JPS60189923A - Manufacturing device for photovoltaic element - Google Patents

Manufacturing device for photovoltaic element

Info

Publication number
JPS60189923A
JPS60189923A JP59045798A JP4579884A JPS60189923A JP S60189923 A JPS60189923 A JP S60189923A JP 59045798 A JP59045798 A JP 59045798A JP 4579884 A JP4579884 A JP 4579884A JP S60189923 A JPS60189923 A JP S60189923A
Authority
JP
Japan
Prior art keywords
chamber
gas
electrodes
wall
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59045798A
Other languages
Japanese (ja)
Inventor
Masahiko Nozawa
野澤 正彦
Takahiro Aoyama
青山 隆浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Osaka Transformer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Osaka Transformer Co Ltd filed Critical Daihen Corp
Priority to JP59045798A priority Critical patent/JPS60189923A/en
Publication of JPS60189923A publication Critical patent/JPS60189923A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable semiconductor thin films of good characteristics without beating and driving out and floating the partial component of deposited residue by colliding generating ions to the inner wall by a method wherein a zero voltage or negative voltage is impressed by arranging ion inhibition electrodes by the side of opposing electrodes. CONSTITUTION:After vacuum-drawing in a chamber 2, a given negative voltage is impressed on the ion inhibition electrodes 7. Successively, the producing gas in a gas bomb G1 is supplied by opening e.g. a valve V1. The producing gas between the opposed electrodes 1 and 1' is decomposed by glow discharge by impressing a high voltage across the electrodes 1 and 1' from a high frequency power source 4, resulting in the production of a required semiconductor thin film on the surface of a substrate 5. At this time, the residue of decomposition of the producing gas deposits on the inner wall 2a of the chamber 2. On the other hand, ions N generating by glow discharge are drawn to the inhibition electrodes 7 and flow to the ground, not reaching the inner wall 2a of the chamber 2. Even when the gas is changed, the residue keeps the state of deposition on the inner wall 2a without scattering due to beating and driving out by ion impact.

Description

【発明の詳細な説明】 本発明はプラズマCV I)法により製造する光起電力
素子の製造方法に関し、特に光起電力素子の光電変換効
率を高めることができる光起電力素子の製造方法を提案
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a photovoltaic device manufactured by the plasma CV I) method, and particularly proposes a method for manufacturing a photovoltaic device that can increase the photoelectric conversion efficiency of the photovoltaic device. It is something to do.

プラズマCVD法による光起電力素子の製造は、第1図
に示すように、対向させた一対の電極1゜1を収容した
金属製のチャンバー2内に半導体薄膜を生成させる原料
のシランガス、ジボランガス等、所定の生成用ガスをガ
ス送給管3を経て送給するとともに。電極1.1間には
直流電源又は高周波電源4により高電圧を印加して、対
向する電極1.1間にて生成用ガスをグロー放電させる
ことによりこれを分解させ、電極1上に載置した基板5
の表面に所定の半導体薄膜を生成させることにより、太
陽電池である光起電力素子を製造している。
In manufacturing a photovoltaic device by the plasma CVD method, as shown in FIG. 1, silane gas, diborane gas, etc., which are raw materials for forming a semiconductor thin film, are placed in a metal chamber 2 that houses a pair of electrodes 1.1 facing each other. , while feeding a predetermined production gas through the gas feed pipe 3. A high voltage is applied between the electrodes 1.1 by a DC power source or a high frequency power source 4, and the generated gas is decomposed by glow discharge between the opposing electrodes 1.1, and then placed on the electrode 1. board 5
A photovoltaic element, which is a solar cell, is manufactured by forming a predetermined semiconductor thin film on the surface of a solar cell.

