JPS60190736A - Preparation of aromatic alpha-keto acid - Google Patents

Preparation of aromatic alpha-keto acid

Info

Publication number
JPS60190736A
JPS60190736A JP4609484A JP4609484A JPS60190736A JP S60190736 A JPS60190736 A JP S60190736A JP 4609484 A JP4609484 A JP 4609484A JP 4609484 A JP4609484 A JP 4609484A JP S60190736 A JPS60190736 A JP S60190736A
Authority
JP
Japan
Prior art keywords
aromatic
keto acid
alpha
acid
keto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4609484A
Other languages
Japanese (ja)
Inventor
Akio Yamamoto
明夫 山本
Fumiyuki Ozawa
文幸 小澤
Hiroaki Takino
滝野 宏昭
Kunisuke Izawa
井沢 邦輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP4609484A priority Critical patent/JPS60190736A/en
Publication of JPS60190736A publication Critical patent/JPS60190736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain an aromatic alpha-keto acid useful as a synthetic raw material for aromatic alpha-amino acids, alpha-hydroxy acids, etc., easily in high yield without decarbonylation, by hydrolyzing an aromatic alpha-keto acid amide with an aqueous solution of an alkali. CONSTITUTION:One equivalent aromatic alpha-keto acid amide of the formula (R<1> is aromatic group such as aryl, pyridyl or thienyl; R<2> and R<3> are H or alkyl, and one thereof is alkyl or R<2> and R<3> together may form a ring), e.g. benzoyl-N,N- diethylformamide, easily obtained by reacting an aromatic halide with a primary or secondary amine and CO in the presence of a Pd catalyst is dissolved or suspended in preferably 10-50 equivalents aqueous solution of an alkali (earth) metal hydroxide, e.g. 0.5-3N NaOH, heated under vigorous agitation and hydrolyzed for 1-12hr to give the aimed compound, e.g. benzoylformic acid.

Description

【発明の詳細な説明】 本発明は芳香族α−ケトElアミドを加水分解して、尚
収率で芳香族α−ヶ)1[−製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for hydrolyzing aromatic α-keto El amide to produce aromatic α-1[-] in a still yield.

α−ケト酸は隣接したカルボニル基′t−2個持つ反応
性の高い化合物で、α−アミノ酸、α−オキシ酸などに
容易に導かれることは一般によく知られている。しかし
ながらこれまで芳香族α−ケト酸の合成は容易でないた
め、それを原料にして産業上有用な芳香族α−アミノ酸
、α−オキシ酸を合成するルートはふさがれていた。
It is generally well known that α-keto acids are highly reactive compounds having two adjacent carbonyl groups, and are easily converted into α-amino acids, α-oxy acids, and the like. However, until now, it has not been easy to synthesize aromatic α-keto acids, so the route to synthesize industrially useful aromatic α-amino acids and α-oxy acids using them as raw materials has been blocked.

なお、本発明に於て原料として使用される芳香族α−ケ
ト酸アミドは先に本発明者の二人山本明夫、小澤文幸に
よって開発された方法に従)て芳香族へロダン化物と第
一級アミン又は第二級アミン及び−酸化炭素をパラジウ
ム触媒の存在下に反応させることによシ容易に得られる
ものである(特開昭58−152846公報参照)。
In addition, the aromatic α-keto acid amide used as a raw material in the present invention was prepared by combining an aromatic herodanide and a first compound according to a method previously developed by two of the present inventors, Akio Yamamoto and Fumiyuki Ozawa. It can be easily obtained by reacting a primary amine or a secondary amine and carbon oxide in the presence of a palladium catalyst (see JP-A-58-152846).

これまでα−ケト酸アミドの加水分解についてはあまシ
報告例がな(、M*Barreによって脂肪族α−ケト
酸アミドとしてα−オキソ酪酸ジエチルアミドの加水分
解に6規定塩酸を用いた例が報告されているにすぎず、
アルカリによる加水分解は生成するα−ケト酸がアルカ
リに対して不安定であり適当でないとされている( C
ompt、 R@nd、 v 184825(1927
))。
Until now, there have been no reports on the hydrolysis of α-keto acid amide (M*Barre reported the use of 6N hydrochloric acid to hydrolyze α-oxobutyric acid diethylamide as an aliphatic α-keto acid amide). It is only being done,
Hydrolysis with alkali is considered to be unsuitable because the α-keto acid produced is unstable to alkali (C
ompt, R@nd, v 184825 (1927
)).

