L: Zth ((as shown in the figure, 7F+speed/attenuation, r1i
] can be discovered as a large part.

位置1ぐのように2圧迫整形板24.25と被測定体I
Oとが密着していない部分においても、若−(−の補正
処理を施すごとにより、測定が可能である。以下このよ
うな場合も含めて、詳細に説明する。
As shown in position 1, 2 compression shaping plates 24 and 25 and the object to be measured I
Even in areas where O is not in close contact with O, measurement is possible by performing a correction process of -(-).A detailed explanation will be given below, including such a case.

まず3位置Qにおける測定について述べる。First, the measurement at the 3rd position Q will be described.

送信用トランステユーザ22から紹凸波パルスを送信し
てから、受信用トランステユーザ23で該超音波パルス
が受信されるまでの時間差のδ(11定値をTqとする
と、平均音速Vqは Vq= ((] −do) / (Tq−To)但し、
 doは圧迫整形板24.25の厚さと圧迫整形手段内
部の音71fj、l結合月26のトランスデユーサ間に
存在する部分の厚さの和、LOば上記dOを通過するに
要する時間で、圧迫整形板24と25とを密着させたと
きの送信/受信時間として既知のもの、dはトランステ
ユーザ22と23との距離−ζあり既知のものである。
The time difference δ (11) from the transmission of a convex wave pulse from the transmitting transteuser 22 until the reception of the ultrasonic pulse by the receiving transteuser 23 is Tq, the average sound velocity Vq is Vq = ((] -do) / (Tq-To) However,
do is the sum of the thickness of the compression shaping plates 24, 25, the sound 71fj inside the compression shaping means, and the thickness of the portion existing between the transducers of the coupling moon 26; LO is the time required to pass through the above dO; The transmission/reception time when the compression shaping plates 24 and 25 are brought into close contact is known, and d is the distance -ζ between the transte users 22 and 23 and is known.

また平均減衰率へqは以下の如くにまる。In addition, the average attenuation rate q is calculated as follows.

−tioA、 −(d、−do)八5 Ps=Poxe *e 1)3/p9−o−(d−d’><”−Ay)In (
Ps/ Pq) = (d−do)(八5−Aq )八
q= (1,n (Ps/ Pq)/ (d−do) 
) +ΔS但し、ΔSは音響結合体27の減衰率で既知
のもの。
-tioA, -(d, -do)85 Ps=Poxe *e 1)3/p9-o-(d-d'><”-Ay)In (
Ps/ Pq) = (d-do) (85-Aq) 8q= (1,n (Ps/ Pq)/ (d-do)
) +ΔS However, ΔS is a known attenuation rate of the acoustic coupler 27.

PsはSの位置での透過パルスのビニク振幅で既知のも
のである。八〇はdoの距離におりる減衰率で既知のも
の、 Poはトランステユーザ22での送信振幅である
Ps is the known Vinic amplitude of the transmitted pulse at the position S. 80 is a known attenuation rate at a distance of do, and Po is a transmission amplitude at the transte user 22.

次に位置Rにおける測定について述べる。Next, measurement at position R will be described.

この場合には被測定体1oの実際のINさdmが不明で
あるが3反!(・J波を利用することにより解決するこ
とができる。第4図は反射波の観測例を示す図であり、
aか送信パルスのタイミング、bか圧迫整形板24ての
反射、Cが被測定体IOの上部表面での反射、dか被>
1111定休]Oの下部表面での反則、eが圧迫整形板
25での反則、fは1〜ランスデプー−ザ23での反射
に相当する。よって図のCとdとの間隔から、被測定体
10のdm間の通過に要する時間Tmがまる。従ゲて、
被測定体10の部分での平均音速νmは、実測した透過
時間をTrとすると。
In this case, the actual INdm of the object to be measured 1o is unknown, but it is 3 times! (・This can be solved by using J waves. Figure 4 shows an example of observing reflected waves.
a: timing of the transmitted pulse, b: reflection from the compression shaping plate 24, C: reflection from the upper surface of the object to be measured IO, d: reflection from the object to be measured IO
1111 regular holiday] O corresponds to a foul on the lower surface, e corresponds to a foul on the compression shaping plate 25, and f corresponds to 1 to reflection at the lance depuzer 23. Therefore, the time Tm required for the object to be measured 10 to pass between dm is calculated from the distance between C and d in the figure. Follow me,
The average sound velocity νm at the portion of the object to be measured 10 is calculated by setting the actually measured transmission time to Tr.

