JPS60190159A - Manufacture of superconductive field coil - Google Patents

Manufacture of superconductive field coil

Info

Publication number
JPS60190159A
JPS60190159A JP59045490A JP4549084A JPS60190159A JP S60190159 A JPS60190159 A JP S60190159A JP 59045490 A JP59045490 A JP 59045490A JP 4549084 A JP4549084 A JP 4549084A JP S60190159 A JPS60190159 A JP S60190159A
Authority
JP
Japan
Prior art keywords
coil
superconducting
wound
drum
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59045490A
Other languages
Japanese (ja)
Other versions
JPH0557822B2 (en
Inventor
Koichi Inoue
浩一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59045490A priority Critical patent/JPS60190159A/en
Publication of JPS60190159A publication Critical patent/JPS60190159A/en
Publication of JPH0557822B2 publication Critical patent/JPH0557822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To simplify a winding work by winding a plurality of superconductive leads in parallel to wind a coil, then connecting the ends of the leads to form a pole pair of coils, thereby reducing the number of bents or connections. CONSTITUTION:One continuous superconductive lead 3a is wound from the end 3b substantially in the same length on two drums 6, 7, thereby forming a drum pair 8. Then, when the numbers of lateral and superconductive leads are four rows, one respective drums 7 of four drum pairs 8 remain, and four leads 3a are simultaneously wound in parallel toward the inner periphery from the S point of the lowermost and outermost layers of the coil of one pole while leading the leads 3a from the middle pair 9 of the other drums 6. Thus, after the coil for one pole is wound, the coil for one pole is further wound while leading the leads 3a from the remaining 4 drums 7, the coils of two poles are connected to complete a superconductive field coil.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば超電導回転電機の界磁コイルに用いら
れる様なくら形超電導界磁コイルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a crown-shaped superconducting field coil used, for example, in a field coil of a superconducting rotating electric machine.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の超電導回転電機では、一般に、回転子側に超電導
界磁コイル(以下単にコイルとする場合もある)が用い
られるため、コイルには電磁力と共に、強大な遠心力が
加わる。そのため、いかにコイルを強固に固定し、コイ
ルの動きに伴ない発生する熱や磁場変化によるクエンチ
の発生を抑制し、コイルを安定に動作させろがか問題と
なる。
In conventional superconducting rotating electrical machines, a superconducting field coil (hereinafter sometimes simply referred to as a coil) is generally used on the rotor side, so that a strong centrifugal force is applied to the coil in addition to electromagnetic force. Therefore, the problem is how to firmly fix the coil, suppress the occurrence of quenching due to heat generated by the movement of the coil and changes in the magnetic field, and operate the coil stably.

そのため、支持筒のスロットに収めたコイルを楔によっ
て固定したり、円筒上にバインドによって固定できろく
ら形コイルは、固定の面で有利となっている。第1図は
支持筒(1)のスロット(1a)に収められ、楔(2)
によって固定された超電導界磁コイル(3)の斜視図で
ある。
Therefore, the lathe-shaped coil is advantageous in terms of fixation because the coil housed in the slot of the support tube can be fixed with a wedge or fixed on the cylinder with a bind. Figure 1 shows that the wedge (2) is inserted into the slot (1a) of the support tube (1).
It is a perspective view of a superconducting field coil (3) fixed by.

一般に、超電導界磁コイルでは、超電導線一本に数百〜
致方アンペアの電流を流すが、超電導線断面積は、常電
導のコイルの素線に比して非常に小さく、又、巻回数が
多くなっている。さらに。
Generally, in superconducting field coils, each superconducting wire has several hundred to
A current of approximately 100 ampere is passed through the superconducting wire, but the cross-sectional area of the superconducting wire is much smaller than that of a normally conducting coil wire, and the number of turns is large. moreover.