ところで、太陽電池の如き光起電力素子は、一般に特性
の異なる複数の半導体薄膜を基板5の表面に積層させる
必要があり、基板5の表面に半導体薄膜を生成させる場
合には、生成させる個々の半導体薄膜毎にそれぞれの半
導体薄膜の特性を発揮させるに適した純度の極めて高い
生成用ガスをチャンバー2内に送給する。そして、この
ような生成用ガスの送給は第1図に示しているように、
ガス送給管3にバルブV、乃至V4を介して接続された
種類の異なる生成相ガスを充填しているガスボンベG、
、G2.G3.G4からなる適宜のバルブV、乃至v4
を選択的に開くことにより適当な混合比と流量の精密な
制御が行われる。しかして、いま仮りにバルブvlを開
いてガスボンベG1 の生成用ガスをチャンバー2内に
送給してグロー放電させて基板5の表面に1@目の半導
体薄膜を生成させた場合には、その放電により分解され
た生成用ガスの残清かチャンバー2の内壁にも飛来して
付着する。続いて、いま生成させた11−目の半導体薄
膜の表面に別の特性を有する2層目の半導体薄膜を生成
させる場合には、いままでチャンバー2内に送給されて
いた生成用ガスを止めて排気管6から一旦排出させ、チ
ャンバー2内を真空状態にした後、再び別のバルブv2
を開いて、ガスボンベG2から新らたに極めて純度の高
い生成用ガスを適当な混合比(一種の場合もある)で精
密な流量に制御し、チャンバー2内に送給してグロー放
電させて先に生成させた1層目の半導体薄膜の表面に特
性の異なる新らたな2@目の半導体薄膜を生成させる。
By the way, in a photovoltaic element such as a solar cell, it is generally necessary to stack a plurality of semiconductor thin films with different characteristics on the surface of the substrate 5. A production gas of extremely high purity suitable for exhibiting the characteristics of each semiconductor thin film is fed into the chamber 2. As shown in Fig. 1, the production gas is fed as shown in Figure 1.
a gas cylinder G filled with different types of generated phase gas connected to the gas feed pipe 3 via valves V to V4;
, G2. G3. A suitable valve V consisting of G4, or V4
Precise control of the appropriate mixing ratio and flow rate is achieved by selectively opening the . However, if we were to open the valve vl and feed the generation gas from the gas cylinder G1 into the chamber 2 to cause glow discharge and generate the first @th semiconductor thin film on the surface of the substrate 5, then The residue of the generation gas decomposed by the discharge also flies to the inner wall of the chamber 2 and adheres thereto. Next, when a second layer of semiconductor thin film having different characteristics is to be generated on the surface of the 11th semiconductor thin film that has just been generated, the generation gas that has been fed into the chamber 2 is stopped. After the exhaust pipe 6 is discharged once and the inside of the chamber 2 is made into a vacuum state, another valve v2 is opened again.
After opening the gas cylinder G2, a new generation gas of extremely high purity is controlled at a precise flow rate at an appropriate mixing ratio (sometimes one type), and is fed into the chamber 2 to cause a glow discharge. A new second semiconductor thin film having different characteristics is formed on the surface of the first semiconductor thin film formed previously.

この場合、21!!目を生成させる生成用ガスのグロー
放電により、発生したプラスのイオンN(以下イオンと
いう)の一部が、接地されている金属製チャンバー2の
内壁との電位差(電界)により引きつけられ子ャンバー
2の内壁に衝突して、1層目の半導体薄膜の生成時にお
けるグロー放電でチャンバー2の内壁に付着していた残
渣に衝撃を与えてこれを分解し、その一部または残渣の
一部をチャンバー2内に浮遊させることになって、2層
目の半導体薄膜を生成させる生成用ガスの純度を著るし
く低下させ、あるいはガス成分の混合比、成分量を変化
させることになる。そのため2@目に生成された半導体
薄膜の特性か期待していたものと大いに異なり一般に特
性の低下が余儀なくされ、光起電力素子の光電変換効率
の上昇を妨げるものであることが判明した。
In this case, 21! ! Due to the glow discharge of the generation gas that generates eyes, some of the generated positive ions N (hereinafter referred to as ions) are attracted by the potential difference (electric field) with the inner wall of the grounded metal chamber 2, and are drawn into the child chamber 2. The glow discharge generated during the formation of the first layer of semiconductor thin film impacts and decomposes the residue attached to the inner wall of chamber 2, and part of it or the residue is transferred to the chamber 2. 2, the purity of the generation gas used to generate the second semiconductor thin film will be significantly lowered, or the mixing ratio and amount of the gas components will change. As a result, the properties of the semiconductor thin film produced in the second step were significantly different from those expected, and the properties were generally forced to deteriorate, which was found to impede the increase in the photoelectric conversion efficiency of the photovoltaic device.