Vm= dm/ Tm −(d−do−dl) / Tm = (d−do−Vl、(Tr−To −Tm) ) 
/Tmでめることができる。
Vm = dm/Tm - (d-do-dl) / Tm = (d-do-Vl, (Tr-To -Tm))
/Tm.

但し、dl、Vlは音響結合体27の部分の距離及び音
速で、 Vlは既知のものである。
However, dl and Vl are the distance and sound speed of the acoustic coupler 27, and Vl is known.

また位置Rでの平均減衰奉行については、以下1、IS
/ 11 r = e−(cL−cto” )(45−
A r)In (Ps/ Pr) =−(d−do−d
i)−(As−八r)八r−白n (Ps/ Pr) 
/(d−do −dl) )十 八S 尚、 dlは上記の如< Vl (Tr−To−Tm)
でめることができる。
Regarding the average decay magistrate at position R, see 1 below, IS
/ 11 r = e-(cL-cto”)(45-
A r)In (Ps/Pr) =-(d-do-d
i)-(As-8r)8r-whiten (Ps/Pr)
/(d-do-dl) ) 18S In addition, dl is as above < Vl (Tr-To-Tm)
You can do it.

第5図は上記の如き本発明の一実施例構成のブロック図
であり、送信回路31からの送信パルス波はl・ランス
デューサ32にて超音波パルス波に変換されて被測定体
に送信され、被測定体を透過した超音波パルス波はトラ
ンステユーザ33にて受信され、受信アンプ34を介し
てピーク検出回路35にてピーク振幅及びそのピークを
受信した時刻が検出される。一方、トランステユーザ3
2においても反射してくる超音波パルス波を受信し、受
信アンプ36を介してスベキュラ検出回1(H”tに−
で被測定体の表面での反射に対応する波を検出し、その
受信時刻を検出する。これらの検出情報を計算回路38
に入力し、上記のごとき計算を行って平均音速Vや減衰
率へをめる請求めた■やへの値は走査制御回路39の信
号と同期さセることにより1表示回路40によってディ
スプレイに第3図のごとくグラフ表示するか、または2
次元的に分布表示する。その際1反躬信匂を検波回路4
1で検波してBモード信号を作成し、−緒に表示しても
よい。
FIG. 5 is a block diagram of the configuration of an embodiment of the present invention as described above, in which the transmitted pulse wave from the transmitting circuit 31 is converted into an ultrasonic pulse wave by the transducer 32 and transmitted to the object to be measured. The ultrasonic pulse wave transmitted through the object to be measured is received by the transte user 33, and the peak amplitude and the time at which the peak was received are detected by the peak detection circuit 35 via the receiving amplifier 34. On the other hand, TransteUser 3
2 also receives the reflected ultrasonic pulse wave, and sends it through the reception amplifier 36 to subicular detection circuit 1 (H"t -
Detects the wave corresponding to the reflection on the surface of the object to be measured, and detects the reception time. A calculation circuit 38 calculates this detection information.
The average sound velocity V and the attenuation rate are calculated by inputting the input into Display it graphically as shown in Figure 3, or
Display the distribution dimensionally. At that time, 1 detection circuit 4
1 to create a B-mode signal and display it together.

〔発明の実施例の変形〕[Modifications of embodiments of the invention]

第6図は圧迫整形板24.25に若干の傾きを設けて乳
腺を挾み易くしたものである。この場合はX方向の位置
によって厚さが異なるので、各位置毎に」1記R位置で
の測定と同様にj反射波を利用して測定すればよい。な
お簡易型として、圧迫整形板の傾斜が一定ならば、上記
Q位置での測定と同様に直接の測定値をそのまま用い”
Cも、第3図の測定結果が全体的に傾斜した状態で表示
されることになるので4局部的に異常な(直を示すもの
は発見可能である。
In FIG. 6, the compression shaping plates 24 and 25 are slightly tilted to make it easier to pinch the mammary gland. In this case, since the thickness differs depending on the position in the X direction, it is sufficient to measure each position using the j reflected wave in the same way as the measurement at the R position. As a simple version, if the inclination of the compression shaping plate is constant, the direct measurement value can be used as is, similar to the measurement at the Q position above.
In C, the measurement results in FIG. 3 are displayed in a tilted state as a whole, so it is possible to find locally abnormal (direct) results.