超電導界磁コイルでは、超電導線の極端な曲がり部分や
ジュール熱を発生する接続部は、クエンチの原因となる
ため、極力その数を減らす必要がある。そのため、超電
導界磁コイルでは、長い連続した超電導線を多回数巻回
して、しかも、曲げ部分が残ったり、超電導線内の超電
導フィラメントが切れたりしないよう慎重に製作しなけ
ればならない。しかし、くら形コイルでは、その3次元
的な形状のために、平坦なレーストラックコイルと比較
して、この巻回作業が非常に手数のかがる作業となって
いる。
In a superconducting field coil, extreme bends in the superconducting wire and connections that generate Joule heat can cause quenching, so it is necessary to reduce their number as much as possible. For this reason, superconducting field coils must be manufactured by winding a long continuous superconducting wire multiple times, and being careful not to leave any bent portions or break the superconducting filaments within the superconducting wire. However, due to its three-dimensional shape, the winding operation of the wedge-shaped coil is much more labor-intensive than that of a flat racetrack coil.

第2図は、第1図の超電導界磁コイルの1個のくら形コ
イルを示すスロッ1一部(la)での横断面図で、超電
導線(3a)は横4列、縦10段の配列で巻回されてい
る。又、第3図(a)〜(d)ぼ、第2図A部の拡大図
で、それぞれ異なる従来の超電導線の巻回方法を説明す
る図である。
Fig. 2 is a cross-sectional view taken at a part (la) of slot 1 showing one square-shaped coil of the superconducting field coil in Fig. 1. Wound in an array. 3(a) to 3(d) are enlarged views of section A in FIG. 2, each illustrating a different conventional method of winding a superconducting wire.

第3図(a)〜(d)において、超電導線の巻き初めS
は、コイルの最下層、最内周部にあるとし、この点より
一本の超電導線により巻回し、Eは各々の巻き方におけ
る巻き終りを示し、矢印は巻回順序を示している。第3
図(a)においては、超電導線(3a)はSから外周に
向って巻回され、4列巻回した後、上層に渡り、外周側
から内周側に向って巻回され、この工程の繰り返しによ
り巻回作業が完成する。この様な巻回方法においては、
コイルを整然と巻回できるが、外周側から内周側に向っ
て巻回する作業があり、この際、内側に支持治具等を挿
入しながら巻回する等、非常に手数のかがる作業となる
。第3図(c)は、8点から縦方向に巻回し始める点が
異なるが、(a)と同様の巻回方向で、やはり、上層側
から下層側へ巻回する作業が困難となる。第3図(b)
は、Sから外周側へ巻回し、上層に渡る際に最内周部ま
で破線部のようにもどし、常に内側から外側へ向って巻
回する様にした方法である。この方法では、作業性は向
」二するが、最外周から最内周へ渡る部分が゛一層分増
加し、コイル全体の層方向の厚さが増加し、又、コイル
の形状が整いにくい。第3図(d)は、(c)と同様な
巻回方法で、縦方向に巻回し始める方法である。以上の
様に、第3図(d)は、(c)と同様な巻回方法で、縦
方向に巻回の作業性を向トさせる事とコイル形状を整然
とさせる事とを両立させることは難かしい。又、第3図
(a)〜(d)のいずれにおいても、となりの列あるい
は層へ移るために多くの曲げ部分ができる。第4図は、
第3図(b)の場合の超電導線(3a)の11111部
の様子を示す図で、(a)は最上層側からコイルを見た
図、(b)は(a)のA−A、(c)はB−B、(d)
はC−C1(e)はD−D線に沿う矢視断面および側面
を示している。又、(b)〜(e)図の間の矢印は、超
電導線(3a)の巻回順序を示しており、(b)から(
e)の方向へ向う矢印は。
In Fig. 3(a) to (d), the beginning of winding S of the superconducting wire
is located at the lowest layer and innermost periphery of the coil, and a single superconducting wire is wound from this point, E indicates the end of each winding method, and arrows indicate the winding order. Third
In figure (a), the superconducting wire (3a) is wound from S toward the outer circumference, and after winding in four rows, it is passed to the upper layer and wound from the outer circumference to the inner circumference. The winding work is completed by repeating the process. In this winding method,
The coil can be wound in an orderly manner, but the process involves winding from the outer circumferential side to the inner circumferential side, which is a very time-consuming process, such as inserting a support jig etc. inside the coil while winding. Become. FIG. 3(c) is different in that winding starts from 8 points in the vertical direction, but the winding direction is the same as in FIG. 3(a), and the work of winding from the upper layer side to the lower layer side is also difficult. Figure 3(b)
This is a method in which the wire is wound from S to the outer circumference, and when passing to the upper layer, it is returned to the innermost circumference as shown by the broken line, so that it is always wound from the inside to the outside. Although this method improves workability, the portion extending from the outermost circumference to the innermost circumference increases by one layer, increasing the thickness of the entire coil in the layer direction, and making it difficult to arrange the shape of the coil. FIG. 3(d) is a winding method similar to that of FIG. 3(c), in which winding is started in the vertical direction. As described above, Fig. 3(d) shows a winding method similar to that shown in (c), which is capable of both improving the winding workability in the vertical direction and making the coil shape orderly. It's difficult. Also, in any of FIGS. 3(a) to 3(d), there are many bends due to transition to the next row or layer. Figure 4 shows
FIG. 3(b) is a diagram showing the state of the 11111 part of the superconducting wire (3a) in the case of FIG. (c) is B-B, (d)
C-C1(e) shows a cross section taken along line D-D and a side view. Moreover, the arrows between figures (b) to (e) indicate the winding order of the superconducting wire (3a), and from (b) to (e)
The arrow pointing in the direction of e) is.

