JPS60190425A - Preparation of crystalline polyamide based resin - Google Patents

Preparation of crystalline polyamide based resin

Info

Publication number
JPS60190425A
JPS60190425A JP4684484A JP4684484A JPS60190425A JP S60190425 A JPS60190425 A JP S60190425A JP 4684484 A JP4684484 A JP 4684484A JP 4684484 A JP4684484 A JP 4684484A JP S60190425 A JPS60190425 A JP S60190425A
Authority
JP
Japan
Prior art keywords
diamine
reaction
raw materials
solvent
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4684484A
Other languages
Japanese (ja)
Inventor
Akira Kitamura
北村 昶
Toru Komiyama
徹 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4684484A priority Critical patent/JPS60190425A/en
Publication of JPS60190425A publication Critical patent/JPS60190425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PURPOSE:To obtain an aliphatic-aromatic polyamide based polyamide resin having a high molecular weight and improved heat resistance and mechanical characteristic easily at a low cost, by adding a solvent to reaction raw materials, heating and reacting the raw materials which keeping the fluidity and distilling away the solvent, and carrying out the reaction under high vacuum to give a high polymerization degree. CONSTITUTION:A cystalline polyamide resin is prepared from raw materials in which either one of the diamine or dicarboxylic acid is an aromatic compound and the other is an aliphatic compound by the direct melt polymerization method. In the process, 5-50pts.wt. solvent is added to 100pts.wt. reaction raw materials, and the temperature is increased to react the reaction raw materials while keeping the fluidity and distilling away the solvent. The reaction is then carried out under high vacuum to give a high polymerization degree. The diamine component to be one of the raw materials is diaminodiphenylmethane alone or partially a mixture of m-xylylenediamine in the case of the aromatic compound or hexamethylenediamine in the case of the aliphatic compound. Adipic acid, etc. or terephthalic acid, etc. corresponding thereto may be used as the dicarboxylic acid component.

Description

【発明の詳細な説明】 本発明は、酸成分及びアミン成分の一方が、芳香族化合
物であり、他方が脂肪族化合物で構成される、結晶性ポ
リアミド系樹脂の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a crystalline polyamide resin in which one of the acid component and the amine component is an aromatic compound and the other is an aliphatic compound.

脂肪族−芳香族ポリアミド系樹脂は、全芳香族ポリアミ
ド樹脂が、高融点の為、通常、押出成型や射出成型が、
不可能であるに対し、適度な融点を有し、成型が容易で
あり、又全脂肪族ポリアミド、例えば、ポリヘキサメチ
レノアジパミド、ポリカプロアミドなどより、機械強度
、弾性率が高く、耐熱性、耐薬品性も高く、吸水率が低
い等、高性能の、押出し、射出成型用樹脂として、各種
用途への使用が期待される。
Extrusion molding and injection molding of aliphatic-aromatic polyamide resins is usually difficult due to the high melting point of fully aromatic polyamide resins.
However, it has a suitable melting point, is easy to mold, and has higher mechanical strength, elastic modulus, and heat resistance than fully aliphatic polyamides such as polyhexamethyleneadipamide and polycaproamide. It is expected to be used in a variety of applications as a high-performance extrusion and injection molding resin due to its high properties such as high durability, high chemical resistance, and low water absorption.

しかし、これ等、脂肪族−芳香族ボリアミドの内、高弾
性であり、耐熱性、耐薬品性とも高い性能が期待される
結晶性の樹脂は、合成の困雛さの為か、現在にいたるも
工業化の例を見ないでいる。
However, among these aliphatic-aromatic polyamides, crystalline resins that are expected to have high elasticity and high heat resistance and chemical resistance have not been produced until now, perhaps due to the difficulty of synthesis. However, we do not see any examples of industrialization.

この結晶性ポリアミドの合成法としては、酸塩化物とア
ミンによる界面重縮合、溶液重縮合(υsp・−割編化
旺5,1.+、 It 1 )、あるいは固相重合(溝
造at。
Methods for synthesizing this crystalline polyamide include interfacial polycondensation using an acid chloride and an amine, solution polycondensation (υsp·-split knitting reaction 5,1.+, It 1 ), or solid phase polymerization (Mizozo at.