本発明は前述した問題を解決するために、チャンバー内
に対向させた電極の対向間隙塾曇暮14i≠44iの側
方にイオン抑制電極を設けて、このイオン抑制電極に零
又〜は負電圧を印加しつつ生成用ガスをグロー放電させ
ることにより、これにより発生したイオンをチャンバー
の内壁に衝突させないようにして、チャンバー2の内側
壁に付着した残渣を分解したり浮遊することを防止して
、純度が極めて高い生成用ガス状態を維持しながら個々
の半導体薄膜を生成させることにより、光起電。
In order to solve the above-mentioned problem, the present invention provides an ion suppression electrode on the side of the opposing gap 14i≠44i of the electrodes opposed in the chamber, and applies zero or negative voltage to the ion suppression electrode. By glow-discharging the generation gas while applying , the ions generated thereby are prevented from colliding with the inner wall of the chamber, and the residue attached to the inner wall of the chamber 2 is prevented from being decomposed or floating. , photovoltaic by producing individual semiconductor thin films while maintaining extremely pure production gas conditions.

力素子の光電変換効率を一段と高めることができる光起
電力素子の製造方法を提案するものである。
This paper proposes a method for manufacturing a photovoltaic device that can further increase the photoelectric conversion efficiency of the photovoltaic device.

以下第2図を参照して本発明の′#、起電力素子の製造
方法を説明する。
The method of manufacturing the electromotive force element of the present invention will be described below with reference to FIG.

第2図において、1,1は金媚製のチャンバー2内に対
向させて配設した電極であり、これらの電極1.1は直
流電源又は高周波型M、4に接続されていて、電極1は
接地されている。また下側の電極1′には基板5が載置
されている。チャンバー2には、チャンバー2内に連通
するガス送給管3と排気管6とが設けられている。更に
、チャンバー2内には、対向させた電極1.1間隙部の
側方であって該電極1.1とチャンバー2の内側壁2a
との間1こ位置させ、内側壁2aに沿ってイオン抑制電
極7が配設されている。このイオン抑制電極7は適宜小
径のステンレススチール、銅、アルミニウム等からなる
棒状の導電体7aを所定のピッチで螺旋円筒状に巻回し
たものからなり、その軸長寸法は対向させた電極1.1
間距離よりも若干長い寸法となっている。このイオン抑
制電極7はイオン抑制用電源8の負電極に接続されてい
て、その正電極は接地されている。そしてこのイオン抑
制電si7は、イオン抑制用電源8により負電圧が印加
されており、その負電圧の大きさはイオン抑制用電源8
で必要により適宜調節し得るようになっている。そして
、通常はイオン抑制電極の負電圧の大きさを0〜10ボ
ルト程度あるいは接地して雰ボルトに設定する。前記ガ
ス送給管3にlマ、バルブv1 乃至V4 を介して、
異なる生成用ガスが充填されたガスボンベG、乃至G4
が接続されていて、所定のバルブVl 乃至v4 を開
くことにより所定の生成用ガスG1 乃至G4 かガス
送給管3を通ってチャンバー2内に送給できるようにな
つている。
In FIG. 2, reference numerals 1 and 1 are electrodes disposed facing each other in a chamber 2 made of metal, and these electrodes 1.1 are connected to a DC power supply or high frequency type M, 4, is grounded. Further, a substrate 5 is placed on the lower electrode 1'. The chamber 2 is provided with a gas supply pipe 3 and an exhaust pipe 6 that communicate with the inside of the chamber 2. Further, inside the chamber 2, there is a space between the electrode 1.1 and the inner wall 2a of the chamber 2, which is on the side of the gap between the electrodes 1.1 and the chamber 2, which are opposed to each other.
An ion suppression electrode 7 is disposed along the inner wall 2a between the inner wall 2a and the inner wall 2a. The ion suppressing electrode 7 is made of a rod-shaped conductor 7a made of stainless steel, copper, aluminum, etc. with a suitably small diameter, wound in a spiral cylindrical shape at a predetermined pitch, and its axial length is the same as that of the opposing electrodes 1. 1
The dimensions are slightly longer than the distance between the two. This ion suppression electrode 7 is connected to a negative electrode of an ion suppression power source 8, and its positive electrode is grounded. A negative voltage is applied to this ion suppression voltage si7 by the ion suppression power source 8, and the magnitude of the negative voltage is determined by the ion suppression power source 8.
can be adjusted as necessary. Usually, the magnitude of the negative voltage of the ion suppression electrode is set to about 0 to 10 volts or to an ambient voltage of about 0 to 10 volts. To the gas supply pipe 3, via valves v1 to V4,
Gas cylinders G to G4 filled with different generation gases
are connected, and by opening predetermined valves Vl to V4, predetermined generation gases G1 to G4 can be fed into the chamber 2 through the gas feed pipe 3.