第7図は反射波を用いて測定する装置の一実施例構成図
であり、一方の圧迫整形板52は被111111定体1
0とは音響インピーダンスが著しく異なる+A札Iで形
成された超音波反射板である。この場合、トランスデユ
ーサ51は送信/受信兼用のものか、または送信用/受
信用の対になったものを用いる。透過型と比較して透過
時間が約24gになるが、原理的には同様の測定処理で
あるので2説明は省略する。
FIG. 7 is a configuration diagram of an embodiment of a device for measuring using reflected waves.
0 is an ultrasonic reflecting plate formed of +A tag I, which has a significantly different acoustic impedance. In this case, the transducer 51 is a transmitter/receiver, or a transmitter/receiver pair. Although the transmission time is about 24 g compared to the transmission type, the measurement process is basically the same, so the explanation of 2 will be omitted.

尚2反射型の場合のブロック図は、第5図において1−
ランスデューザ を肖り月徐し、トランスデユーサの受
信波を図示点線の如く受信アンプ34に入力するように
すればよい。
The block diagram for the 2-reflection type is 1- in Figure 5.
The transducer may be rotated, and the received wave from the transducer may be input to the receiving amplifier 34 as shown by the dotted line in the figure.

第8図は走査手段についての一実施例を示す概略構成図
であり、一方の圧迫整形板60の側にはリニア・アレイ
型トランスデューザ61を受信用として設&t、l−ラ
ンステユーザ61自月はY方向に1次元的に走査するの
みで測定点の2次元的走査が高速に可能とし、他方の圧
迫整形板62は送信用大口径トランスデユーサを兼ねる
ものである。
FIG. 8 is a schematic configuration diagram showing one embodiment of the scanning means, in which a linear array type transducer 61 is installed on one side of the compression shaping plate 60 for reception. The moon enables two-dimensional scanning of measurement points at high speed by only scanning one-dimensionally in the Y direction, and the other compression shaping plate 62 also serves as a large-diameter transducer for transmission.

リニア・アレイ型1−ランスデユー9−は第6図の如き
反射型においても、当然利用することができる。また2
次元配列のリニア・アレイ型トランスデ1−ザを用いれ
ば1機械的可動部分を無くすることもでき、且つ測定時
間も大幅に短縮できる。
Of course, the linear array type 1--lance due 9- can also be used in a reflective type as shown in FIG. Also 2
If a linear array type transducer with a dimensional array is used, one mechanically moving part can be eliminated, and the measurement time can be significantly shortened.

第9図は2次元表示の例であり、癌の部分11が坏度ま
たは色の変化として判断できる。
FIG. 9 is an example of a two-dimensional display, and the cancerous portion 11 can be judged as a change in consistency or color.

(A>は音速に関するXY面のうj布、(B)は減衰率
に関するxy面の分布、 (C)はC−Cl。
(A> is the distribution in the XY plane regarding the speed of sound, (B) is the distribution in the xy plane regarding the attenuation rate, and (C) is C-Cl.

面を示ずBモード像である。This is a B-mode image, showing no surface.

また、圧迫整形手段の圧迫力を変化さゼる機構を伺加し
て、圧迫力の変化によって表示がどう変るかを見ること
により、堅い癌の場合は殆ど変化しないが、軟らかい癌
の場合は圧迫力によって計測値、形状とも変化するので
、癌の種別の判断にも有効である。
In addition, by adding a mechanism that changes the compression force of the compression shaping means and seeing how the display changes depending on the change in compression force, we found that there is almost no change in the case of hard cancers, but in the case of soft cancers. Since both the measured value and the shape change depending on the compression force, it is also effective in determining the type of cancer.