U、高分子化学Vol 29.159. ]、972 
)による方法が提案されているが、いずれも、コスト高
あるいは、高分子量物が得られにくいといっだ難点を有
している。
U, Polymer Chemistry Vol 29.159. ], 972
) have been proposed, but all of them have drawbacks such as high cost and difficulty in obtaining high molecular weight products.

一方、最も経済的な合成方法である、溶融重縮合による
方法では、一般にナイロン塩あるいは低分子量物の前駆
縮合体を比較的低い温度で生成した後、高温で高分子量
化反応を行わしめる二段階縮合反応により、高分子量樹
脂を得ているが、ナイロン塩、あるいは前駆縮合物であ
る低分子量物の融点が、その生成温度より高く、合成の
中途段階で、固化する。即ち、これ等ナイロン塩、ある
いは、低分子量前駆縮合物が200℃以下あるいは、せ
いぜい220〜230℃寸での温度で生成されるに対し
、この物の融点は、一般に240〜250℃以−トであ
り、必然的に反応途中での固化により、反応器の混合、
攪拌は停止する。
On the other hand, the method using melt polycondensation, which is the most economical synthesis method, generally involves a two-step process in which a nylon salt or a precursor condensate of a low molecular weight product is produced at a relatively low temperature, and then a polymerization reaction is carried out at a high temperature. Although a high molecular weight resin is obtained through the condensation reaction, the melting point of the low molecular weight material, which is a nylon salt or a precursor condensate, is higher than its formation temperature, and it solidifies in the middle of the synthesis. That is, while these nylon salts or low molecular weight precursor condensates are produced at temperatures below 200°C or at most 220-230°C, the melting point of these products is generally above 240-250°C. However, due to solidification during the reaction, mixing in the reactor,
Stirring is stopped.

従って、高分子1化反応は、前述した同相重合によるか
、あるいけ、より高温で前駆縮合物を再溶融し、減圧縮
合せしめる事により行われる。しかしながら、前者の固
相重合では、混合、攪拌を行なわず、長時間加熱する為
、原料が局部的に加熱され、熱分解や酸化分解による着
色、部分架橋によるゲル化が起りやすい。又後者による
方法においても、前駆縮合物の再溶融段階で、より高温
に置かれる為、着色、部分架橋の可能性は更に高くなる
Therefore, the polymerization reaction is carried out either by the above-mentioned in-phase polymerization or by remelting the precursor condensate at a higher temperature and combining it under reduced compression. However, in the former solid phase polymerization, mixing and stirring are not performed and heating is performed for a long time, so that the raw materials are locally heated, and coloring due to thermal decomposition or oxidative decomposition and gelation due to partial crosslinking are likely to occur. In the latter method as well, since the precursor condensate is placed at a higher temperature in the remelting stage, the possibility of coloring and partial crosslinking is further increased.

本発明者等は、かかる現状に鑑み、安価で且つ容易な、
結晶性脂肪族−芳香族ポリアミド樹脂の合成法を開発す
べく、鋭意検討の結果、これ等樹脂の、ナイロン塩、あ
るいは低分子量前駆縮合物に少量の溶剤を介在せしめ、
原料の流動性を保ちつつ、溶剤を溜去せしめながら、劉
温した後、高真空下に置き、高重合化反応を行わしめる
事により、耐熱性、機械特性の優れた高分子量樹脂を得
られる事を見出したものである。
In view of the current situation, the present inventors have proposed an inexpensive and easy method.
In order to develop a method for synthesizing crystalline aliphatic-aromatic polyamide resins, as a result of extensive research, we introduced a small amount of solvent to the nylon salt or low molecular weight precursor condensate of these resins.
High molecular weight resin with excellent heat resistance and mechanical properties can be obtained by keeping the fluidity of the raw material, distilling off the solvent, heating it to temperature, and then placing it under a high vacuum to carry out a high polymerization reaction. This is what I discovered.