このように構成された光起電力素子の製造装置による光
起電力素子の製造方法を説明する。先づチャンバー2内
を真空状態にした後、イオン抑制電極7に所定の負電圧
を印加する。続いて、例えばバルブvIを開いてガスボ
ンベG1の生成用ガスをチャンバー2内に送給する。そ
の後、電極1.1′間に冒周波電源4より高雷圧を印加
して、対向した電極1.1間の生成用ガスをグロー放電
させて分解し、基板5の表面に所定の半導体薄膜を生成
させる。このとき、生成用ガスか分解された残渣はチャ
ンバー2の内側壁2aに付着する。一方、グロー放電に
より発生したイオンNは、接地されて零電圧であるチャ
ンバー2の内側壁2aに向って突進しようとするが、内
側壁2aの手前に配設されて負電圧が印加されたイオン
抑制電極7の電界が影響して、イオンNはイオン抑制電
極7に引寄せられて大地に流れてチャンバー2の内側壁
2aには達しない。このようにして、1−目の半導体薄
膜を生成させた後は、チャンバー2内のガスを排出させ
た後、チャンバー2内を再ひ真空状態にする。その後、
いま基板5に生成させた1層目の半導体薄膜の表面に2
層目の半導体薄膜を生成させるための、例えばガスボン
ベC2の新らたな生成用ガスをバルブv2を開いてチャ
ンバー2内に送給し、前記同様にグロー放電させて先に
生成させた1層目の半導体薄膜の表面に特性の異なる2
@目の半導1本薄膜を生成させる。この場合も前記した
と同様に生成用ガスが分解されてその残渣がチャンバー
2の内側壁2aに付着する。またイオンNが発生するが
、イオン抑制電極7に引寄せられてチャンバー2の内側
W2aには達しない。そのために内側壁2aに付着して
いる残渣には何ら衝撃が加わらず、残渣はイオンの衝撃
によって叩たき出されて飛散することもなく内側壁2a
に付着したままの状態を保持する。したがって、2層目
の半導体薄膜を生成させる生成用ガスには残渣及びこの
残渣に吸着されているガスあるいはこの残渣を分解して
放出されるガス等が混入せず、極めて純度の高い生成用
ガスによる半導体薄膜が生成される。以下同様にして他
のガスボンベG3、G4の生成用ガスを夫々チャンバー
2内に送給して3@目及び4層目の半導体薄膜を生成し
て、特性の良い半導体薄膜を順次積層した光起電力素子
を製造することができる。このようにして夫々の半導体
簿膜は、常に極めて純度の高い生成用ガスにより生成さ
れるため製造された光起電力素子の光電変換効率は著る
しく高いものとなる。
A method for manufacturing a photovoltaic device using the photovoltaic device manufacturing apparatus configured as described above will be described. First, after the chamber 2 is brought into a vacuum state, a predetermined negative voltage is applied to the ion suppression electrode 7. Subsequently, for example, the valve vI is opened to supply the generation gas from the gas cylinder G1 into the chamber 2. Thereafter, high lightning pressure is applied between the electrodes 1.1' from the high-frequency power source 4, and the generated gas between the opposing electrodes 1.1 is decomposed by glow discharge, and a predetermined semiconductor thin film is formed on the surface of the substrate 5. to be generated. At this time, residues of the decomposed generation gas adhere to the inner wall 2a of the chamber 2. On the other hand, the ions N generated by the glow discharge try to rush toward the inner wall 2a of the chamber 2, which is grounded and has zero voltage. Under the influence of the electric field of the suppression electrode 7, the ions N are attracted to the ion suppression electrode 7, flow to the ground, and do not reach the inner wall 2a of the chamber 2. After the first semiconductor thin film is produced in this manner, the gas in the chamber 2 is exhausted, and then the chamber 2 is again brought into a vacuum state. after that,
2 on the surface of the first layer semiconductor thin film that has now been formed on the substrate 5.
In order to generate the semiconductor thin film of the second layer, for example, a new generation gas from the gas cylinder C2 is fed into the chamber 2 by opening the valve v2, and a glow discharge is performed in the same manner as described above to generate the first layer of semiconductor thin film that was previously generated. 2 Different characteristics on the surface of the semiconductor thin film of the eye
Generate a single semiconductor thin film. In this case as well, the generation gas is decomposed and its residue adheres to the inner wall 2a of the chamber 2 in the same manner as described above. Although ions N are generated, they are attracted to the ion suppression electrode 7 and do not reach the inside W2a of the chamber 2. Therefore, no impact is applied to the residue adhering to the inner wall 2a, and the residue is not knocked out and scattered by the impact of the ions and remains on the inner wall 2a.
remain attached to the surface. Therefore, the generation gas for producing the second layer of semiconductor thin film is not contaminated with the residue, the gas adsorbed to this residue, or the gas released by decomposing this residue, and is an extremely pure generation gas. A semiconductor thin film is produced. Thereafter, in the same manner, the generation gases of the other gas cylinders G3 and G4 are respectively fed into the chamber 2 to generate the third and fourth semiconductor thin films. Power devices can be manufactured. In this manner, each semiconductor film is always generated using a generating gas of extremely high purity, so that the photovoltaic device produced has a significantly high photoelectric conversion efficiency.