横並びへの渡り部(5)を示しており、逆向きの二重線
の矢印は最外周から最内周への渡り部(4)を示してい
る。第4図かられかる様にコイル内には多くの超電導線
(3a)の曲げ部(4a) 、 (5a)が有り。
It shows the transition part (5) from side to side, and the double line arrow pointing in the opposite direction shows the transition part (4) from the outermost circumference to the innermost circumference. As shown in Figure 4, there are many bent parts (4a) and (5a) of the superconducting wire (3a) inside the coil.

しかも、曲げ部(4a) 、 (5a)の位置は層によ
って異なるため、曲げ作業は−巻き毎に、異なった位置
で行なわれなければならない。ところが、この様な曲げ
部分(4a) 、 (5a)は、前述の様にクエンチの
発生点となり易く、曲げ作業は超電導線(3a)にダメ
ージを与えない様、慎重に作業することが必要である。
Furthermore, since the positions of the bending portions (4a) and (5a) differ depending on the layer, the bending operation must be performed at a different position for each turn. However, as mentioned above, these bent parts (4a) and (5a) tend to become points where quench occurs, and the bending work must be done carefully to avoid damaging the superconducting wire (3a). be.

又、第3図(a)〜(d)のいずれの巻回方法においで
も、作業性の面から、連続した超電導線(3a)によっ
て巻回できるコイル数は1〜2程度である。そのため、
例えば−極当り6個のくら形コイルの2極の界磁を製作
する場合、5〜11ケ所程度の接 、、、統部ができる
。ところが、この接続部は、前述の様に、ジュール熱を
発生してクエンチの発生点となり易かったり、コイル内
で大きなスペースを必要とする等の欠点があるため、そ
の数を極力減らす様にしなけわばならない。
In addition, in any of the winding methods shown in FIGS. 3(a) to 3(d), from the viewpoint of workability, the number of coils that can be wound with continuous superconducting wire (3a) is about 1 to 2. Therefore,
For example, when manufacturing a two-pole field with six hollow-shaped coils per pole, there will be about 5 to 11 connections. However, as mentioned above, this connection has drawbacks such as generating Joule heat and becoming a quench point, and requiring a large space within the coil, so the number of connections must be reduced as much as possible. Don't say anything.