本発明者らは塩酸酸性下、種々の条件のもと芳香族α−
ケト酸アミドの加水分解を検討したが、12規定塩酸還
流の激しい条件下でもほとんど反応は進行しないことを
確認した・ 従来、力9ルボン酸アミドの加水分解はa)塩酸などの
鉱酸又は鉱酸に酢酸を加えて溶解させて加熱する方法。
The present inventors investigated aromatic α-
We investigated the hydrolysis of keto acid amides, but confirmed that the reaction hardly progressed even under the severe conditions of 12N hydrochloric acid reflux. Conventionally, the hydrolysis of carboxylic acid amides was carried out using a) mineral acids such as hydrochloric acid or A method of adding acetic acid to acid, dissolving it, and heating it.

b)カセイソーダ、カセイカリのようなアルカリ金属水
酸化物などのアルコール溶液、又はこれらのアルコール
性水溶液中に溶解させて加熱する方法。さらに特殊な例
としてC)過酸化ナトリウムと反応させる方法。d) 
100%リン酸と加熱する方法。e)カルボン酸アミド
を亜硝酸塩、亜硝酸アルキル、塩化ニトロシル、二酸化
窒素などでニトロシルし、これをカルボン酸に分解する
方法などが知られている。これらカルボン酸アミドの氷
解反応を芳香族α−ケト酸アミドの加水分解に適用した
場合には、a)においては先に述べたように反応はほと
んど進行せず、e)においては試薬が高価であるために
工業的には不適であ!0 、d)においては満足する結
果は得られなかった。又e)においては第二級アミンの
カルメン酸アミドではニトロソ化されないため不可能で
あり、又非常に有毒な亜硝酸ガスが発生し、有用な方法
とは言い難い。またb)の方法を芳香族α−ケト酸アミ
ドに適用して、メタノール、ジオキサンなどを含む水性
媒体中に溶解し加熱したところ、加水分解は容易に進行
するものの、芳香族α−ケト酸が脱カルゲニル化をする
副反応が起こシ、芳香族カルボン酸を大量に生成した。
b) A method of dissolving in an alcoholic solution of caustic soda, an alkali metal hydroxide such as caustic potash, or an alcoholic aqueous solution thereof and heating the solution. A more special example is C) a method of reacting with sodium peroxide. d)
Method of heating with 100% phosphoric acid. e) A method is known in which a carboxylic acid amide is nitrosylated with a nitrite, an alkyl nitrite, nitrosyl chloride, nitrogen dioxide, etc., and this is decomposed into a carboxylic acid. When the ice-breaking reaction of these carboxylic acid amides is applied to the hydrolysis of aromatic α-keto acid amides, the reaction hardly progresses in a) as mentioned above, and in e) the reagents are expensive. Therefore, it is unsuitable for industrial use! 0, d), no satisfactory results were obtained. In addition, e) is impossible because carmenic acid amide, which is a secondary amine, is not nitrosated, and extremely toxic nitrous acid gas is generated, so it cannot be said to be a useful method. Furthermore, when method b) was applied to aromatic α-keto acid amide, and the aromatic α-keto acid amide was dissolved in an aqueous medium containing methanol, dioxane, etc. and heated, hydrolysis proceeded easily, but the aromatic α-keto acid amide A side reaction of decargenylation occurred, producing a large amount of aromatic carboxylic acid.

そこで本発明者らは芳香族α−ケト酸アミドの脱カル7
ipニル化を起こさない加水分解法について鋭意検討し
た結果、意外にも芳香族α−ケト酸ア電ドをアルカリ水
溶液のみに溶解もしくは懸濁させ、適当な温度に所要時
間、加熱攪拌するこ七によシ脱カル&ニル化することな
く高収率で芳香族α−ケト酸が得られることを見出し、
本発明を完成するに至った。
Therefore, the present inventors decalcified aromatic α-keto acid amides.
As a result of extensive research into a hydrolysis method that does not cause IP-nylation, we unexpectedly found that an aromatic α-keto acid anolyte was dissolved or suspended only in an alkaline aqueous solution, and the solution was heated and stirred at an appropriate temperature for the required time. We discovered that aromatic α-keto acids can be obtained in high yield without decalcification and nylation.
The present invention has now been completed.