なお、本実施例においてはイオン抑制電極7に、断面形
状か円形の導体7aを螺旋円筒状に巻回したものを使用
したが、金網を円筒状に曲成させたものを使用すること
もでき、更には、金庫細線を極めて小さいピッチで螺旋
円筒状とすることもできる。その場合には、金属細線を
支持するための所定の巻枠を必要とする。一方、イオン
抑制用電源8は高周波電源4と別電源としたが、高周波
電源4から負i[IEを取り出してもよい。更にイオン
抑制電極を同心状で2電極として、その内側のイオン抑
制電極を零電圧、つまり接地し、外側のイオン抑制電極
を負電圧とすれば、チャンバー2内の内側壁2aへのイ
オンの到達をより阻止することができる。
In this embodiment, a conductor 7a having a circular cross-sectional shape wound in a spiral cylindrical shape was used as the ion suppression electrode 7, but a wire mesh curved into a cylindrical shape may also be used. Furthermore, the fine wire for the safe can be formed into a spiral cylindrical shape with an extremely small pitch. In that case, a predetermined winding frame is required to support the thin metal wire. On the other hand, although the ion suppression power source 8 is a separate power source from the high frequency power source 4, the negative i[IE may be taken out from the high frequency power source 4. Furthermore, if two ion suppression electrodes are arranged concentrically, and the inner ion suppression electrode is set to zero voltage, that is, grounded, and the outer ion suppression electrode is set to negative voltage, ions can reach the inner wall 2a in the chamber 2. can be more effectively prevented.