〔発明の目的〕[Purpose of the invention]

本発明は、クエンチの発生源となり易い曲げ部分や接続
部が少なく、巻回作業の簡単な超電導界磁コイルの製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a superconducting field coil that has fewer bent portions and connecting portions that are likely to cause quenching, and that allows easy winding work.

〔発明の概要〕[Summary of the invention]

本発明においては、超電導線を用いて複数個のくら形コ
イルから成る一極対の界磁極を形成する超電導界磁コイ
ルの製造方法において、一本の連続した超電導線を端部
から2個のドラムにほぼ同じ長さになるように巻き取っ
てドラム対とし、このドラノ、対を複数個作り、各トラ
ム対の各々一方のドラムを残し、他方の各々のドラム対
中間部から超電導線を引き出しながら、−極のくら形コ
イルの最下層最外周部から複数本の超電導線を同時に並
列に巻回し始め、最内周部まで巻回し、コイルエンド部
で並列tコ巻回した複数本の超電導線を」一層に渡らせ
、続いて内周側から外周側に巻回し、この際、上層への
渡り部を有するコイルエンド部の超電導線の束の横並び
数を他方のコイルエン[く部の超電導線の束の横並び数
より多くなるように巻回し、渡り部を有するコイルエン
ドの最外周部でさらに上層に渡り、再び外周側から内周
側へ巻回し、以下同様の工程を繰り返して一極分のコイ
ルを巻回した後、前記各ドラム対の残されたドラムから
前述の工程と同様に複数本の超電導線を並列に巻回して
他の一極分のコイルを巻回し、この後、超電導線端を接
続して一極対のコイルを形成することにより、曲げ部分
や接続部分を少なくし、巻回作業を簡単にするものであ
る。
In the present invention, in a method for manufacturing a superconducting field coil that uses a superconducting wire to form a pair of field poles consisting of a plurality of hollow-shaped coils, one continuous superconducting wire is The superconducting wire is wound around the drum so that it has almost the same length as a drum pair, and multiple pairs are made, leaving one drum in each tram pair and pulling out the superconducting wire from the middle part of each of the other drum pairs. At the same time, multiple superconducting wires are started to be wound in parallel from the lowest layer outermost part of the negative pole hollow coil, wound to the innermost part, and multiple superconducting wires are wound in parallel at the coil end. The wire is made to cross in one layer, and then wound from the inner circumferential side to the outer circumferential side. At this time, the number of horizontally arranged bundles of superconducting wire in the coil end section that has a transition section to the upper layer is reduced to Wind the wire so that the number of wires is greater than the number of wires lined up side by side, cross over to the upper layer at the outermost periphery of the coil end that has a transition part, and then wind again from the outer periphery to the inner periphery, and repeat the same process to form a single pole. After winding the coils for one pole, from the remaining drum of each drum pair, multiple superconducting wires are wound in parallel in the same manner as in the above process, and another coil for one pole is wound. By connecting the ends of the superconducting wire to form a single-pole pair of coils, the number of bends and connections can be reduced and the winding work can be simplified.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について、第5図ないし第9図
を参照して説明する。尚、製造された超電導界磁コイル
の要部斜視図は第1図の通りであるから、これも参照さ
れたい。
An embodiment of the present invention will be described below with reference to FIGS. 5 to 9. A perspective view of the main parts of the manufactured superconducting field coil is shown in FIG. 1, so please also refer to it.