本発明において、目的樹脂を得るだめの原料となるアミ
ン成分は、アミン成分が、脂肪族ジカルボン酸との組合
せで芳香族となる場合、m−フェニレンジアミン、P−
フェニレンジアミン、m −)ルエンジアミン、m−キ
シリレンジアミン、1.5−ナフタレンジアミン、勾、
111−ジアミノジフェニルニーフル、I 、11’ 
−シアεノジフェニルメタy等があり、一方芳香族ジカ
ルボン酸成分との組合せで脂肪族ジアミンが使用される
場合は、テトラメチレンジアミン、ヘキサメチレンジア
ミン、トリメチルへキシリレンジアミン、オクタメチレ
ンジアミン、イノフォロンジアミン等があり、あるいは
これ等の内の2〜3種を併用してもよい。
In the present invention, the amine component that is the raw material for obtaining the target resin is m-phenylenediamine, P-
phenylenediamine, m-)luenediamine, m-xylylenediamine, 1,5-naphthalenediamine,
111-diaminodiphenylnefur, I, 11'
- sia epsilon diphenyl meta y, etc., while when aliphatic diamines are used in combination with aromatic dicarboxylic acid components, tetramethylene diamine, hexamethylene diamine, trimethylhexylylene diamine, octamethylene diamine, ino Examples include phorondiamine, or two or three of these may be used in combination.

又、本発明にて使用するジカルボン酸成分とは、芳香族
ジカルボン酸としては、イソフタール酸、テレフタール
酸、2.6−ナフタレンジカルボン酸、あるいはこれ等
の誘導体、脂肪族ジカルボン酸としては、コハク酸、ア
ジピン酸、アゼライン酸、セバシン酸、あるいはこれ等
の誘導体が例として上げられ、又、これ等の内の2〜5
種を併用してもよい。
Further, the dicarboxylic acid component used in the present invention includes aromatic dicarboxylic acids such as isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or derivatives thereof, and aliphatic dicarboxylic acids such as succinic acid. , adipic acid, azelaic acid, sebacic acid, or derivatives thereof;
Seeds may also be used.

また本発明で使用する溶剤は生成する脂肪族−芳香族ポ
リアミド樹脂と200℃以上の温度で親和性を有し、流
動性を保ち得るものであり、例として、フェノール、ク
レゾール、キシレノール等のフェノール系溶剤、あるい
は、ジメチルホルムアミド、ジメチルアセトアミド、ジ
メチルスルホキサイド、N−メチル−2−ピロリドンな
どがあげられる。これ等の溶剤の添加量は、反応物の流
動性を保つのが目的であるので、その目的を達成し得る
最小量でよく、組成により異なるが、原料100重量部
に対し、多くとも50重量部、一般には10〜20重量
部程度でよい。溶剤添加量が50重量部以上になる事は
単に不必要だけでなく、反応物の昇温を妨げ、樹脂組成
によってはこの間結晶化を起す場合がある。又5重量部
以下では本発明の効果は得られない。
In addition, the solvent used in the present invention has an affinity with the aliphatic-aromatic polyamide resin to be produced and can maintain fluidity at temperatures of 200°C or higher. Examples include phenols such as phenol, cresol, and xylenol. Examples include solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone. The purpose of adding these solvents is to maintain the fluidity of the reactants, so the minimum amount that can achieve that purpose may be used, and although it varies depending on the composition, it is at most 50 parts by weight per 100 parts by weight of the raw material. parts, generally about 10 to 20 parts by weight. Adding a solvent in an amount of 50 parts by weight or more is not only unnecessary, but also hinders the temperature rise of the reactants, and depending on the resin composition, crystallization may occur during this time. Further, if the amount is less than 5 parts by weight, the effects of the present invention cannot be obtained.

これ等の溶剤は、昇温と共に、溶去されるが、一部は残
存しており、反応物の流動性を保ちつつ最終縮合温度に
到達後、真空下に置いて初めて、全量が部用される。し
かしながら、組成によっては、前駆縮合体の結晶化が縮
合反応の進行の早い時期に起る為、この様な組成物では
、外淵速度を速くする必要が、−ブバ水等の低沸点生成
物の突沸が起り易くなる為、加圧状態で昇温しで行く事
が望捷しい。
These solvents are eluted as the temperature rises, but some of them remain, and only when the reactants reach the final condensation temperature while maintaining fluidity and are placed under vacuum can the entire amount be used. be done. However, depending on the composition, crystallization of the precursor condensate occurs early in the progress of the condensation reaction, so in such compositions it is necessary to increase the abyss velocity. Bumping is likely to occur, so it is preferable to raise the temperature under pressure.