また、音速による良性/悪性判断と減衰率による良性/
悪性判断、及びそれらの組合せを表示することも有用で
ある。
Also, benign/malignant judgment based on sound velocity and benign/malignant based on attenuation rate.
It is also useful to display malignancy judgments, and combinations thereof.

さらに、透過時間を測定するには周知の位相法によるこ
ともできる。即ち送信パルスの位相に対する受信パルス
の位相を検出し、透過時間が大きいほど位相が遅れるこ
とを利用する。なお位相法の場合は1波長以内での位相
変化しか検出できないが、正常組織と異常組織との音速
の差が検出できればよいので7絶対的な音速(透過時間
)を知る必要は無い。
Furthermore, the well-known phase method can also be used to measure the transmission time. That is, the phase of the received pulse relative to the phase of the transmitted pulse is detected, and the fact that the longer the transmission time is, the more the phase is delayed is utilized. In the case of the phase method, only phase changes within one wavelength can be detected, but it is only necessary to detect the difference in sound speed between normal tissue and abnormal tissue, so there is no need to know the absolute sound speed (transmission time).

また、減衰率の代りに減衰率の周波数依存係数(いわゆ
る減衰傾斜)を周知の周波数レシオ法等でめることも可
能である。
Furthermore, instead of the attenuation rate, it is also possible to determine the frequency-dependent coefficient of the attenuation rate (so-called attenuation slope) using a well-known frequency ratio method or the like.

〔発明の効果〕〔Effect of the invention〕

以上の如く7本発明によれば圧迫整形手段を用いること
により、被測定体の厚さを一定、もしくは既知の値とし
、透過または反射に要する時間や減衰量から節単に平均
音速、平均減衰率をめるることができ、超音波TCが簡
易に且つ安価に達成でき、集団検診用装置として最適で
ある。
As described above, according to the present invention, by using the compression shaping means, the thickness of the object to be measured is made constant or a known value, and the average sound velocity and average attenuation rate can be easily calculated from the time required for transmission or reflection and the amount of attenuation. Ultrasonic TC can be easily and inexpensively achieved, making it ideal as a mass medical examination device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来より公知の超音波顕微鏡の説明図。 第2図は本発明の一実施例概略構成図、第3図は本発明
による測定結果の一表示例、第4し1は反射信号の一例
を示す波形図、第5図は本発明の−実施例のゾロツク図
、第6図は圧迫整形手段に傾斜をつけた例を示す概略構
成M、第7図は反射型の一実施例の概略構成図、第8図
は本発明の他の実施例を示す概略構成図、第9図は2次
元表示の例を示す図である。 第2図において、10は被測定体としての乳腺。 24、25は圧迫整形板、22は送信用トランスデユー
サ、23は受信用トランスデユーサである。 (A) 半1図 (A) (β) 第2B ρ Qg S 察30 第 4 凹 Y 第5@
FIG. 1 is an explanatory diagram of a conventionally known ultrasonic microscope. Fig. 2 is a schematic configuration diagram of an embodiment of the present invention, Fig. 3 is an example of a display of measurement results according to the present invention, Fig. 4-1 is a waveform diagram showing an example of a reflected signal, and Fig. 5 is a - Zorock diagram of the embodiment, FIG. 6 is a schematic configuration M showing an example in which the compression shaping means is inclined, FIG. 7 is a schematic configuration diagram of an embodiment of the reflective type, and FIG. 8 is another embodiment of the present invention. A schematic configuration diagram showing an example, and FIG. 9 is a diagram showing an example of two-dimensional display. In FIG. 2, numeral 10 indicates a mammary gland as a subject to be measured. 24 and 25 are compression shaping plates, 22 is a transmitting transducer, and 23 is a receiving transducer. (A) Half 1 figure (A) (β) 2nd B ρ Qg S 30th 4th concave Y 5th @

Claims (1)