今、−極当り6個のくら形コイルで2極の起電の導界磁
コイルを巻回する場合を例にとり説明する。まず、第5
図の様に、一本の連続した超電導線(3a)を端部(3
b)から 2つのドラム(6) 、 (7)にほぼ同じ
長さになるように巻取り、ドラl\対(8)とし、例え
ば横並び超電導線数が4列の時は4個のドラム対(8)
の各々一方のドラム(7)を残し、他方の各々のドラム
(6)のドラム対中間部(9)から超電導線(3a)を
引き出しながら、−極のコイルの最下層、最外周部の8
点より4本の超電導線(3a)を同時に並列に内周側に
向って巻回する。第6図は、この様子を示す図で、極を
構成する6個くら形コイル(10)の最下層の展開図で
ある。尚、第6図では1巻回中のドラム(6)を省略し
て描いである。
Now, an example will be explained in which a two-pole electromotive conduction field coil is wound with six hollow-shaped coils per negative pole. First, the fifth
As shown in the figure, one continuous superconducting wire (3a) is connected to the end (3
Wind the wire from b) onto two drums (6) and (7) so that they have almost the same length, forming a pair of drums (8). For example, when the number of horizontal superconducting wires is 4, there are 4 pairs of drums. (8)
Leaving one drum (7) in place, and pulling out the superconducting wire (3a) from the drum-pair middle part (9) of each of the other drums (6),
Four superconducting wires (3a) are simultaneously wound in parallel from a point toward the inner circumferential side. FIG. 6 is a diagram showing this state, and is a developed view of the lowest layer of six coils (10) forming the pole. In addition, in FIG. 6, the drum (6) during one winding is omitted.

第6図で、最内周部まで巻回し終えた超電導線(3a)
は、E点で第1層から第2層へ渡る。次に第2層に渡っ
た4本の超電導線は、第7図の8点に移り、第1層とは
逆に内周側から外周側へ、同時に並列に巻回される。そ
して、第2層を第7図の様に巻回し終えた後、第3層は
第8図の様に巻回される。すなわち、第2層からの渡り
部は、S付近のハンチング部となり、続いて第3層を第
2層とは逆に外周側より内周側に向って巻回し、E付近
のハツチング部で第4層へ渡るのである。以上の様な工
程を繰り返すことによって一極分のコイルが巻回される
In Figure 6, the superconducting wire (3a) has been wound to the innermost part.
crosses from the first layer to the second layer at point E. Next, the four superconducting wires that have passed over the second layer move to eight points in FIG. 7, and are simultaneously wound in parallel from the inner circumferential side to the outer circumferential side, contrary to the first layer. After winding the second layer as shown in FIG. 7, the third layer is wound as shown in FIG. That is, the transition part from the second layer becomes the hunting part near S, and then the third layer is wound from the outer circumferential side to the inner circumferential side in the opposite direction to the second layer, and the second layer is wound at the hatching part near E. It goes to the 4th layer. By repeating the above steps, a coil for one pole is wound.

次に、第6図に示しである残こされた4つのドラム(7
)から超電導線(3a)を引き出しながら、前述と同様
の方法でさらに一極分のコイルを巻回する。そして、2
極分のコイルを接続して超電導界磁コイルは完成する。
Next, the remaining four drums (7
) while pulling out the superconducting wire (3a) from the superconducting wire (3a), further winding a coil for one pole in the same manner as described above. And 2
The superconducting field coil is completed by connecting the pole coils.

第9図は、各々10層巻回し終えた2極のコイルの接続
の様子を示したもので、破線は渡り部を示し、接続部(
13)は3ケ所だけであることを示している。
Figure 9 shows how the two-pole coils are connected, each having been wound in 10 layers.
13) indicates that there are only three locations.

次に作用について説明する。Next, the effect will be explained.