但し、得られる樹脂の融点が、300℃以上に達する様
な組成物では、本発明による溶剤添加の効果は得られず
昇温中に、固化する。又、脂肪族−芳香族ポリアミド系
樹脂は、その分解点が、300℃以−Fを越えて数10
℃以下の温度域にあり、安価に製造、加工し得るポリア
ミド樹脂を目的とする本発明からは、この様な樹脂系は
除外する。
However, in a composition in which the resulting resin has a melting point of 300° C. or higher, the effect of adding a solvent according to the present invention cannot be obtained and the resin solidifies during the temperature rise. In addition, aliphatic-aromatic polyamide resins have a decomposition point of several tens of degrees over 300°C or more -F.
Such resin systems are excluded from the present invention, which is intended to be a polyamide resin that can be produced and processed at low cost and in a temperature range of .degree. C. or lower.

次に、本発明を実施例により、更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

尚、実施例中の極限粘度とは、55℃に保持した硫酸溶
液系で測定したものである。なお以下部とあるは何れも
重量部を指すものである。
In addition, the intrinsic viscosity in the examples is measured in a sulfuric acid solution system maintained at 55°C. Note that all parts hereinafter refer to parts by weight.

比較例1 還流冷却器、攪拌機、及び窒素導入管を取付けたステ/
レス製反応器に、ジアミノジフェニルメタン、295部
、アゼライン酸295部、及び熱老化防止剤としてイル
ガノックス109g (チバガイギー社製)27部を供
給し容器内に窒素ガスを流入させながら加熱昇温し、1
20℃に達しだ時、攪拌を開始した。次に内容物温度が
150℃に々ったところで反応器に取りつけた還流冷却
管を溶出配管に切替え更に加熱昇温を続行、約1時間半
後、内容物温度が255℃に達した時、内容物が固化し
、攪拌不能となった。
Comparative Example 1 A steamer equipped with a reflux condenser, a stirrer, and a nitrogen inlet pipe
295 parts of diaminodiphenylmethane, 295 parts of azelaic acid, and 27 parts of Irganox 109 g (manufactured by Ciba Geigy) as a heat aging inhibitor were supplied to a reactor manufactured by Les, and heated while flowing nitrogen gas into the container. 1
When the temperature reached 20°C, stirring was started. Next, when the temperature of the contents reached 150°C, the reflux condenser attached to the reactor was switched to the elution pipe and heating was continued. After about an hour and a half, when the temperature of the contents reached 255°C, The contents solidified and became impossible to stir.

この時の内容物の一部を取り出し、DSCで融点を測定
したところ、278℃であった。
A portion of the contents was taken out at this time and the melting point was measured by DSC, and it was found to be 278°C.

この後、反応器壁温度なう10℃にセリトン、加熱を続
行し、約2時間半後、内容物温度が290℃に達し、指
・拌可能となったところで減圧縮合を開始し、窒素ガス
をわずかに流入せしめながら、20 Torr で約う
0分間反応させ、ついで窒素ガスの流入を止めた状態で
約2時間、反応を続けITorr以下になるまで、減圧
し反応を終了(−だ。
After this, Ceritone was heated to 10℃, which is the reactor wall temperature, and heating was continued. After about 2 and a half hours, the content temperature reached 290℃ and when it became possible to stir with fingers, decompression was started, and nitrogen gas The reaction was carried out at 20 Torr for about 0 minutes while allowing a slight inflow of nitrogen gas, and then the reaction was continued for about 2 hours with the inflow of nitrogen gas stopped.

然る後、反応器内部を加圧し、生成樹脂物を押出し、水
冷しながら、取り出した。こうして得られた、樹脂物は
、一部着色しておりゲルの発生が認められた。
Thereafter, the inside of the reactor was pressurized to extrude the produced resin and taken out while cooling with water. The resin product thus obtained was partially colored and gel formation was observed.

またこの樹脂の極限粘度は、0.55 t5L/grD
 S Cでの融点、270℃であった。
In addition, the intrinsic viscosity of this resin is 0.55 t5L/grD
The melting point at SC was 270°C.