【特許請求の範囲】 (1)被測定体を所望の面積にわたって一定の厚さ、も
しくは任かの既知の厚さ分布に圧迫整形する一対の圧迫
整形手段と、該圧迫整形された被測定体の厚さ方向の超
音波伝播時間及び/又は超音波送信用1をδ(り定−J
る手段と、該測定する点を上記面積内で1次元的又は2
次元的に走査する手段と、該測定結果又はそれに関する
量を1次元的又は2次元的に表示する手段とを有するこ
とを特徴とする超音波測定装置。 (2)上記一対の圧迫整形手段の夫々は超音波透過性材
」でできた板を含んで構成され、上記)πり定手段iJ
該1対の板の一方の外側に設けられる超音波送信用又は
送受兼用のトランスデユーサ及び」1記1対の板の他方
の外側に設りられる超音波受信用トランスデユーサとを
含むことを特徴とする特許請求の範囲第(1)項に記載
の超8波測定装置。 (3月二記一対の圧迫整形手段の一方は超音波透過性材
の板を含み、他方は被測定体と音響インピーダンスの異
なる超右波反射材の板を含んで構成され。 上記測定手段は上記超音波透過性材の板の外側に設けら
れた超音波送信用トランスデユーサと超音波受信用トラ
ンスデユーサの対、又は超音波送信/受信兼用のトラン
スデユーサを含むことを特徴とする特許請求の範囲第(
1)項に記載の超音波測定装置。 +41.3:、記一対の圧迫整形手段の一方は超音波透
過性材の板を含み、他方は上記面積をカバーする大きさ
の大口径の超音波送信用トランスデユーサを含んで構成
され、上記走査手段は該一方の圧迫整形手段中に設ジノ
た超音波受信用トランスデユーサにて」−記面積内の走
査を行うことを特徴とする特許請求の範囲第(1)項に
記載の超音波測定装置。 (5)上記I・ランスケューザは1次元リニア・アレイ
型であり、上記走査手段は該リニア・アレイの配列方向
と直角方向に該トランスケユーザを移動させる手段を有
することを特徴とする特許請求の範間第(2+ Lf!
ないし第(4)項のいずれかに記載の超〒1波測定装置
[Scope of Claims] (1) A pair of compression shaping means for compressing and shaping an object to be measured over a desired area to a constant thickness or any known thickness distribution, and the compressed object to be measured. The ultrasonic propagation time in the thickness direction and/or ultrasonic transmission 1 is δ
and a means for determining the measuring point within the above area in a one-dimensional or two-dimensional manner.
An ultrasonic measuring device comprising: means for dimensionally scanning; and means for displaying the measurement result or a quantity related thereto one-dimensionally or two-dimensionally. (2) Each of the pair of compression shaping means includes a plate made of an ultrasonic transmissive material, and the above) π determination means iJ
Includes a transducer for ultrasonic transmission or for both transmission and reception, which is provided on the outside of one of the pair of plates, and a transducer for ultrasonic reception, which is provided on the outside of the other of the pair of plates mentioned in 1. An ultra-8 wave measuring device according to claim (1), characterized in that: (March 2nd) One of the pair of compression shaping means includes a plate made of an ultrasonic transparent material, and the other includes a plate made of an ultraright wave reflecting material whose acoustic impedance is different from that of the object to be measured. It is characterized by including a pair of an ultrasonic transmitting transducer and an ultrasonic receiving transducer, or a transducer for ultrasonic transmitting/receiving, provided on the outside of the plate of the ultrasonic transparent material. Claim No. (
The ultrasonic measuring device according to item 1). +41.3: One of the pair of compression shaping means includes a plate made of an ultrasonic transparent material, and the other includes a large diameter ultrasonic transmitting transducer large enough to cover the above area, Claim 1, wherein the scanning means scans the area indicated by "-" using an ultrasonic receiving transducer installed in one of the compression shaping means. Ultrasonic measuring device. (5) The above-mentioned I transceiver is of a one-dimensional linear array type, and the scanning means has means for moving the transceiver in a direction perpendicular to the arrangement direction of the linear array. Hanma Dai (2+ Lf!
The ultrasonic wave measurement device according to any one of paragraphs (4) to (4).
JP59045112A 1984-03-10 1984-03-10 Ultrasonic measuring apparatus Granted JPS60190853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59045112A JPS60190853A (en) 1984-03-10 1984-03-10 Ultrasonic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59045112A JPS60190853A (en) 1984-03-10 1984-03-10 Ultrasonic measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60190853A true JPS60190853A (en) 1985-09-28
JPH0380016B2 JPH0380016B2 (en) 1991-12-20