本実施例で特徴的なことは、S、E点を有するコイルエ
ンド(11)の超電導線(3a)の4本の束の横並び数
が7個であり、他方のコイルエンド(12)の横並び数
6個より多くなっている点である。このため、本実施例
においては、第7図のS及びE点付近にハツチングで示
した様な長い距離で眉間を渡ることができ、曲げ半径を
大きくすることができる。又、横並び超電導線(3a)
数4本を同時に巻回するため、スロット(1a)内での
横ずれがなく、外周側から巻回する場合も手数がかから
ず、さらに第4図(a)に見られる様な横並び超電導線
(3a)への渡り部がなく、曲げ作業が大11に省略で
き、又、非常に簡単な形状となっている。第8図におい
てもコイルエンド(11)の超電導線(3a)の束の横
並び数は7個であり、他方のコイルエンド(12)の横
並び数6個よりも多く、層間の渡り部はE、S付近のハ
ツチングで示したように長く、そのため曲げ半径が大き
くなっている6又、横並び超電導線(3a)への渡りの
ための曲げ部分が不要となっていて非常に簡単な形状と
なっている。
The characteristic feature of this embodiment is that the number of horizontally arranged four bundles of superconducting wires (3a) in the coil end (11) having points S and E is seven, and This is because there are more than 6 pieces. Therefore, in this embodiment, it is possible to cross the glabella over a long distance as shown by hatching near points S and E in FIG. 7, and the bending radius can be increased. Also, horizontal superconducting wires (3a)
Since several four wires are wound at the same time, there is no lateral shift within the slot (1a), and winding from the outer periphery does not require much effort. There is no transition part to (3a), the bending work can be omitted to 11 times, and the shape is very simple. Also in FIG. 8, the number of horizontally arranged bundles of superconducting wires (3a) in the coil end (11) is seven, which is greater than the number of horizontally arranged bundles of the other coil end (12), which is six, and the transition portion between the layers is E, As shown by the hatching near S, it is long and therefore has a large bending radius, and the bending part for crossing over to the horizontal superconducting wire (3a) is unnecessary, making it a very simple shape. There is.

以上の様に本実施例においては、複数本の超電導m (
3a)を同時に、最下層、最外周側より巻回し。
As described above, in this example, a plurality of superconducting m (
At the same time, wind 3a) from the bottom layer and the outermost side.

渡り部を有するコイルエンドの超電導線(3a)の束の
横並び数を他方のコイルエンドの横並び数より多くした
ので、層間の渡りがゆるやかになり、横並び超電導線(
3a)へ渡るための曲げ部が不要となる。そのため、ク
エンチの発生源となり易い曲げ部分が大巾に少なくなり
、又、慎重かつ手数のかかる曲げ作業が少なくなると共
に、スロッ1=(la)内での超電導線(3a)の巻回
作業が簡単になるため、巻回作業の能率が大巾に向上す
る。又、完成したコイルの形状は、非常に整っている。
Since the number of horizontally arranged bundles of superconducting wires (3a) at the coil end having a transition part is greater than the number of horizontally arranged bundles at the other coil end, the transition between layers becomes gentler, and the horizontally arranged superconducting wire (3a)
There is no need for a bending section to cross over to 3a). Therefore, the number of bent parts that are likely to cause quenching is greatly reduced, and the need for careful and labor-intensive bending work is reduced. Since it is simple, the efficiency of winding work is greatly improved. Moreover, the shape of the completed coil is very regular.

さらに、多くのくら形コイル(工0)を連続して巻回で
き、又、2つのドラム(6)、(7)を用いて2極を連
続して巻回できるため、クエンチの発生点となり易くか
つスペースを取る接続部(13)を3個所だけと大1〕
に削減することができる。
Furthermore, since many hollow-shaped coils (work 0) can be wound continuously, and two poles can be wound continuously using two drums (6) and (7), it becomes a point where quench occurs. Only 3 connection parts (13) that are easy to use and take up space.
can be reduced to