実施例1 比較例1で用いたと同じ反応器内に、ジアミノジフェニ
ルメタン、295部、アゼライン酸、293部、熱老化
防止剤として、イルガノックス1098.27部、m−
クレゾール、57部を供給し、120℃まで加熱、攪拌
を開始した。約40分後、内容物温度が150℃に達j
〜だところで還流配管を溶出配管に切替え、約1時間後
内容物温度は220℃に達した。この状態では一部クレ
ゾールの部用が開始するが更に加熱反応を続行し、約5
0分後、内容物温度が、250℃に達し、クレゾールの
部用は盛んとなり、260℃に達した時には、約110
部のクレゾールの部用があった。
Example 1 In the same reactor used in Comparative Example 1, 295 parts of diaminodiphenylmethane, 293 parts of azelaic acid, 1098.27 parts of Irganox as a heat aging inhibitor, m-
57 parts of cresol was supplied, and heating and stirring to 120°C were started. After about 40 minutes, the content temperature reaches 150℃.
At ~ ~, the reflux piping was switched to the elution piping, and about 1 hour later, the content temperature reached 220°C. In this state, some of the cresol begins to be used, but the heating reaction continues, and approximately 5
After 0 minutes, the content temperature reached 250°C, and the volume of cresol increased, and when it reached 260°C, it reached about 110°C.
There was a section of cresol for the section.

更に加熱反応を続行、内容物温度が290℃に達した時
、減圧を開始し、反応器内にわずかに窒素ガスを流入せ
しめながら、20Torr で約30分、反応させた。
The heating reaction was further continued, and when the temperature of the contents reached 290° C., pressure reduction was started and the reaction was carried out at 20 Torr for about 30 minutes while a slight amount of nitrogen gas was introduced into the reactor.

との間、クレゾールのほぼ全量が部用した。During this period, almost all of the cresol was used.

更に、約1時間30分、真空度がI Torr以下にな
るまで減圧縮合を続行し、反応を終了した。比較例1と
同じく、窒素ガスで加圧し、樹脂を水冷しながら取り出
しだところ、黄白色、透明、均一な樹脂が得られた。
Further, the decompression was continued for about 1 hour and 30 minutes until the degree of vacuum became I Torr or less, and the reaction was completed. As in Comparative Example 1, when pressure was applied with nitrogen gas and the resin was taken out while cooling with water, a yellowish-white, transparent, and uniform resin was obtained.

かくして得られた樹脂の、極限粘度は0.71647g
、r、DSCで測定した融点は、272℃であった。又
ASTMに決められた方法により、この樹脂の機械特性
を測定したところ、 引張り強度 980 kgr/c! 伸 び 15% を示した。
The intrinsic viscosity of the resin thus obtained was 0.71647g.
, r, the melting point measured by DSC was 272°C. In addition, when the mechanical properties of this resin were measured using the method specified by ASTM, the tensile strength was 980 kgr/c! It showed an elongation of 15%.

比較例2 比較例1で用いたと同じ、反応器内に、ジメチルテレフ
タレート1.911部、ジメチルイソフタレート、]、
 q it部、ヘキザメチレンジアミン、2 ++、 
4部、水、300部、イルガノックス1098.19部
を、供給j〜、100℃で、約5時間、水還流中で加熱
攪拌し、その後、還流配管を留出配管に切替え、反応を
続行し約1時間半後、内容物温度が220℃に達1〜だ
時、檀・拌不能となった。
Comparative Example 2 In the same reactor as used in Comparative Example 1, 1.911 parts of dimethyl terephthalate, dimethyl isophthalate, ],
q it part, hexamethylene diamine, 2 ++,
4 parts of water, 300 parts of water, and 1098.19 parts of Irganox were heated and stirred in refluxing water at 100°C for about 5 hours, then the reflux piping was switched to the distillation piping and the reaction was continued. After about an hour and a half, when the temperature of the contents reached 220°C, it became impossible to stir the mixture.

このものを、固化した寸1昇温を続け、約1時間後、2
90℃に達したところで、減圧縮合を開始し、真空度が
、1. Torr以下になる丑で11時間、反応を続行
1−だ。
Continue to raise the temperature of this material by 1 hour until it solidifies, and after about 1 hour, 2
When the temperature reached 90°C, decompression was started and the degree of vacuum reached 1. The reaction was continued for 11 hours at a temperature below Torr (1-).