そして、イオン抑制電極に印加する電圧は零若しくは負
電圧とすればよく、特定の電圧値に限定されるものでは
ない。なお、前記チャンバー2は図示していないが、上
下に二分割できる構造となっていて、基板の出し入れが
出来るようになっていることは言うまでもない。
The voltage applied to the ion suppression electrode may be zero or a negative voltage, and is not limited to a specific voltage value. Although the chamber 2 is not shown, it goes without saying that it has a structure that can be divided into upper and lower halves so that substrates can be taken in and out.

以上説明したようlこ、本発明による光起電力素子の製
造方法は、金属製チャンバー2内に対向す−る電極1,
1を収容し、この対向する電極1.1間の側方にイオン
抑制電極7を配設して零又は負電圧を印加することによ
り、生成用ガスか分解されて発生したイオンNをチャン
バー2の内側壁2訛に衝突させないため、チャンバー2
の内側壁2aに付着した残渣の一部の成分を叩たき出し
て浮遊させることがない。したがって、チャンバー2内
は所定の半導体薄膜を生成させるための極めて純度の高
い生成用ガスのみが送給された状態が得られて、極めて
特性の良い半導体薄膜を生成できる。特に1つのチャン
バー2で順次異なる生成用ガスを送給しても生成用ガス
の純度が低重せす、順次特性の良い半導体薄膜を積層し
て生成できるので、安価な設備で光電変換効率の高い光
起電力素子を製造することかできる。
As explained above, in the method for manufacturing a photovoltaic device according to the present invention, the electrodes 1, facing each other in the metal chamber 2,
By arranging an ion suppression electrode 7 on the side between the opposing electrodes 1.1 and applying zero or negative voltage, the ions N generated by decomposition of the production gas are transferred to the chamber 2. In order to avoid collision with the inner wall 2 of the chamber 2
Some components of the residue adhering to the inner wall 2a are not knocked out and made to float. Therefore, a state is obtained in which only extremely pure production gas for producing a predetermined semiconductor thin film is fed into the chamber 2, and a semiconductor thin film with extremely good characteristics can be produced. In particular, even if different generation gases are sequentially supplied in one chamber 2, the purity of the generation gas will be low.Since semiconductor thin films with good characteristics can be sequentially stacked and generated, the photoelectric conversion efficiency can be improved using inexpensive equipment. It is possible to produce high photovoltaic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光起電力素子の製造方法で使用する製造
装置の説明図、第2図は本発明に係る光起電力素子の装
造方法で使用する製造装置を示す説明図である。 1.1・・電極、2・・チャンバー、3・・ガス送給管
、4・・・高周波電踪、7・・・イオン抑制電極、8・
・・イオン抑制用電源。 代理人 弁理士 中 井 宏 粛しη・丹(内容に変更なし) 第1図 第2図 手続ネ山jE聾」 (自 発) 1、事件の表示 昭和59年特許願第45798号 2、発明の名称 光起電力素子の製造方法 3、補正する省 事件どの関係 特許出願人 大阪市淀用区田用2丁目1番11号 (026) 大阪変圧器株式会?、1 4、代理人 住 所 〒532 大阪市淀用区田用2丁目1番11号
[連絡先 電話 (06) 301−1212]5、補
正の対象 図面−1図及び第2図6、補正の内容 図面
第1図及び第2図を別紙のとおり訂正する。 以 上
FIG. 1 is an explanatory diagram of a manufacturing apparatus used in a conventional method for manufacturing a photovoltaic element, and FIG. 2 is an explanatory diagram showing a manufacturing apparatus used in a method for assembling a photovoltaic element according to the present invention. 1.1...electrode, 2...chamber, 3...gas feed pipe, 4...high frequency electric field, 7...ion suppression electrode, 8...
...Power supply for ion suppression. Agent Patent Attorney Hiroshi Nakai η・tan (No change in content) Figure 1 Figure 2 Procedure NeyamajE Deaf'' (Voluntary initiative) 1. Indication of the case Patent Application No. 45798 of 1982 2. Invention Name of photovoltaic device manufacturing method 3, which ministry case to amend Patent applicant No. 2-1-11 Tayo, Yodoyo-ku, Osaka (026) Osaka Transformer Co., Ltd.? , 1 4. Address of the agent: 2-1-11 Tayo, Yodoyo-ku, Osaka 532 [Contact information: (06) 301-1212] 5. Subject of amendment Drawing - Figure 1 and Figure 2 6, Amendment Contents Figures 1 and 2 of the drawings are corrected as shown in the attached sheet. that's all