尚、本発明は、図示し、説明した実施例に限定されるも
のではなく、例えば超電導線(3a)数の多いものや、
スロット(1a)数の多い物等に適用でき、その要旨を
変更しない範囲で種々変形して実施できることはもちろ
んである。
It should be noted that the present invention is not limited to the illustrated and described embodiments; for example, superconducting wires (3a) having a large number of wires,
It goes without saying that the present invention can be applied to devices having a large number of slots (1a), and can be implemented with various modifications without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明においては、クエンチの発生
源となり易い曲げ部分が大l」に少なくなり、曲げ作業
やスロット部での巻回作業が大riに能率化され、さら
にコイルの形整がし易く、完成したコイルの形状が整う
効果がある。又、クエンチの発生源となり易く、かつス
ペースを取る接続部を大+41に削減する効果もある。
As explained above, in the present invention, the number of bent parts that are likely to cause quenching is reduced to a large extent, the bending work and the winding work at the slot part are greatly streamlined, and the coil shape is improved. It is easy to remove and has the effect of making the completed coil shape neat. Moreover, there is also the effect of reducing the number of connection parts which are likely to be a source of quenching and which take up space by a large number of +41 points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例の対象である電導界磁
コイルの要部斜視図、第2図は第1図の1個のくら形コ
イルの横断面図。第3図(a)〜(d)はそれぞれ異な
る従来の超電導界磁コイルの巻回方法の説明図、第4図
は第3図(b)の場合の巻回方法の説明図、第5図〜第
9図は本発明の超電導界磁コイルの製造方法の一実施例
の説明図で、第5図はドラム対の状態を示し、第6図〜
第9図は、コイルの巻回方法の各工程における状態を示
す展開図である。 3・・・超電導界磁コイル 3a・・超電導線3b・・
・端部 6,7・・・ドラム 8・・・ドラム対 9・・・中間部 10・・くら形コイル 11.12・・・コイルエンド
13・・・接続部 S・・巻き始め E・・・巻き終り 第 1 図 第 2 図 第 3 図 第 4 図
FIG. 1 is a perspective view of a main part of a conductive field coil that is a subject of an embodiment of the method of the present invention, and FIG. 2 is a cross-sectional view of one of the saddle-shaped coils shown in FIG. 1. Figures 3(a) to (d) are explanatory diagrams of different conventional methods of winding superconducting field coils, Figure 4 is an explanatory diagram of the winding method in the case of Figure 3(b), and Figure 5 ~ Figure 9 is an explanatory diagram of one embodiment of the method for manufacturing a superconducting field coil of the present invention, Figure 5 shows the state of the drum pair, and Figure 6 ~
FIG. 9 is a developed view showing the state in each step of the coil winding method. 3...Superconducting field coil 3a...Superconducting wire 3b...
・End portions 6, 7...Drum 8...Drum pair 9...Middle part 10...Hill-shaped coil 11.12...Coil end 13...Connection part S...Start of winding E...・End of winding Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 超電導線を用いて複数個のくら形コイルから成る一極対
の界磁極を形成する超電導界磁コイルの製造方法におい
て、一本の連続した超電導線を端部から2個のドラムに
ほぼ同じ長さになるように巻き取ってドラム対とし、こ
のドラム対を複数個作り、各ドラム対の各々一方のドラ
ムを残し、他方の各々のドラムのドラム対中間部から超
電導線を引き出しながら、−極のくら形コイルの最下層
最外周部から複数本の超電導線を同時に並列に巻回し始
め、最内周部まで巻回し、コイルエンド部で並列に巻回
した複数本の超電導線を上層に渡らせ、続いて内周側か
ら外周側に巻回し、この際、」二層への渡り部を有する
コイルエンド部の超電導線の束の横並び数を他方のコイ
ルエンド部の超電導線の束の横並び数より多くなるよう
に巻回し、渡り部を有するコイルエンドの最外周部でさ
らに上層に渡り、再び外周側から内周側へ巻回し、以下
同様の工程を繰り返して一極分のコイルを巻回した後、
前記各ドラム対の残されたドラムから前述の工程と同様
に複数本の超電導線を並列に巻回して他の一極分のコイ
ルを巻回し、この後、超電導線端を接続して一極対のコ
イルを形成することを特徴とする超電導界磁コイルの製
造方法。
In a method for manufacturing a superconducting field coil that uses superconducting wire to form a pair of field poles consisting of multiple hollow-shaped coils, one continuous superconducting wire is connected to two drums with approximately the same length from the end. The superconducting wire is wound up to form a drum pair, and a plurality of these drum pairs are made, leaving one drum in each drum pair and pulling out the superconducting wire from the middle part of each drum pair of the other drum. Start winding multiple superconducting wires in parallel at the same time from the outermost periphery of the bottom layer of the nokura-shaped coil, wind them all the way to the innermost periphery, and then cross the multiple superconducting wires wound in parallel at the coil end to the upper layer. Then, it is wound from the inner circumferential side to the outer circumferential side, and at this time, the number of horizontal lines of the bundle of superconducting wires in the coil end part having the transition part to the two layers is determined by the number of horizontal lines of the bundle of superconducting wires in the other coil end part. Wind the coil so that there are more coils than the number of coils, cross over to the upper layer at the outermost periphery of the coil end that has a transition part, and then wind again from the outer periphery to the inner periphery, and repeat the same process to wind the coil for one pole. After turning,
From the remaining drum of each pair of drums, multiple superconducting wires are wound in parallel in the same manner as in the above-mentioned process to wind another coil for one pole, and then the ends of the superconducting wires are connected to form one pole. A method for manufacturing a superconducting field coil, comprising forming a pair of coils.
JP59045490A 1984-03-12 1984-03-12 Manufacture of superconductive field coil Granted JPS60190159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59045490A JPS60190159A (en) 1984-03-12 1984-03-12 Manufacture of superconductive field coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59045490A JPS60190159A (en) 1984-03-12 1984-03-12 Manufacture of superconductive field coil