かぐして得られた樹脂は、反応器上部は、褐色を呈し、
下部は白色結晶であった。下部の白色結晶部の樹脂の極
限粘度を測定したところ、011164/gr 、融点
は、294℃であった。
The resin obtained by smelting has a brown color at the top of the reactor.
The lower part was white crystals. When the intrinsic viscosity of the resin in the lower white crystalline portion was measured, it was found to be 011164/gr, and the melting point was 294°C.

実施例2 反応器にm−クレゾール65部、加える他、比較例2と
同じ原料組成を用い100℃で、5時間、水還流中で加
熱攪拌し反応させその後、還流配管を留出配管に切り替
え、昇温反応させ約1時間半後、内容物温度は、220
℃に達しだ。実に昇温を続は約1時間後、290〜29
5℃に達1〜だところで減圧縮合を開始した。この間、
櫓ξ拌は正常であった。
Example 2 In addition to adding 65 parts of m-cresol to the reactor, the same raw material composition as in Comparative Example 2 was used, and the mixture was stirred and heated at 100° C. for 5 hours under water reflux to react.Then, the reflux piping was switched to the distillation piping. , After about 1 and a half hours of temperature-raising reaction, the content temperature was 220
It has reached ℃. After about an hour, the temperature continued to rise to 290-29
When the temperature reached 5° C., decompression was started. During this time,
Turret ξ stirring was normal.

反応器内に窒素ガスをわずかに流入せしめながら、真空
度20 Torrで30分間、減圧した。この1間m−
クレゾールのほぼ全量が部用した。その後、窒素ガスの
流入を止め、温度を295〜500℃に高め更に1時間
半減圧縮合を続行し、真空度が、I Torr以下にな
ったところで、反応を終了した。
While nitrogen gas was slightly introduced into the reactor, the pressure was reduced to 20 Torr for 30 minutes. This one hour m-
Almost all of the cresol was used. Thereafter, the inflow of nitrogen gas was stopped, the temperature was raised to 295 to 500°C, and the compression was continued for another 1 hour, and the reaction was terminated when the degree of vacuum became 1 Torr or less.

ついて°実施例1と同じ方法で樹脂を反応器外部に取り
出しだ。
Then, the resin was taken out of the reactor in the same manner as in Example 1.

而して得られた樹脂は、白色透明、均一であり、極限粘
度は、0.56 g、r/rEL、融点は281℃であ
った。
The resin thus obtained was white, transparent, and uniform, and had an intrinsic viscosity of 0.56 g, r/rEL, and a melting point of 281°C.

実施例1と同じく、樹脂の機械特性を測定したところ 引張り強度 811Ofr/ crl 伸 度 8% であった。As in Example 1, the mechanical properties of the resin were measured. Tensile strength 811Ofr/crl Elongation: 8% Met.

以−ト、実施例に示した如く、本発明により方法は操作
容易に、しかも低コストで特性も優れた結晶性ポリアミ
ド樹脂を製造することが可能であり、工業上、極めて有
用である。
As shown in the Examples below, the method of the present invention allows for the production of crystalline polyamide resins that are easy to operate, cost low, and have excellent properties, and is extremely useful industrially.

Claims (3)