Family

ID=12710179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59045112A Granted JPS60190853A (en) 1984-03-10 1984-03-10 Ultrasonic measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60190853A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188842A (en) * 1989-12-20 1991-08-16 Sumitomo Bakelite Co Ltd Ultrasonic living body tester
JPH1043180A (en) * 1996-08-05 1998-02-17 Furuno Electric Co Ltd Ultrasonic diagnostic system
JP2786334B2 (en) * 1993-03-22 1998-08-13 シーメンス アクチエンゲゼルシヤフト Image forming apparatus using echo signal
JPH11192231A (en) * 1997-10-14 1999-07-21 Siemens Ag Ultrasonic treatment device for woman's breast
WO2000009014A1 (en) 1998-08-17 2000-02-24 Kari Richter Combined ultrasound-radiography apparatuses
JP3014453B2 (en) * 1993-03-22 2000-02-28 カリ リヒター Image generation and display device for living body part
DE19837259A1 (en) * 1998-08-17 2000-03-02 Kari Richter Combined ultrasound and X-ray device for breast examination; has maximum ultrasonic coupling liquid depth at ultrasonic transducer height, where liquid may be remove for X-ray investigation
DE19837264A1 (en) * 1998-08-17 2000-03-09 Kari Richter Combined ultrasound and X-ray device for breast examination; has maximum ultrasonic coupling liquid depth at ultrasonic transducer height, where liquid may be remove for X-ray investigation
JP2006511298A (en) * 2002-12-18 2006-04-06 バーバラ アン カーマノス キャンサー インスティチュート Computerized ultrasonic risk assessment system
US7388317B2 (en) 2003-02-27 2008-06-17 Murata Manufacturing Co., Ltd Ultrasonic transmitting/receiving device and method for fabricating the same
JP2009119275A (en) * 2007-11-14 2009-06-04 Medison Co Ltd Ultrasound diagnostic device having transducers facing each other
JP2009219656A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Medical imaging apparatus
JP2010029679A (en) * 1998-03-20 2010-02-12 Barbara Ann Karmanos Cancer Inst Apparatus and method for multidimensional detection of pathologic tissue
WO2010084991A1 (en) 2009-01-21 2010-07-29 Canon Kabushiki Kaisha Compression device used in ultrasonic measurement, compression control method thereof, and photoacoustic measurement apparatus and control method thereof
JP2011255059A (en) * 2010-06-11 2011-12-22 Hitachi Aloka Medical Ltd Ultrasonic bone evaluation device
JP2012205887A (en) * 2011-03-17 2012-10-25 Canon Inc Subject information acquisition apparatus and subject information acquisition method
US9271695B2 (en) 2010-02-02 2016-03-01 Canon Kabushiki Kaisha Apparatus for mammography with acoustic matching
JP2017209454A (en) * 2016-05-27 2017-11-30 株式会社ユネクス Endothelial function measuring apparatus for brachial artery
JP2020099619A (en) * 2018-12-25 2020-07-02 株式会社日立製作所 Ultrasonic transmission/reception device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5612535B2 (en) * 2011-04-28 2014-10-22 大阪瓦斯株式会社 Material judgment method of laying cast iron pipe and laying cast iron pipe material judgment system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188842A (en) * 1989-12-20 1991-08-16 Sumitomo Bakelite Co Ltd Ultrasonic living body tester
JP2786334B2 (en) * 1993-03-22 1998-08-13 シーメンス アクチエンゲゼルシヤフト Image forming apparatus using echo signal
JP3014453B2 (en) * 1993-03-22 2000-02-28 カリ リヒター Image generation and display device for living body part
JPH1043180A (en) * 1996-08-05 1998-02-17 Furuno Electric Co Ltd Ultrasonic diagnostic system
JPH11192231A (en) * 1997-10-14 1999-07-21 Siemens Ag Ultrasonic treatment device for woman's breast
JP2010029679A (en) * 1998-03-20 2010-02-12 Barbara Ann Karmanos Cancer Inst Apparatus and method for multidimensional detection of pathologic tissue
WO2000009014A1 (en) 1998-08-17 2000-02-24 Kari Richter Combined ultrasound-radiography apparatuses
DE19837259A1 (en) * 1998-08-17 2000-03-02 Kari Richter Combined ultrasound and X-ray device for breast examination; has maximum ultrasonic coupling liquid depth at ultrasonic transducer height, where liquid may be remove for X-ray investigation
DE19837264A1 (en) * 1998-08-17 2000-03-09 Kari Richter Combined ultrasound and X-ray device for breast examination; has maximum ultrasonic coupling liquid depth at ultrasonic transducer height, where liquid may be remove for X-ray investigation
JP2006511298A (en) * 2002-12-18 2006-04-06 バーバラ アン カーマノス キャンサー インスティチュート Computerized ultrasonic risk assessment system
US7388317B2 (en) 2003-02-27 2008-06-17 Murata Manufacturing Co., Ltd Ultrasonic transmitting/receiving device and method for fabricating the same
JP2009119275A (en) * 2007-11-14 2009-06-04 Medison Co Ltd Ultrasound diagnostic device having transducers facing each other
JP2009219656A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Medical imaging apparatus
WO2010084991A1 (en) 2009-01-21 2010-07-29 Canon Kabushiki Kaisha Compression device used in ultrasonic measurement, compression control method thereof, and photoacoustic measurement apparatus and control method thereof
US9271695B2 (en) 2010-02-02 2016-03-01 Canon Kabushiki Kaisha Apparatus for mammography with acoustic matching
JP2011255059A (en) * 2010-06-11 2011-12-22 Hitachi Aloka Medical Ltd Ultrasonic bone evaluation device
JP2012205887A (en) * 2011-03-17 2012-10-25 Canon Inc Subject information acquisition apparatus and subject information acquisition method
US9462997B2 (en) 2011-03-17 2016-10-11 Canon Kabushiki Kaisha Subject information acquisition apparatus and subject information acquisition method
JP2017209454A (en) * 2016-05-27 2017-11-30 株式会社ユネクス Endothelial function measuring apparatus for brachial artery
JP2020099619A (en) * 2018-12-25 2020-07-02 株式会社日立製作所 Ultrasonic transmission/reception device