以上のように、芳香族α−ケト酸アミドをアルカリ水溶
液のみに作用させて脱炭酸などの副反応を生じせしめる
ことなく、極めて円滑に加水分解を進行させることを見
出したことは従来全く予想されておらず特筆すべきこと
である。なお加水分解反応の速度は含水アルコール中に
比べ若干遅くなる傾向にあるが実用上差しつかえない程
度である・ 本発明で用いられる芳香族α−ケト酸アミドをリシル、
チェ二への芳香族基を示し R2、BSは水素又はアル
キル基で、そのうち少なくとも一つはアルキル置換基で
ある。又a2 、 B Sは相互に連結して環を形成し
てもよい)。
As described above, the discovery that hydrolysis of aromatic α-keto acid amide can proceed extremely smoothly without causing side reactions such as decarboxylation by acting only on aqueous alkaline solutions was completely unexpected. This is noteworthy. Note that the rate of hydrolysis reaction tends to be slightly slower than in hydrous alcohol, but this is not a problem for practical use. The aromatic α-keto acid amide used in the present invention is
R2 and BS represent hydrogen or an alkyl group, at least one of which is an alkyl substituent. Also, a2 and B S may be linked to each other to form a ring).

芳香族α−ケト酸アミドの代表例としては、ベンゾイル
ギ酸ジエチルアミド、ベンゾイルギ酸−1−ブチルアミ
ド、ノ9ラヒドロキシペンゾイルギ酸ジエチルアミド、
2−ビリジルーグリオキシル酸ジエチルアミドなどがあ
げられるが、アルカリ水溶液に溶けるものに限定されな
い、、また本発明で使用するアルカリ水溶液としてはカ
セイソーダ、カセイカリのようなアルカリ金属水酸化物
、水酸化カルシウムのようなアルカリ土類金属水酸化物
などの水溶液があげられる。
Representative examples of aromatic α-keto acid amides include benzoylformic acid diethylamide, benzoylformic acid-1-butylamide, 9-hydroxypenzoylformic acid diethylamide,
Examples of the alkaline aqueous solution used in the present invention include 2-pyridyl-glyoxylic acid diethylamide, but are not limited to those that are soluble in aqueous alkaline solutions. Examples of the aqueous alkaline solution used in the present invention include caustic soda, alkali metal hydroxides such as caustic potash, and calcium hydroxide. Examples include aqueous solutions of alkaline earth metal hydroxides.

本発明を実施するには、芳香族α−ケト酸アミP1重量
に対し、約0.5〜3規定のアルカリ水溶液を好ましく
は、lO〜50当量、必要ならばそれ以上の適当量に溶
解もしくは懸濁し、激しく攪拌しながら加熱すると約1
〜12時間で加水分解は終了する。加水分解の速度は室
温では長時間を必要とするが、加熱すれば温度の上昇と
ともに速くなる。又アルカリ水溶液の濃度はあまり関係
がな東むしろ使用するモル数に依存するもので高濃度の
アルカリ水溶液を使用することは、脱カルがニル化を起
こしやすいという点からみて好ましくない。例えばベン
ゾイルギ酸ジエチルアミドに2規定のカセイソーダ水溶
液20当量使用して懸濁させ激しく攪拌し加熱還流した
場合、10時間で反応液は均一となシ加水分解は完了す
る。
To carry out the present invention, an aqueous alkaline solution of about 0.5 to 3N is preferably dissolved or dissolved in an appropriate amount of 10 to 50 equivalents, and if necessary, a larger amount if necessary, per 1 weight of aromatic α-keto acid amine P. When suspended and heated with vigorous stirring, approximately 1
Hydrolysis is complete in ~12 hours. The rate of hydrolysis requires a long time at room temperature, but increases with increasing temperature when heated. Furthermore, the concentration of the alkaline aqueous solution has little to do with it, but rather depends on the number of moles used, and it is not preferable to use a highly concentrated alkaline aqueous solution since decalcification tends to cause nylation. For example, when 20 equivalents of a 2N caustic soda aqueous solution are suspended in benzoylformic acid diethylamide, stirred vigorously, and heated to reflux, the reaction solution becomes homogeneous and the hydrolysis is completed in 10 hours.