【特許請求の範囲】[Claims] (1) ジアミンあるいはジカルボン酸成分の一方が芳
香族化合物であり、他方が脂肪族化合物である結晶性ポ
リアミド樹脂を、直接溶融重合法により製造するに際し
、反応原料100重量部に対して5〜50重量部の溶剤
を加え融液の流動性を保ち、溶剤を溜去せしめながら、
昇温反応せしめ、その後高真空化下に於て高重合化反応
を行わしめることを特徴とする結晶性ポリアミド系樹脂
の製造方法。
(1) When producing a crystalline polyamide resin in which one of the diamine or dicarboxylic acid components is an aromatic compound and the other is an aliphatic compound by a direct melt polymerization method, 5 to 50 parts by weight of the diamine or dicarboxylic acid component is added to 100 parts by weight of the reaction raw material. While maintaining the fluidity of the melt by adding parts by weight of solvent and distilling off the solvent,
1. A method for producing a crystalline polyamide resin, which comprises carrying out a temperature raising reaction and then carrying out a high polymerization reaction under high vacuum.
(2) ジアミン成分がジアミノジフェニルメタン単独
あるいはその一部が、m−キシリレンジアミンに置きか
えられた混合物であり、ジカルボン酸成分力、アジピン
酸、セバシン酸、アゼライン酸、又はこれ等の誘導体の
群から選ばれる一種又は2種以上の混合物を用いること
を特徴とする特許請求の範囲第1項記載の結晶性ポリア
ミド系樹脂の製造方法。
(2) The diamine component is diaminodiphenylmethane alone or a mixture in which diaminodiphenylmethane is partially replaced with m-xylylene diamine, and the diamine component is a dicarboxylic acid component, adipic acid, sebacic acid, azelaic acid, or a group of derivatives thereof. The method for producing a crystalline polyamide resin according to claim 1, characterized in that one or a mixture of two or more of the selected resins is used.
(3) ジアミン成分がヘキザメチレンジアミン、ジカ
ルボン酸成分が、テレフタル酸、イノフタール酸あるい
は、これ等の誘導体の群から選らばれる一種又は2種以
上の混合物を用いることを特徴
(3) The diamine component is hexamethylene diamine, and the dicarboxylic acid component is terephthalic acid, inophthalic acid, or a mixture of two or more selected from the group of derivatives thereof.
JP4684484A 1984-03-12 1984-03-12 Preparation of crystalline polyamide based resin Pending JPS60190425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4684484A JPS60190425A (en) 1984-03-12 1984-03-12 Preparation of crystalline polyamide based resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4684484A JPS60190425A (en) 1984-03-12 1984-03-12 Preparation of crystalline polyamide based resin

Publications (1)

Publication Number Publication Date
JPS60190425A true JPS60190425A (en) 1985-09-27

Family

ID=12758648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4684484A Pending JPS60190425A (en) 1984-03-12 1984-03-12 Preparation of crystalline polyamide based resin

Country Status (1)

Country Link
JP (1) JPS60190425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697527A1 (en) * 1992-11-04 1994-05-06 Solvay Process for the synthesis of polyamides.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697527A1 (en) * 1992-11-04 1994-05-06 Solvay Process for the synthesis of polyamides.
BE1006314A3 (en) * 1992-11-04 1994-07-19 Solvay Synthetic process polyamides.
US5416189A (en) * 1992-11-04 1995-05-16 Solvay (Societe Anonyme) Process for the synthesis of polyamides

Similar Documents

Publication Publication Date Title
JP2780902B2 (en) New polyamides and products made from them
KR101183393B1 (en) A semi-aromatic polyamide and the process with low amount of waste water discharge for preparing the same
US5310860A (en) Process for the preparation of polyamides with oligomer formation
JP3380654B2 (en) Process for producing precondensates of partially crystalline or amorphous, thermoplastically processable, partially aromatic polyamides or copolyamides
JP6328629B2 (en) Novel polyamide, process for its preparation and use thereof
EP0193374B1 (en) Thermoplastic aromatic polyamideimide copolymers and process for their preparation
JPH0356576B2 (en)
JPS5946974B2 (en) transparent polymer copolyamide
US20110251341A1 (en) Reinforced polyamide composition
JPH08311198A (en) Production of aromatic polyamide
US3294758A (en) Amorphous polyamides from a mixture of an alkyl substituted aliphatic diamine and unsubstituted aliphatic diamine
CA1224596A (en) Process for the preparation of polyamides by amide- ester interchange
US5140098A (en) Continuous preparation of linear high molecular weight polyamides having regulated amino and carboxyl end group content
JPS61200123A (en) Manufacture of cocondensated polyamide
US5587452A (en) Polyamide-imide
US4463166A (en) Process for making polytetramethylene adipamide
US4864009A (en) Molding composition consisting of aliphatic/aromatic copolyamide
JPS60190425A (en) Preparation of crystalline polyamide based resin
JPH02115226A (en) Preparation of branched (co)polyamide by solid phase after-condensation
US4758651A (en) Amorphous aromatic copolyamide, a process for the preparation thereof, and shaped object
JP2001115017A (en) Polyamide resin composition
US5248759A (en) Method of producing aromatic heterocyclic copolymer and molecular composite material containing same
JP3106658B2 (en) Method for producing polyamide resin
JPH06234850A (en) New high-melting-point crystalline polyamide
US5019641A (en) Polyamide from 1,3 propylene diamine and isophthalic acid compound