Also Published As

Publication number Publication date
JPH0380016B2 (en) 1991-12-20

Similar Documents

Publication Publication Date Title
JPS60190853A (en) Ultrasonic measuring apparatus
Droin et al. Velocity dispersion of acoustic waves in cancellous bone
d'Astous et al. Frequency dependence of ultrasound attenuation and backscatter in breast tissue
US4176658A (en) Ultrasonic echogram display
Lieu Ultrasound physics and instrumentation for pathologists
EP0168565B1 (en) Ultrasonic measurement method and apparatus therefor
JPH08503156A (en) Image forming method using echo signal
JPS6266145A (en) Method of detecting permittivity distribution
JPH06209941A (en) Ultrasonic diagnosing device
JPH0532060B2 (en)
JPH0249102B2 (en)
Minonzio et al. A free plate model can predict guided modes propagating in tubular bone-mimicking phantoms
Huthwaite et al. Combining time of flight and diffraction tomography for high resolution breast imaging: initial invivo results (l)
Moilanen et al. Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments
JPS59196459A (en) Ultrasonic microscope
CA2102785A1 (en) Method and apparatus for elastographic measurement and imaging
JPH0898836A (en) Display method and display device of sound wave propagation period
Opielinski et al. Multi-parameter ultrasound transmission tomography of biological media
GB2030698A (en) Medical diagnostic apparatus using combined X-ray and ultrasonic wave measurements
Cario et al. Identifying and overcoming limitations with in situ calibration beads for quantitative ultrasound
Cormack et al. Refraction-corrected backscatter tensor imaging of excised porcine ventricular myocardium
Hoffmeister et al. Effect of transducer position on ultrasonic backscatter measurements of cancellous bone
Breyer Basic physics of ultrasound
Robinson et al. Quantitative sonography
JP3280473B2 (en) Ultrasound diagnostic equipment