反応の終了は薄層クロマトグラフィー及び反応液を一部
抜き取シ塩酸によシ酸性とし酢酸エチルで抽出後シリル
化してガスクロマトグラフィーにより確認できる。生成
物の単離には、以上のようにして加水分解を完了した水
溶液を適当な抽出操作後、結晶化を行なって目的とする
芳香族α−ケト酸を高収率で得ることができる。
Completion of the reaction can be confirmed by thin layer chromatography and gas chromatography after extracting a portion of the reaction solution, making it acidic with dihydrochloric acid, extracting with ethyl acetate, and silylating. To isolate the product, the aqueous solution that has been hydrolyzed as described above is subjected to an appropriate extraction operation and then crystallized to obtain the desired aromatic α-keto acid in high yield.

以下実施例によシ具体的に説明する。This will be specifically explained below using examples.

実施例1 ベンゾイルギ酸ジエチルアミド4111n9を2Nカセ
イソーダ20117に懸濁し激−しく攪拌しながら、1
0時間加熱還流すると反応液は均一となる。冷却後この
溶液に6N塩酸を加えてpH2に調整し酢酸エチルで抽
出し減圧濃縮して得られた結晶を四塩化炭素よシ再結晶
し、p取、乾燥するとベンゾイルギ酸270 mgrが
得られる。収率90.0チ。
Example 1 Benzoylformic acid diethylamide 4111n9 was suspended in 2N caustic soda 20117, and while stirring vigorously, 1
After heating under reflux for 0 hours, the reaction solution becomes homogeneous. After cooling, the solution was adjusted to pH 2 by adding 6N hydrochloric acid, extracted with ethyl acetate, concentrated under reduced pressure, and the resulting crystals were recrystallized from carbon tetrachloride, removed and dried to obtain 270 mg of benzoylformic acid. Yield: 90.0 cm.

実施例2 /4ラーヒドロキシペンゾイルイ酸ジエチルアミド1.
11 grを2Nカセイソーダ251dに溶解し、攪拌
しながら12時間加熱還流する。冷却後この溶液に6N
塩酸を加えてpl(4に調整し、減圧濃縮減圧乾燥して
析出した塩を酢酸エチルでろ別し、ろ液を減圧濃縮して
得られた結晶をエーテル/石油エーテルより再結晶し、
炉取、乾燥するとp−ヒドロキシベンゾイルギ酸711
 mgrが得られる。
Example 2 /4-Hydroxypenzoylic acid diethylamide 1.
11 gr was dissolved in 251 d of 2N caustic soda and heated under reflux for 12 hours with stirring. After cooling, add 6N to this solution.
Add hydrochloric acid to adjust to pl (4), concentrate under reduced pressure, dry under reduced pressure, filter the precipitated salt with ethyl acetate, concentrate the filtrate under reduced pressure, and recrystallize the obtained crystals from ether/petroleum ether.
When taken in a furnace and dried, p-hydroxybenzoylformic acid 711
mgr is obtained.

収率85.6チ 実施例3 3−ピリジル−グリオキサル酸ジエチルアミド727 
mgrを、2Nカセイソーダ251dに溶解し、加熱し
ながら2時間加熱還流する。冷却後、仁の溶液に6N塩
酸を加えて−4に調整し、減圧濃縮)減圧乾燥して析出
した3−ピリジル−グリオキサル酸及び塩化す) IJ
ウムの混合物からエタノールを用いて塩化ナトリウムを
ろ別し、ろ液を減圧濃縮して約4−とした溶液に酢酸1
.5 d 、フェニルヒドラジンQ、35dを加え30
分反応させた。反応液を減圧濃縮して得られた結晶をエ
タノール/クロロホルムよシ結晶化して、3−ピリジル
−グリオキサル酸フェニルヒドラゾツ塩酸塩702mg
rが得られる。収率84.3%。
Yield: 85.6% Example 3 3-pyridyl-glyoxalic acid diethylamide 727
mgr is dissolved in 2N caustic soda 251d and heated under reflux for 2 hours. After cooling, 6N hydrochloric acid was added to the kernel solution to adjust the concentration to -4, and the solution was concentrated under reduced pressure).
Sodium chloride was filtered out from the mixture of sodium chloride using ethanol, and the filtrate was concentrated under reduced pressure to give a solution of about 4-4-chloride.
.. Add 5 d, phenylhydrazine Q, 35 d and 30
It was allowed to react for a minute. The reaction solution was concentrated under reduced pressure, and the resulting crystals were crystallized in ethanol/chloroform to give 702 mg of phenylhydrazotu 3-pyridyl-glyoxalate hydrochloride.
r is obtained. Yield 84.3%.