Claims (1)

【特許請求の範囲】[Claims] 1、 金属製チャンバー内に送給した薄膜生成用ガスを
対向する電極間でグロー放電させて、基数の表面に半導
体薄膜を生成させるプラズマCVD(Chemical
 Vapor Deposition)法による光起電
力素子の製造方法において、前記対向させた電極間の側
方にイオン抑制電極を配設し該イオン抑制電極を@記金
属製チャンバーに対し零電圧又は負可圧にし、グロー放
′市により生じたイオンがチャンバー内壁に到達するの
を抑制して基板上に薄膜を生成させる光起電力素子の製
造方法。
1. Plasma CVD (Chemical
In the method for manufacturing a photovoltaic device using the Vapor Deposition method, an ion suppression electrode is disposed on the side between the opposing electrodes, and the ion suppression electrode is set at zero voltage or negative pressure with respect to the metal chamber. A method for manufacturing a photovoltaic device that suppresses ions generated by glow emission from reaching the inner wall of a chamber and forms a thin film on a substrate.
JP59045798A 1984-03-09 1984-03-09 Manufacturing device for photovoltaic element Pending JPS60189923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59045798A JPS60189923A (en) 1984-03-09 1984-03-09 Manufacturing device for photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59045798A JPS60189923A (en) 1984-03-09 1984-03-09 Manufacturing device for photovoltaic element

Publications (1)

Publication Number Publication Date
JPS60189923A true JPS60189923A (en) 1985-09-27

Family

ID=12729288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59045798A Pending JPS60189923A (en) 1984-03-09 1984-03-09 Manufacturing device for photovoltaic element

Country Status (1)

Country Link
JP (1) JPS60189923A (en)

Similar Documents

Publication Publication Date Title
US4863549A (en) Apparatus for coating or etching by means of a plasma
US4438188A (en) Method for producing photosensitive film for electrophotography
Van Sark Methods of deposition of hydrogenated amorphous silicon for device applications
JPH0541705B2 (en)
JP2009526129A (en) Short pulse atmospheric pressure glow discharge method and apparatus
JP2020030936A (en) Destaticizing apparatus
TW533597B (en) CVD system and substrate cleaning method
JPS60189923A (en) Manufacturing device for photovoltaic element
DE69408699T2 (en) SiO2 electret and process for its production
US20020056415A1 (en) Apparatus and method for production of solar cells
JPS6119799Y2 (en)
JPS6345367A (en) Film formation by transporting type sputtering
JPS60147114A (en) Manufacturing device for photovoltaic element
JP5081684B2 (en) Carbon nanotube growth substrate, method for producing the same, and method for producing carbon nanotubes
JP4906822B2 (en) Thin film forming apparatus and thin film forming method
JPH04120277A (en) Plasma cvd device
TW201103880A (en) Electronic device and method of manufacturing the same
JP3634605B2 (en) Method for forming a thin film using a rotating electrode
JPS6022964A (en) Forming method of mask film on sheet object
JP2765371B2 (en) Film processing equipment
JPS5812339B2 (en) Ion etching method
DE1765144C (en) Arrangement and method for the production of layers by means of cathode sputtering
JPS60233817A (en) Manufacture of photovoltaic element and device therefor
JPS62263235A (en) Amorphous thin film forming system
JPS62238370A (en) Device for cvd by plasma