Publications (2)

Publication Number Publication Date
JPS60190159A true JPS60190159A (en) 1985-09-27
JPH0557822B2 JPH0557822B2 (en) 1993-08-25

Family

ID=12720841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59045490A Granted JPS60190159A (en) 1984-03-12 1984-03-12 Manufacture of superconductive field coil

Country Status (1)

Country Link
JP (1) JPS60190159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277321A (en) * 1999-03-24 2000-10-06 Kazuo Funaki Superconducting coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277321A (en) * 1999-03-24 2000-10-06 Kazuo Funaki Superconducting coil

Also Published As

Publication number Publication date
JPH0557822B2 (en) 1993-08-25

Similar Documents

Publication Publication Date Title
WO2021237991A1 (en) Flat wire stator assembly and motor
JP5332347B2 (en) Coil wire rod for coil assembly of rotating electrical machine
KR102253171B1 (en) Stator
CN106300750B (en) 3 phase ac motors and its manufacturing method
US8461738B2 (en) Single-layer coil with one bent endwinding and one straight endwinding
US20050110357A1 (en) Cable for winding coil and armature
JP3791148B2 (en) Manufacturing method of stator and coil of rotating electrical machine
US7536770B2 (en) Winding method for stator of motor
CN110971040B (en) Stator assembly and motor with same
JPS60190159A (en) Manufacture of superconductive field coil
JP4443286B2 (en) Rotating motor stator, rotating motor coil mounting method, coil winding machine
US4635350A (en) Method or manufacturing armature winding for a large turbine generator
JPH0466088B2 (en)
JPH10174329A (en) Cable for coil and motor using cable for coil thereof
JPS5936123Y2 (en) Lebel transition coil for rotating electrical machines
CN216252306U (en) Compact winding end flat wire motor and stator assembly thereof
JPH01274631A (en) Stator winding for electric rotary machine
JPH1042528A (en) Manufacture of stator for motor
JPH03106756A (en) Coil device
RU2713877C1 (en) Method of forming windings of an asymmetrical asynchronous electromotor and a stator of an asymmetrical asynchronous electromotor
JPS5932185Y2 (en) armature winding
JPH09154264A (en) Coil winding machine
CN114221466A (en) Compact winding end flat wire motor and stator assembly thereof
JPH02269431A (en) Stator for motor
CN113557652A (en) Method for winding a concentrated coil for an electric machine