実施例4 ベンゾイルギ酸−1−ブチルアミド411 mgrを2
Nカセイソーダ20−に懸濁し激しく攪拌しながら、7
時間加熱還流すると反応液は均一とな截冷却後この溶液
に6N塩酸を加えてpH2に調整し、酢酸エチルで抽出
し減圧濃縮して得られた結晶を四塩化炭素よシ再結晶し
、テ取、乾燥すると酸アミドを用いてアルカリ条件下で
加水分解して対応するα−ケト酸を得た。
Example 4 411 mgr of benzoylformic acid-1-butylamide to 2
Suspended in 20-N caustic soda and stirring vigorously,
When heated under reflux for a period of time, the reaction solution becomes homogeneous. After cooling, 6N hydrochloric acid is added to this solution to adjust the pH to 2, extracted with ethyl acetate, concentrated under reduced pressure, and the resulting crystals are recrystallized from carbon tetrachloride. The residue was taken, dried, and hydrolyzed with an acid amide under alkaline conditions to give the corresponding α-keto acid.

得られた結果を、使用した原料及び反応条件とともに表
1に示す。
The obtained results are shown in Table 1 along with the raw materials used and reaction conditions.

Claims (1)

【特許請求の範囲】[Claims] 芳香族α−ケト酸アミドをアルカリ水浴液と加熱して加
水分解することを特徴とする芳香族α−ケト酸の製造法
A method for producing an aromatic α-keto acid, which comprises hydrolyzing an aromatic α-keto acid amide by heating it with an alkaline water bath.
JP4609484A 1984-03-09 1984-03-09 Preparation of aromatic alpha-keto acid Pending JPS60190736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4609484A JPS60190736A (en) 1984-03-09 1984-03-09 Preparation of aromatic alpha-keto acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4609484A JPS60190736A (en) 1984-03-09 1984-03-09 Preparation of aromatic alpha-keto acid

Publications (1)

Publication Number Publication Date
JPS60190736A true JPS60190736A (en) 1985-09-28

Family

ID=12737397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4609484A Pending JPS60190736A (en) 1984-03-09 1984-03-09 Preparation of aromatic alpha-keto acid

Country Status (1)

Country Link
JP (1) JPS60190736A (en)

Similar Documents

Publication Publication Date Title
JP3273578B2 (en) Method for producing salt of ornithine with acidic amino acids or keto acids
SU843749A3 (en) Method of preparing 4a,9b-trans-hexahydro-gamma-carboline
CN113278021B (en) Preparation method of 1, 7-diazaspiro [3.5] nonane-7-tert-butyl formate and oxalate thereof
EP0785921B1 (en) Process for producing sodium 1-thyroxine comprising the oxidative coupling of a diido-1-tyrosine catalysed by a manganese salt in the presence of an amine
JPS60190736A (en) Preparation of aromatic alpha-keto acid
JP3261503B2 (en) Method for producing N-substituted glycine or glycine ester and application to indigo synthesis method
CN110938036A (en) Preparation method of 4-iodine-1H-imidazole
US2142847A (en) Aminoarylsulphonylamino aliphatic acids and their salts
JPH0276836A (en) Production of metal ether carboxylate
US3023210A (en) Production of carboxy-substituted heterocyclic compounds
JPH07278156A (en) Preparation of dimethylamine - borane
JPH0119382B2 (en)
US2555736A (en) 2-hydroxy, 4-amino isophthalic acid and a process for the production thereof
JPH0217161A (en) Production of tris (2-cyanoethyl) amine
JPS5944346A (en) Preparation of serine
JP2513159B2 (en) Process for producing N-formyl-L-α-aspartyl-L-phenylalanine
SU349162A1 (en)
KR950008527B1 (en) A process for the preparation of pyridine derivatives
CN114380796A (en) Preparation method of vonoprazan fumarate
JPH04112851A (en) Production of metallic salt of ether carboxylic acid
JP2018131415A (en) Method for producing l-carnosine derivative and its salt
JPH11180953A (en) Production of indole-3-carboxylic acid
JPH02237958A (en) Production of 4-chlorophthalic acid
JPH0623147B2 (en) Method for producing lower alkoxyacylaminoaniline
JPS62267268A (en) Production of pyrazolone derivative